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ABSTRACT 

 
Data assimilation is an essential step for improving space weather operational forecasting by 
means of an appropriated combination between observational data and data from a 
mathematical model. In the present work data assimilation methods based on Kalman filter 
and artificial neural networks are applied to a three-wave model of auroral radio emissions. A 
novel data assimilation method is presented, whereby a multilayer perceptron neural network 
is trained to emulate a Kalman filter for data assimilation by using cross validation. The 
results obtained render support for the use of neural networks as an assimilation technique for 
space weather prediction. 

 
 
INTRODUCTION 
 

Space weather research is the study of the disturbances in the space environment, usually caused 
by the solar activity and/or interactions of interstellar medium and galactic cosmic rays with the 
heliosphere. Due to the potential impact of space weather on technological systems on Earth, as well 
as on human health, space weather forecasting is today an essential task. Nonlinear and chaotic 
phenomena represented by mathematical models have an intrinsic relationship with the initial 
conditions (IC). Therefore, from very small discrepancies between two similar ICs, after some time-
steps, a disagreement could occur for some systems. In other words, sensitive dependence on the IC 
could cause the forecasting error to grow exponentially fast with the integration time (Grebogi et al., 
1987). 

This implies that a better representation for the initial condition will produce a better prediction. 
The problem for estimating the initial condition is so complex and important for operational prediction 
system, which it constitutes a science called Data Assimilation (Daley, 1993; Kalnay, 2003). 
Nowadays data assimilation is a research topic in some of the areas of applied physics, such as 
meteorology, oceanography, and ionospheric weather (for last issue see: Schunk et al., 2004; 
Scherliess et al., 2004; Hajj et al., 2004). 

Many methods have been developed for data assimilation. They have different strategies to 
combine numerical forecasting and observations, using Kalman filter or variational approaches, for 
example. 

The use of artificial neural network (ANN) for data assimilation is a very recent issue.  
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The first implementation of the ANNs as a new approach for data assimilation was employed by 
Nowosad et al. (2000). There are applications in chaotic systems, as well as 1D shallow water 
equations. An artificial neural network is an arrangement of units characterized by a large number of 
very simple neuron-like processing units; a large number of weighted connections between the units, 
where the knowledge of a network is stored; and highly parallel distributed control. Two distinct 
phases can be devised while using an ANN: the training phase (learning process) and the run phase 
(activation). The training phase consists of an iterative process for adjusting the weights for the best 
performance of the network in establishing the mapping of many input/target vector pairs. Once 
trained, the weights are fixed and new inputs can be presented to the network, which calculates the 
corresponding outputs based on what had been learned. 

In the worked example here, a multilayer Perceptron neural network (MLP-NN) (Haykin, 1994; 
Nowosad et al.,2000) is trained to emulate a Kalman filter-based data assimilation system. This novel 
data assimilation strategy is applied to a three-wave model of auroral radio emissions near the electron 
plasma frequency involving resonant interactions of Langmuir, Alfvén and whistler waves (Chian et 
al., 1994; Lopes and Chian et al., 2002). Observational evidence of auroral radio emission and 
nonlinear coupling between Langmuir, Alfvén and whistler waves have been obtained in rocket 
experiments in the Earth's auroral plasmas (Boehm et al., 1990). These auroral whistler waves may 
explain the leaked AKR (auroral kilometric radiation), providing the radio signatures of solar-
terrestrial connection, and may be used for monitoring space weather from the ground. 

Data assimilation is a specialized field of data analysis. The amount of data available today, with 
the observation system enhancing in quality and quantitative, becomes data analysis a challenge for 
the science of this new century. Actually, many people are addressing such challenge as data science. 
 
NONLINEAR COUPLED WAVE EQUATIONS 
 

A nonlinear analysis of auroral Langmuir, whistler and Alfvén (LAW) events in the planetary 
magnetosphere was carried out by Lopes and Chian (1996), under the assumption that all three 
interacting waves are linearly damped. The simplest model for describing the temporal dynamics of 
resonant nonlinear coupling of three waves can be obtained assuming terms in the wave amplitudes. 
Moreover, the waves may be assumed monochromatic, with the electric fields ),( txEα  written in the 

form: [ ] { })(exp2),(),( txkitxAtxE αααα ω−= , where 3,2,1=α  and the time scale of the nonlinear 

interactions is much longer than the periods of the linear (uncoupled) waves.  
In order for three-wave interactions to occur, the wave frequencies αω  and wave vectors αk  

