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Abstract. Inspection  and  testing  play  important  roles  towards  software 
quality.  However,  both  tasks  are  usually  time-consuming  specially  if  one  
considers complex projects. Requirements are a valuable starting point for the  
development  of  software  products,  and  most  of  software  requirements  
specifications  are  still  written  in  natural  language.  This  paper  presents  a 
methodology  to  address  the  automation  of  both  the  analysis  of  natural  
language  specifications  and  Model-Based  Testing.  The  goals  are  to  
automatically  detect  problems  in  natural  language  requirements,  like 
ambiguity,  inconsistency,  and  incompleteness,  and  to  translate  such 
requirements into behavioral models to support automated testing. 

1. Introduction

Software  Quality  Assurance  involves  several  activities  like  planning,  measurement, 
configuration  management,  walkthroughs,  inspection  and  testing.  Inspection  is  an 
example of static analysis technique where there is no need to execute the program. It 
relies on visual examination of deliverables like Software Requirements Specifications 
(SRSs),  Design  Documents  and source  code.  Being  one  the  first  artifacts  produced 
within the software development lifecycle, a well  elaborated SRS usually leads to a 
smooth development process because designers, programmers, testing teams base their 
actions  on a  reliable  source of  information.  However,  incomplete,  contradictory and 
ambiguous specifications may cause many mistakes during the development. 

Formal  methods may be used to  express  requirements,  but  they require  high 
expertise and, hence, they are not very common in industrial practice. Unified Modeling 
Language  (UML)  use  case  models  are  an  alternative.  However,  it  is  usual  that 
requirements expressed in Natural Language (NL) are the basis for deriving use case 
specifications in a UML-based software development approach. Furthermore, use case 
models are often associated with a textual description narrating the behavior through a 
sequence of actor-system interactions (SINHA et al., 2007). The bottom line is that NL 
is still the most common approach to express software requirements in practice (MICH 
et al., 2004). Unfortunately, serious shortcomings exist if a specification is written in 
NL, making a document unclear, and this impacts on the next artifacts produced within 
the software development lifecycle.

Test automation is a reality, however, human factor is still very present within a 



test  process.  For  instance,  following  a  Model-Based  Testing  (MBT)  (EL-FAR; 
WHITTAKER, 2001) approach, an enviroment may automatically create test cases, but 
one shall derive behavioral models to be the basis for such enviroment to do its job. 
Considering system and acceptance testing, where the entire software must be modeled, 
a test designer should first identify scenarios and develop several models to cover them 
and,  then  a  Model-based  tool  can  be  used  for  test  case  generation. These  manual 
activities accomplished by a test designer are usually time-consuming.

This paper presents a methodology to address the automation of both the analysis 
(a  particular  type  of  inspection)  of  NL specifications  and  MBT.  The  goals  are  to 
automatically  detect  defects  in  NL requirements,  like  ambiguity,  inconsistency,  and 
incompleteness, and to translate such requirements into behavioral models to support 
the automation of system and acceptance testing. Description Logics will be used to 
support both activities (NARDI; BRACHMAN, 2003).

2. Natural Language Specifications

According to a recent survey, 95% of the requirements documents found in industry are 
written in common (79%) or structured (16%) natural language (MICH et al., 2004). 
There is a lack of methodologies and tools for NL requirements analysis. This section 
presents  some  approaches  addressing  this  issue,  such  as  the  Quality  Analyzer  for  
Requirements Specification (QuARS) tool (GNESI et al., 2005). QuARS was developed 
based on a quality model for the expressiveness property (mainly ambiguity and poor 
readability). QuARS seems to be a scalable tool, however, the analysis it performs is 
limited to syntax-related issues of NL requirements documents addressing ambiguity. 
Besides,  the  tool  does  not  perform  true  automation  detection  of  inconsistency and 
incompleteness.         

