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Exploring all its ramifications, we give an overview of the simple yet fundamental bouncing ball problem,
which consists of a ball bouncing vertically on a sinusoidally vibrating table under the action of gravity. The
dynamics is modeled on the basis of a discrete map of difference equations, which numerically solved fully
reveals a rich variety of nonlinear behaviors, encompassing irregular nonperiodic orbits, subharmonic and
chaotic motions, chattering mechanisms, and also unbounded nonperiodic orbits. For periodic motions, the
corresponding conditions for stability and bifurcation are determined from analytical considerations of a
reduced map. Through numerical examples, it is shown that a slight change in the initial conditions makes the
ball motion switch from periodic to chaotic orbits bounded by a velocity strip v= �� / �1−��, where � is the
nondimensionalized shaking acceleration and � the coefficient of restitution which quantifies the amount of
energy lost in the ball-table collision.
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I. INTRODUCTION

One of the simplest dynamical systems displaying a rich
variety of nonlinear behavior is the bouncing ball model.
Consisting of a ball bouncing vertically under the action of
gravity on a massive sinusoidally vibrating platform, such a
deterministic system exhibits large families of irregular non-
periodic solutions and fully developed chaos in addition to
harmonic and subharmonic motions �1� depending upon the
amplitude and frequency of the driving platform and also on
the coefficient of restituition, 0���1, which accounts for
the amount of energy dissipated during each collision, with
the elastic limit �=1 giving rise to unbounded nonperiodic or
stochastic motions �2�.

Simple yet fundamental, this system is naturally con-
nected to physical and engineering problems ranging from
nanotechnology to astrophysics. In fact, the bouncing ball
system has been used as a simplified model of vibrated
granular materials which can be regarded as an assembly of
bouncing balls, each one colliding inelastically with the
walls of the container and the adjacent balls �3�. Also the
bouncing ball problem is closely related to Fermi accelera-
tion, a model pictured by Fermi to explain the extra solar
origin and the buildup of energy of cosmic rays, whereby the
cosmic-ray particles are accelerated in interstellar space by
collisions against wandering magnetic fields which occupy
the interstellar medium �4,5�. Moreover, the bouncing ball
model is shown to be relevant to nonlinear systems subject to
periodic excitation, such as moored ships driven by steady
ocean waves �6� or materials in mechanical contact on a
nanometer scale, as in atomic-force-microscopic devices in
which the tip of the cantilever acts as the bouncing mass �7�.

In past studies, the bouncing ball problem has been exam-
ined in many of its ramifications. The first systematic study
is attributed to Holmes �8�, upon constructing a discrete map
whereby the conditions for stability and bifurcation of peri-

odic trajectories are determined on the assumption that the
jumps of the ball are larger compared to the overall displace-
ment of the table. Other studies based on the differential
equation of motion of the ball �9�, or else using a mapping
approach similar to Holmes’s, investigated chaotic response
and manifold collisions �10�, period-doubling regime �11�,
noise-induced chaotic motion �12�, the completely inelastic
case �13�, rate of energy input into the system �14,15�, and
chattering mechanisms through which the ball gets locked on
the vibrating table �16�.

Despite these earlier conceptual studies, there still re-
mains a lack of information on how to access the appropriate
driving parameters �namely, the frequency and the excitation
amplitude� and also the starting conditions so as to drive the
ball into a prescribed oscillation mode at a given coefficient
of restitution. To supplement this kind of information and
extend past studies, the present paper embraces analytical
methods accompanied by computer simulation to examine in
a unified way the rich phase behavior of the bouncing ball
with emphasis on the driving and launching parameters so
that the ball dropped at zero initial velocity might evolve to
a desired periodic orbit and keep bouncing there. Additional
information focuses on how the bouncing ball dynamics is
susceptible to changes in the starting conditions.

II. DYNAMICAL EQUATIONS AND MODE STABILITY

This section gives a mathematical description of an elastic
ball, with coefficient of restitution �, which is kept continu-
ally bouncing off a vertically oscillating base. Infinitely mas-
sive, the platform is fixed to a rigid frame which vibrates
sinusoidally as S�t�=A sin �t so as to maintain the motion of
the ball, whose dynamics is governed by a gravitational field
g and the impacts with the base �Fig. 1�. The next collision
time after the departure time ti from the platform is the
smallest solution ti+1� ti of the discrete-time dynamics map
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A�sin �ti+1 − sin �ti� = Vi�ti+1 − ti� −
1

2
g�ti+1 − ti�2, �1�

where Vi is the post-impact velocity �Fig. 1�, which relates to
the pre-impact Ui+1 velocity at time ti+1 through

