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ABSTRACT

Data assimilation is an essential step for imprg\dpace weather operational forecasting by
means of an appropriated combination between oésenmal data and data from a
mathematical model. In the present work data aksiom methods based on Kalman filter
and artificial neural networks are applied to &é&iwave model of auroral radio emissions. A
novel data assimilation method is presented, wiyeseimultilayer perceptron neural network
is trained to emulate a Kalman filter for data mlsition by using cross validation. The
results obtained render support for the use ofalew@tworks as an assimilation technique for
space weather prediction.

INTRODUCTION

Space weather research is the study of the distoesan the space environment, usually caused
by the solar activity and/or interactions of inteber medium and galactic cosmic rays with the
heliosphere. Due to the potential impact of spaeather on technological systems on Earth, as well
as on human health, space weather forecastingdeytan essential task. Nonlinear and chaotic
phenomena represented by mathematical models havit@nsic relationship with the initial
conditions (IC). Therefore, from very small disaiapies between two similar ICs, after some time-
steps, a disagreement could occur for some systenaher words, sensitive dependence on the IC
could cause the forecasting error to grow expoabytiast with the integration time (Grebogi et, al.
1987).

This implies that a better representation for thigal condition will produce a better prediction.
The problem for estimating the initial conditionsis complex and important for operational predictio
system, which it constitutes a science calledta Assimilation(Daley, 1993; Kalhay, 2003).
Nowadays data assimilation is a research topicomesof the areas of applied physics, such as
meteorology, oceanography, and ionospheric weaffeer last issue see: Schunk et al., 2004,
Scherliess et al., 2004; Hajj et al., 2004).

Many methods have been developed for data assionilathey have different strategies to
combine numerical forecasting and observations)guialman filter or variational approaches, for
example.

The use of artificial neural network (ANN) for dagasimilation is a very recent issue.
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The first implementation of the ANNs as a new applofor data assimilation was employed by
Nowosad et al. (2000). There are applications iaotlh systems, as well as 1D shallow water
equations. An artificial neural network is an agement of units characterized by a large number of
very simple neuron-like processing units; a largeber of weighted connections between the units,
where the knowledge of a network is stored; andlizigparallel distributed control. Two distinct
phases can be devised while using an ANN: theitirgiphase (learning process) and the run phase
(activation). The training phase consists of arattee process for adjusting the weights for thstbe
performance of the network in establishing the nragpmf many input/target vector pairs. Once
trained, the weights are fixed and new inputs carpiesented to the network, which calculates the
corresponding outputs based on what had been bkarne

In the worked example here, a multilayer Perceptreural network (MLP-NN) (Haykin, 1994;
Nowosad et al.,2000) is trained to emulate a Kalfiter-based data assimilation system. This novel
data assimilation strategy is applied to a threeewaodel of auroral radio emissions near the aactr
plasma frequency involving resonant interactiondafigmuir, Alfvén and whistler waves (Chian et
al., 1994; Lopes and Chian et al., 2002). Obseymati evidence of auroral radio emission and
nonlinear coupling between Langmuir, Alfvén and stler waves have been obtained in rocket
experiments in the Earth's auroral plasmas (Boehal.£1990). These auroral whistler waves may
explain the leaked AKR (auroral kilometric radiatjp providing the radio signatures of solar-
terrestrial connection, and may be used for maimigospace weather from the ground.

Data assimilation is a specialized field of datalgsis. The amount of data available today, with
the observation system enhancing in quality andhtifasive, becomes data analysis a challenge for
the science of this new century. Actually, manypleare addressing such challengeas science

NONLINEAR COUPLED WAVE EQUATIONS

A nonlinear analysis of auroral Langmuir, whistiard Alfvén (LAW) events in the planetary
magnetosphere was carried out by Lopes and Chi@86f1 under the assumption that all three
interacting waves are linearly damped. The simpiestiel for describing the temporal dynamics of
resonant nonlinear coupling of three waves canltaimed assuming terms in the wave amplitudes.

Moreover, the waves may be assumed monochromatlt thre electric fieIdsEa(x,t) written in the
form: E,(x,t) = [Aa (x,t)/2]eX|:{i(kax— a)at)}, wherea = 1,23 and the time scale of the nonlinear
interactions is much longer than the periods ofiitiear (uncoupled) waves.