Another environment that supports modeling and analysis of NL requirements is 
CIRCE (AMBRIOLA; GERVASI, 2006).  CIRCE uses a domain-based parser  called 
CICO  to  parse  and  transform  NL  requirements  into  a  forest  of  parse  trees.  A 
requirements specification is considered as a set of designations, a set of definitions, and 
a set of requirements. CIRCE assumes that the requirements are expressed in restricted 
NL: there are formal rules which define the controlled language accepted. Besides, the 
domain must  be defined by a user by means of designations and definitions written 
using  a  formal  syntax.  The  tool  is  interesting  but  expressing  the  domain  may  be 
difficult, tiresome and time-consuming because it is necessary to declare designations, 
using lots of tags, and definitions requiring from a requirements Engineer to perform a 
deep analysis of the NL requirements. Furthermore, it is not completely evident that the 
tool can properly deal automatically with ambiguity and inconsistency, scalability is an 
issue and it is very likely that a user needs to write formal rules, which drive the CICO's 
parsing algorithm, when using the tool. 

The  Natural Language – Object Oriented Production System (NL-OOPS) tool 
supports  analysis  of  unrestricted  NL  requirements  by  extracting  classes  and  their 
associations  for  use  in  creating  class  models  (MICH,  1996).  The  unrestricted  NL 
analysis  is  obtained using as a core the NL processing system  Large-scale,  Object-
based,  Linguistic  Interactor,  Translator,  and  Analyser (LOLITA).  LOLITA is  built 
around a large graph called SemNet, a particular form of conceptual graph, which holds 
knowledge  that  can  be  accessed,  modified  or  expanded  using  NL input.  NL-OOPS 
allows detection  of ambiguities,  but  probably not  all  possible  types,  but  there is  no 



evidence  that  it  supports  automated  detection  of  incompleteness  and  inconsistency. 
Moreover, the tool is not scalable.     

Gervasi  and Zowghi proposed a formal  framework for identifying, analyzing, 
and managing inconsistency in  requirements  derived from multiple  stakeholders  and 
expressed in controlled NL (GERVASI; ZOWGHI, 2005). A prototype tool, CARL, was 
developed  incorporating  all  the  techniques  described  in  the  paper.  Requirements 
expressed  in  controlled  NL  are  first  automatically  parsed  and  translated  into 
propositional  logic  formulae.  Once  the  specification  is  represented  as  sets  of 
propositional logic formulae, a theorem prover and a model checker are used aiming at 
detecting  inconsistencies.  Limitations  of  CARL  include  no  support  for  automated 
detection of incompleteness and ambiguity, scalability and, like CIRCE (AMBRIOLA; 
GERVASI, 2006), there is the same problem regarding the likely need to write new 
formal rules depending on the domain. 

3. Translations of Notations and Model-Based Testing

The  translation  of  specifications  elaborated  in  one  notation  to  another  one  may be 
beneficial  for software testing purposes. Approaches that  translate  simpler notations, 
like NL or UML diagrams, to formal methods can be quite convenient because they 
relieve testing professionals from the cost of using a formal method but, at the same 
time, provide the requirements converted to a formal way for verification and testing. 
Some work regarding this topic follows.

The  work  of  Gervasi  and  Zowghi  is  an  example  of  transformation  of  NL 
requirements into formal method (GERVASI; ZOWGHI, 2005). Sinha et al. (SINHA et 
al., 2007) demonstrated how a combination of UML use case and class diagrams can be 
converted to an Extended Finite State Machine (EFSM). Fröhlich and Link presented a 
system testing method based on textual descriptions of UML use cases (FRÖHLICH; 
LINK, 2000). They translated a use case description into a UML state machine and, after 
that,  they  applied  Artificial  Intelligence  planning  techniques  to  derive  test  suites 
satisfying the coverage testing criterion which asserts that all transitions of the UML 
state machine must be traversed at least once. 

Sarma  and  Mall  proposed  a  system  testing  approach  to  cover  elementary 
transition paths  (SARMA; MALL, 2009). The technique relies on the derivation of a 
System State  Graph  (SSG)  based  on  UML 2.0  use  case,  sequence  and  Statecharts 
diagrams.  The  test  criterion  which  their  method  aims  to  satisfy  is  transition  path 
coverage where each elementary transition path p of the SSG must be exercised at least 
once by a test suite T. One major limitation of their approach is not considering loops in 
sequence diagrams, given that a loop is either not executed at all or it is executed only 
once.  Thus,  the  authors  did  not  address  one  of  the  major  problems  in  path  testing 
because, in general, a program containing loops will have an infinite or undetermined 
number of paths.