Ui+1 = Vi − g�ti+1 − ti� . �2�

As far as the collision is partially elastic, the ball bounces
back instantanteously at ti+1 with a relative positive velocity

Vi+1 − Ṡ�ti+1� = − ��Ui+1 − Ṡ�tt+1�� , �3�

where the relative landing velocity Ui+1− Ṡ�tt+1� is always
negative. Physically, the coefficient � �defined as the ratio of
the relative velocities before and after the collision� gives a
measure through the quantity �1−�2� of the energy lost in the
collision. Combining Eqs. �1�–�3� and nondimensionalizing
the time and velocity variables according to ti→�ti��i and
vi→Vi� /g gives the phase and velocity maps

�i+1 = �i + 	i,

��sin��i + 	i� − sin��i�� = vi	i −
1

2
	i

2,

vi+1 = − ��vi − 	i� + �1 + ��� cos��i + 	i� , �4�

where �=A�2 /g is the dimensionless shaking acceleration.
With the state characterized by the phase �i and the post-
velocity vi, the above discrete map describes the complete
bouncing ball dynamics, which is controlled by two param-
eters: namely, � and �.

Assuming that the height the ball reaches under ballistic
flight is large compared with the table displacement, the in-
terimpact time is well approximated by 	i=2vi, and therefore
the system �5� reduces to the discrete dynamical system of
the Zaslavski mapping �2�:

T:�i+1 = �i + 2vi mod�2
� , �5a�

T:vi+1 = �vi + �1 + ��� cos��i + 2vi� , �5b�

which can be iterated numerically upon starting from arbi-
trary initial conditions �i and vi to calculate the states of the
forward �i+1� or backward �i−1� bounces. We note that the
system �5� is invariant under phase displacement �→�
+2
n, n= �1, �2, . . ., indicating that the phase space �� ,v�

can be obtained onto a cylinder by taking � mod�2
�. Yet
obtained in the context of the high-bounce approximation,
here we note that the system �5� is exact for periodic orbits,
while making identical periodic jumps the ball collides with
the table at the same phase—i.e., sin��i+	i�=sin �i—and
Eq. �5b� reduces to but a single expression 	i=2vi, otherwise
obtained by invoking the high-bounce approximation.

In the following, we discuss the fact that the map T ex-
hibits a family of periodic orbits. To this end, we seek the
fixed points of T identified by ��i+n ,vi+n�=Tn��i ,vi�
= ��i ,vi� such that vn=n
, n=0, �1, �2, . . . ,N, where n
denotes the period of the orbit provided N is the greatest
integer satisfying cos �n=n
�1−�� / �1+�� /�, or equiva-
lently N���1+�� / �1−�� /
. The stability of the fixed points
��n ,vn� of system �5� is identified by the determinant of the
its Jacobian matrix:

� 1 2

− ��1 + ��sin��n + 2vn� � − 2��1 + ��sin��n + 2vn� � .

�6�

Since �6� is a real matrix, the eigenvalues can either
be real or else exist as complex-conjugate pairs. A fixed-
point periodic orbit is linearly stable if and only if both
eigenvalues of the stability matrix �6� lie inside the unit
circle in the complex plane �see, for instance, �1,8��. The
corresponding eigenvalues are found as �1,2= �1+�−�

���1+�−��2−4�� /2, where �=2��1+��sin��n�, with
�1�2=�. The parameter 0�1 is taken to be constant
since we neglect its dependence upon the bounce velocity;
for �1�2=��1, only sinks �	�1,2	��1 and saddles �	�1	�1
� 	�2	� emerge from this system, while at �=1 there appear
centers and saddles. At a convenient value �=0.25 to high-

FIG. 1. One-dimensional ball bouncing off a sinusoidally vibrat-
ing table. The table and ball trajectories are depicted by solid lines
over time.