must satisfy the resonant conditions: (i) 213 ωωω −≈ ; (ii) 213 kkk −≈ . Under these circumstances, 

the nonlinear temporal dynamics of the system can be governed by the following set of three first-
order autonomous differential equations written in terms of the complex slowly varying wave 
amplitude (Meunier et al., 1982): 
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where the variable tχτ = , with χ  is a characteristic frequency; χωωωδ )( 321 −−=  is the 

normalized linear frequency mismatch, and χαα vv =  gives the linear wave behaviors on the long 

time scale. The wave A1 is assumed linearly unstable ( 01 >v ) and the other two waves, A2 and A3, are 

linearly damped ( 032 <−≡= vvv ), and it is set 1v=χ  (Meunier et al., 1982; Lopes and Chian, 

1996). The system admits both periodic and chaotic waves. Figure 1 shows the strange attractor.  
 

 
Fig. 1 - The strange attractor for the three-waves: Eqs. (1a)–(1c). 

 
 
DATA ASSIMILATION EXPERIMENT 
 

Process is illustrated using synthetic experimental data, where synthetic observations are 

generated by addition of random small level noise on the exact value: nnn
Obs rtAtA λαα += )()( , where 

510−=λ , and nr  is a random value at time nt . Figure 2 shows observed data inserted after each 5 

time-steps on the mathematical model data without any assimilation technique under chaotic regime. 
The black and blue lines represent the reference model (“model”) and the dynamical system evolution 
after the data insertion (“corrupted model”), respectively. Clearly, it is noted that the dynamics of the 
system is lost, even with a small difference in the IC. 
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Fig. 2 - Data insertion without assimilation technique with frequency of t∆5 . 

 
 

Here, the assimilation process will perform by two methods: Kalman filter and neural networks. 
Denoting the vector Zo=[A1   A2   A3]

T  for the observed data, the extended Kalman filter can be 
summarized as: 
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The mathematical model is represented by F(.), nµ  is the stochastic forcing (random modeling 

noise error) and its covariance matrix is expressed by Qn. The observation system is modeled by 
operator (or just a matrix, for linear systems) Hn, and vn is the noise associated to the observation 
(covariance matrix denoted by Rn). The typical Gaussian probability density function and zero-mean 
hypotheses for the noises are adopted. For non-linear dynamical systems, the extended Kalman filter is 
used (the operator F(.) is expanded into Taylor series, and only linear expansion components are 
considered). One problem for this approach is to estimate the matrix Qn. Jazswinski (1970) has 
proposed an adaptive Kalman filter, where the matrix Qn is parameterized with these parameters 
estimated by a secondary Kalman filter. We have applied the Jazswinski’s proposal to the data 
assimilation with good results (Nowosad et al., 2000). The goal here is to design an artificial neural 
network for emulating a Kalman filter, reducing the computational effort of the assimilation process.  

The assimilation procedure using neural network is a non-linear mapping between analysis and 
data from observation and prediction model: 
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where fNN,W is the neural network, and W is the matrix of the connection weights. A multilayer 
perceptron neural network (MLP-NN) was trained with the backpropagation algorithms (Haykin, 
1994). The training or learning process is a procedure to identify the best values for the matrix W: the 
output from the neural network should similar a previous analysis – more details see Härter and 
Campos Velho (2008a), for a higher dimension system see Härter and Campos Velho (2008b). This 
target analysis could be the observation, or other acceptable analysis obtained by other method. We 
follow the second option, and the neural network is designed to emulate the analysis from the Kalman 
filter. 
 
Numerical example 

For simplicity, we assume that all error covariance matrices are diagonal ones. The numerical 
values for these are given as following: 
 





≠
=

=== .
)(0

)(10
;2;1.0 0

0
ji

jiZ
PIRIQ

f
f

nn                                                                 (3) 

 
 

 
Fig. 3 - Data assimilation using Kalman filter and neural. 

 
 

The three-wave system is integrated using a fourth-order Runge Kutta scheme, with 210−=∆t . 
After the choice of the best weight set, the 3-wave system is integrated considering data assimilation at 
each 5 time-steps. Figure 3 depicts the last 103 time-steps of a time series of αA : it is not possible to 

distinguish the true dynamics, and assimilation obtained with Kalman filter and neural network.  
The MLP-NN and KF are effective to carry out the assimilation. Figure 4 shows the mean errors 

of KF and MLP-NN. Small errors are verified for both schemes. 
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Fig. 4 - Error for data assimilation: (a) Kalman filter, (b) neural network. 
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