The testing community tends to consider MBT as a type of testing in which tests 
are  derived  from software  behavioral  models  (EL-FAR; WHITTAKER,  2001).  This 
definition  includes  formal  methods  specifications  and  other  notations,  like  UML 
models. Finite State Machines (FSMs) (LEE; YANNAKAKIS, 1996) and Statecharts 
(HAREL, 1987) are a few examples of modeling techniques commonly used for testing. 
Once a system is modeled as a state-transition diagram representing an FSM, several 



methods like Transition Tour (TT), Distinguishing Sequence (DS), Unique Input/Output 
(UIO), W (SIDHU; LEUNG, 1989), switch cover (PIMONT; RAULT, 1976) and state 
counting (PETRENKO; YEVTUSHENKO, 2005) can be used to generate test cases.

Several approaches have been proposed to generate test cases from Statecharts 
models. Binder (BINDER, 1999) adapted the W method to a UML context and named it 
round-trip  path  testing.  Souza  proposed  a  family  of  testing  coverage  criteria,  the 
Statechart  Coverage  Criteria  Family (SCCF),  for  models  in  Statecharts  (SOUZA, 
2000).  Test  requirements  established  by  the  SCCF  criteria  are  obtained  from  the 
Statecharts reachability tree. Briand et al. (BRIAND et al., 2004) showed a simulation 
and a  procedure  to  analyze  cost-efficiency of  three  criteria  proposed  by Offutt  and 
Abdurazik (OFFUTT; ABDURAZIK, 1999) and the very same round-trip path.  

The Geração Automática de Casos de Teste Baseada em Statecharts (GTSC) is 
an environment that allows test designers to model software behavior using Statecharts 
and/or FSMs in order to generate test cases automatically based on some test criteria 
(methods) for FSM and some for Statecharts (SANTIAGO et al., 2008a). At present, 
GTSC has implemented switch cover, UIO and DS test criteria for FSM models and two 
test  criteria  from  SCCF,  all-transitions  and  all-simple-paths,  targeting  Statecharts 
models.  GTSC  has  been  successfully  used  for  model-based  test  case  generation 
regarding software products embedded into experiment on-board computers of scientific 
satellites under development at CEA/INPE (SANTIAGO et al., 2008a). 

4. The Methodology

This section presents the proposed methodology, shown in Figure 1, which will try to 
encompass static and dynamic techniques. The automated analysis of NL requirements 
is the static part of the methodology. The bold rectangles in Figure 1 indicate tools that 
will be developed to build an NL Processing System. The only tool that will not be 
developed is the Part-Of-Speech (POS) Tagger and the first option is to use the Stanford 
POS Tagger (TOUTANOVA et al., 2003). The main role of the tagger is to identify 
nouns, verbs, adjectives to support the Knowledge Base (KB) inference of the system. 

The  KB  of  the  system  will  be  encoded  using  Description  Logics  (DL),  a 
formalism  for  representing  knowledge,  as  well  as  some  important  basic  notions 
underlying  all  systems  that  have  been  created  in  the  DL  tradition  (NARDI; 
BRACHMAN, 2003). A DL KB is  typically composed of a TBox and an ABox. The 
TBox contains intensional knowledge in the form of a terminology and is built by means 
of  declarations  that  describe  general  properties  of  concepts.  The  ABox  contains 
extensional knowledge that is specific to the individuals of the domain of discourse. 