In order for three-wave interactions to occur, Weve frequenciesy, and wave vectors,
must satisfy the resonant conditions: ¢ = &} — @, ; (ii) k; =k, —k,. Under these circumstances,

the nonlinear temporal dynamics of the system aamdwverned by the following set of three first-
order autonomous differential equations writtentémms of the complex slowly varying wave
amplitude (Meunier et al., 1982):

Bova+an (1a)

D-ian, 40,0 - AN (1b)
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(;—’?%‘SAS —AA (1b)

where the variabler = xt, with x is a characteristic frequencyd = (&} — @, — @)/ x is the
normalized linear frequency mismatch, and=V_/x gives the linear wave behaviors on the long
time scale. The wawg, is assumed linearly unstable, (> 0) and the other two waves; andA;, are
linearly damped Vi, =V, =-v<0), and it is sety =V, (Meunier et al., 1982; Lopes and Chian,
1996). The system admits both periodic and chaaies. Figure 1 shows the strange attractor.

A3(f)

Fig. 1 - The strange attractor for the three-waves: Eqgs. (1a)—(1c).

DATA ASSIMILATION EXPERIMENT

Process is illustrated using synthetic experimewiaia, where synthetic observations are
generated by addition of random small level nois¢he exact valueA>™(t.) = A, (t.) + Ar,, where

A =107, andr, is a random value at timg,. Figure 2 shows observed data inserted after Bach

time-steps on the mathematical model data withaytassimilation technique under chaotic regime.
The black and blue lines represent the referenaeh{tmodel”) and the dynamical system evolution
after the data insertion (“corrupted model”), ratpeely. Clearly, it is noted that the dynamicstioé
system is lost, even with a small difference initbe
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Fig. 2 - Data insertion without assimilation technique with frequency of SAt .

Here, the assimilation process will perform by twethods: Kalman filter and neural networks.
Denoting the vectoZ’=[A; A, Ag]' for the observed data, the extended Kalman fifter be
summarized as:

ForecastingZ,',, = F(z,' )+ u,

n+l —

Evaluation by observation systed;,, = H(z!)+v,;
Compute the covariance error matr®’, = F P2F " +Q_;
Kalman gainG): G,,, = PnfﬂHI[Rn + HnPnfﬂH:]_l;

= Z t GuulZpa —H (an+1)] ;

n+l n+l n+l

Analysis: Z

o ok~ W E

Up date the error covariance matri;,, = [I - Gn+1Hn]Pnf+1.

The mathematical model is represented=y, 4/, is the stochastic forcing (random modeling

noise error) and its covariance matrix is expredse@@,. The observation system is modeled by
operator (or just a matrix, for linear systenkt) andv, is the noise associated to the observation
(covariance matrix denoted IB). The typical Gaussian probability density funaotiand zero-mean
hypotheses for the noises are adopted. For noarlihgnamical systems, the extended Kalman filter is
used (the operatdf(.) is expanded into Taylor series, and only lineapansion components are
considered). One problem for this approach is tamese the matrixQ,. Jazswinski (1970) has
proposed an adaptive Kalman filter, where the mafj is parameterized with these parameters
estimated by a secondary Kalman filter. We havelieghpthe Jazswinski's proposal to the data
assimilation with good results (Nowosad et al., 00 he goal here is to design an artificial neural
network for emulating a Kalman filter, reducing tt@mputational effort of the assimilation process.

The assimilation procedure using neural network ion-linear mapping between analysis and
data from observation and prediction model:
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r?+l = fNN,W |_Zr?+1' an+1] (2)

where fynw 1S the neural network, and/ is the matrix of the connection weights. A muitéa
perceptron neural network (MLP-NN) was trained witie backpropagation algorithms (Haykin,
1994). The training or learning process is a prapedo identify the best values for the matik the
output from the neural network should similar avpyas analysis — more details see Harter and
Campos Velho (2008a), for a higher dimension system Harter and Campos Velho (2008b). This
target analysis could be the observation, or o#lteeptable analysis obtained by other method. We
follow the second option, and the neural networitasigned to emulate the analysis from the Kalman
filter.

Numerical example
For simplicity, we assume that all error covarian&trices are diagonal ones. The numerical
values for these are given as following:

10z (=)
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Fig. 3 - Data assimilation using Kalman filter and neural.

The three-wave system is integrated using a foordler Runge Kutta scheme, witkt =107,
After the choice of the best weight set, the 3-wsya&tem is integrated considering data assimilatton

each 5 time-steps. Figure 3 depicts the ladtihfe-steps of a time series &, : it is not possible to

distinguish the true dynamics, and assimilatioramigd with Kalman filter and neural network.
The MLP-NN and KF are effective to carry out theiamlation. Figure 4 shows the mean errors
of KF and MLP-NN. Small errors are verified for hatchemes.
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Fig. 4 - Error for data assimilation: (a) Kalman filter, (b) neural network.
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