The methodology requires that a user provides a lightweight ontology using a 
Graphical User Interface (GUI). Indeed, the user will perform a mapping among domain 
words and concepts, sets or classes of individual objects, in the ontology. An ontology, 
like the one shown in Figure 2, will exist regarding the domain of software embedded 
into satellite on-board computers. Based on reasoning services provided by DL, like 
subsumption  (NARDI;  BRACHMAN,  2003),  the  KB  (TBox  and  ABox)  can  be 
improved to deal with, for instance, the problem of incompleteness specifications. The 
POS  Tagger  will  provide  syntactic  category in  order  to  help  in  the  KB  inference 
process,  given  that  it  is  possible  to  identify  concepts  (nouns,  domain  entities)  and 
actions (verbs), the latter possibly characterizing relationships (roles). In Figure 2, an 



example of concept is OnBoardComp and a role is hasType.Message∃ . The lightweight 
term implies that it will not be required to use any type of formalism to provide such 
mapping. Besides, the idea is that a user does not take a long time to do that, because the 
design ontology will be defined within the tool that supports the methodology.

Figure 1 – The Methodology.

1. OnBoardComp ⊑ SatelliteCompSubsytem
2. OnBoardSoft ⊑ OnBoardComputer  
3. CommProtocol ⊑ ∃hasImplementation.OnBoardSoft ⊓ ≥2hasComputer
4. Command ⊑ CommProtocol
5. Response ⊑ CommProtocol
6. Message ≡ Command ⊔ Response
7. Field  (⊑ ∃hasType.Message ⊓ ∃hasErrorDetection.Message) ⊓ ≥2hasField  

  
Figure 2 – A piece of ontology (TBox) for space embedded software. 

Having the DL KB inferred, semantic and pragmatics analysis may be performed 
aiming at detecting ambiguity, inconsistency and incompleteness at the formal level. 
These defects will be informed to the user so that he/she can take the proper actions 
such as rewriting the requirenments and/or improving the ontology mapping.

Once the requirements Engineer decides the NL specification is adequate, the 
dynamic feature of the methodology can take place. This feature refers to system and 
acceptance  automated  test  case  generation  by  the  translation  of  the  DL  KB  into 
Statecharts  models.  Recall  that  such a kind of testing demands the modeling of the 
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entire system. The natural way to address this activity is the divide and conquer strategy, 
where a test designer breaks down the system based on functional and possibly non-
functional requirements. This strategy tries to diminish the impact of the existing state 
explosion  problem  related  to  MBT.  Models  are  then  derived  to  address  each 
functionality and, in this way, it is more feasible to generate test cases based on such 
models.  Consider the following three requirements adapted from the specification of 
SWPDC, a software product developed under the scope of the Qualidade do Software  
Embarcado  em  Aplicações  Espaciais (QSEE)  research  project  (SANTIAGO  et  al., 
2007):

[ET003] On the beginning of its operation, SWPDC will accomplish a POST (Initiation  
Operation Mode) to determine whether the Payload Data Handling Computer (PDC) is healthy  
and  adequate  to  operate.  If  any  unrecoverable  problem  was  detected  within  PDC,  this  
computer  will  remain  in  the  Initiation  Operation  Mode  and  this  problem  will  not  be  
propagated to the On-Board Data Handling Computer (OBDH). 

[ET012] In the case that none unrecoverable problem was detected within PDC, after  
the initiation process, SWPDC shall automatically change the PDC Operation Mode to Safety.

[ET013]  The PDC/SWDPC will  be  available  to  communicate  with  the  OBDH only 
after 1 minute has elapsed since the initiation process. 

Such requirements define a small part of a particular scenario that a test designer 
must  identify in  order  to  elaborate  the  behavioral  model.  Figure  3  shows a  simple 
ontology (TBox) related to the transformation of DL formalism into a reactive system 
Statecharts  model.  Figure  4  shows  the  ABox  considering  the  tree  requirements 
abovementioned. 

The basic idea to transform such Knowledge Base into a Statecharts model is 
considering left-hand side concepts of TBox as states and right-hand side roles as input 
or output  events within transitions in the model. Note that the roles has IN and OUT 
terms meaning the input and output events within transitions, respectively. Also note 
that there are roles that are type ev and others that are type evcond. These terms model 
the situations where there is just an event without any guard condition (ev) and event 
with guard condition (evcond). Besides, a prefix no implies that such type of event (e.g. 
no-evcond means that no event with condition occurs to fire the transition) does not 
occur. The  DL-to-Statecharts Translator component (Figure 1) will then examine the 
ABox and, following its structure, it can generate the Statecharts model. 

In order to clarify how the model can be generated, see statements 2, 3 and 4 in 
Figure 4. In 2, the next (destination) state will be Initiation Mode. In 3, the input event 
without guard condition is switchPDCOn and the source state is PDCOff (which is also 
the initial state of the model; see statement 1). In 4, the output event is start60s, given 
that requirement [ET013] specifies a one-minute delay in order SWPDC/PDC can be 
able to communicate with the OBDH. Figure 5 shows the Statecharts model regarding 
the scenario described by such requirements.

Obviously, the derivation of the behavioral model requires a precise KB (TBox 
and ABox), and this shows how important is the role of the Knowledge Base Inference 
component within this methodology. Moreover, it is important to note that there should 
exist  different KBs within the system, like the KB resulted from the analysis of NL 
requirements and the KB regarding the translation from DL to behavioral models to 
support testing.



1. InitialState ≡ ∃hasINITIALSTATE.System
2. NextState  ⊑ (((∃hasIN_ev.InitialState  ⊓  ∃hasIN_no-evcond.InitialState) ⊔ 

(∃hasIN_no-ev.InitialState  ⊓  ∃hasIN_evcond.InitialState)) ⊓ 
(∃hasOUT_event.InitialState  ⊔  ∃hasOUT_null-out.InitialState))  ⊔ 
(((∃hasIN_ev.OtherState  ⊓  ∃hasIN_no-evcond.OtherState)  ⊔  (∃hasIN_no-
ev.OtherState ⊓ ∃hasIN_evcond.OtherState)) ⊓ (∃hasOUT_event.OtherState ⊔ 
∃hasOUT_null-out.OtherState))

3. NoMovement  ⊑ ∃hasIN_undef-event.InitialState ⊔ ∃hasIN_undef-
event.OtherState

  
Figure 3 – An example of a ontology (TBox) regarding the DL to Statecharts 

translation. 

1. InitialState(PDCOff) 
2. NextState(InitiationMode)
3. hasIN_ev(PDCOff, switchPDCOn)
4. hasOUT_event(PDCOff, start60s)
5. NextState(SafetyMode)
6. hasIN_evcond(InitiationMode, end60s [POSTStatusOk])
7. hasOUT_event(InitiationMode, changeToSafety)
8. NextState(InitiationMode)
9. hasIN_evcond(InitiationMode, noend60s [⌐POSTStatusOk])
10. hasOUT_null-out(InitiationMode, null)
11. NextState(InitiationMode)
12. hasIN_evcond(InitiationMode, end60s [⌐POSTStatusOk])
13. hasOUT_null-out(InitiationMode, null)

Figure 4 – An example of a ABox addressing three requirements of SWPDC. 

Figure 5 – The derived Statecharts model.

Once the Statecharts models are derived, the GTSC environment may be used 
for test case generation and the  QSEE-Teste Automatizado de Software (QSEE-TAS) 
tool may automatically execute the test cases (SANTIAGO et al., 2008b).

PDCOff Initiation 
Mode

switchPDCOn
/ start60s Safety 

Mode

end60s [POSTStatusOK]
/ changeToSafety

end60s [⌐POSTStatusOK]

noend60s [⌐POSTStatusOK]



5. Conclusions

This paper presented a review literature regarding NL requirements and MBT, and also 
a  methodology  to  address  the  analysis  of  NL  specifications  aiming  to  identify 
automatically  defects  such  as  ambiguity,  inconsistency,  and  incompleteness.  The 
methodolgy  also  intends  to  translate  such  requirements,  actually  their  Description 
Logics representantion, into Statecharts behavioral models to support the automation of 
system and acceptance testing. Preliminary developments related to this work are the 
ontologies  designed  to  address  space  embedded  software  and  DL  to  Statecharts 
translation, and a mechanism to derive behavioral models for testing purposes based on 
an adequate ABox. 

Future work will include improving the proposed ontologies, the development of 
the tools shown in Figure 1 and the POS Tagger integration with such tools. 
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