FIG. 2. �Color online� Domains of the eigenvalues of the system
�5� at �=0.25. Solid and dashed lines are for the real and imaginary
parts of the eigenvalues, respectively. Negative values of sin � lead
to instability from the left of point C at which the system is in
neutral equilibrium ��1= +1�. Increasing positive values of sin �
from the origin first allow nodal �branch CAD� and then focal �seg-
ment AB� stability. Further increase of sin � from point B results in
nodal stability �branch EBF� turning into saddle-point stability at F
��2=−1�. The stability domain with both eigenvalues 	�1 ,�2	�1,
corresponding to 0�� sin ��1, is shown in the inset.
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light the peculiarities of the eigenvalue spectrum, the eigen-
values �1,2 are plotted against � sin � in Fig. 2, where the
solid and dashed lines are for the real and imaginary parts of
the eigenvalues, respectively. We see that the real branches
are symmetrically connected by a straight line that crosses
the horizontal axis at �1 /2,0� by joining the points
A= (�1−���2 / [2�1+��] ,��) and B= (�1+���2 / [2�1+��] ,
−��), such that the projection of segment AB on the horizon-
tal axis gives a breadth of 2�� / �1+�� bounded by the dashed
closed curve onto which lie simple conjugate pairs of eigen-
values. Thus we see that for �=1 �Fig. 3� the whole range
0� sin �1 corresponds to neutrally stable centers—i.e.,
	�1,2	=1. On the other hand, for the completely inelastic case
�=0, segment AB collapses into the center point �1 /2,0� and
the two curved branches turn into straight lines �Fig. 4�. In
the general case �0���1� as shown in Fig. 2, the left real
branch intersects the vertical line � sin �=0 at the points
C= �0,1� and D= �0,��, so that the locus of the magnitude of
the eigenvalues crosses the unit circle in the complex domain
at �1= +1, originating a saddle-node bifurcation. In a com-
plimentary fashion the real right branch curves down and

intersects the vertical line � sin �=1 at E= �1,−�� and at the
period-doubling bifurcation point F= �1,−1�. As a result of
bifurcation, the stable orbit loses its stability and spawns a
period-2 orbit since this time the eigenvalue crosses the unit
circle at �2=−1. Therefore, on the left half-plane � sin �
�0 lie saddle points of the first kind with positive eingen-
values �0��1�1��2�, which render the periodic orbits un-
stable. Saddles of the second kind with negative eigenvalues
��1�−1��2�0� are found on the right half-plane bounded
by the treshold line � sin �=1, and sinks �or centers� with
	�1,2	�1 are confined in the range 0�� sin ��1 �Fig. 2�.

To explicitly determine the lower and upper bounds in
terms of the coefficient of restitution �, we use Eq. �5b�—
i.e., � cos �=n
��−1� / ��+1�—which gives the threshold
and limiting values of � whose associated eigenvalues are
sinks �	�1,2	�1�: namely,

n

1 − �

1 + �
� � ��1 + n2
2
1 − �

1 + �
�2

, �7�

where the left inequality is the onset condition for the nth
subharmonic to be generated, with the right inequality ensur-
ing its stability.

Correspondingly, the fixed points are saddles of the sec-
ond kind ��1�−1��2�0� if

� ��1 + n2
2
1 − �

1 + �
�2

. �8�

Calculated for �=0.85, the branches of stability of peri-
odic orbits with subharmonic number n are shown in Fig. 5,
where the limiting curve is given by �L=sin−1�1 /��. Deter-
mined from Eq. �7�, the two sets of open circles denote bi-
furcation values, the first of which �along the line �=0� ap-
pears in a saddle-node bifurcation, while the second indicates
a change of stability followed by a period doubling bifurca-
tion �11,17�.

FIG. 3. �Color online� Behavior of the eigenvalues of system 5
at �=1. In the inset, the eigenvalue magnitudes show that the sys-
tem is linearly neutrally stable over the whole range 0� sin �
1.

FIG. 4. �Color online� Eingenvalue behavior in the completely
inelastic case �=0.

FIG. 5. �Color online� At �=0.85, domains of stability for
n-periodic orbits where � denotes the phase at which the ball peri-
odically bounces off the platform vibrating at driven amplitude �.
The limiting upper curve is calculated from �L=arcsin�1 /��, be-
yond which the mode evolves into its period-doubled version.
Along the axis � /
=0, at which �1= +1, two periodic orbits are
created: a saddle �unstable� and a node �stable�.
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III. DYNAMICAL EQUATIONS AND MODE STABILITY

In this section we derive the initial starting condition for
the ball to execute a periodic motion upon collision with the
vibrating platform. Then we discuss the various characters of
the bouncing ball trajectories determined numerically from
the full system �5�. The numerical solutions are obtained by
using an event-driven procedure �18� that consists in moni-
toring a sequence of events for which the force and trajectory
equations �5� are solved without resorting to any approxima-
tion.

Consider a ball dropped at zero initial velocity from the
actual height H0, at the initial phase �0. In nondimensional-
ized coordinates h0=H0�2 /g, the free flight is described by
h=h0− ��−�0�2 /2, such that at the collision phase �, the
height is h=� sin �, and since for a periodic motion of sub-
harmonic index n the initial phase �0 is symmetrically
spaced from the phases for the �n−1�th and nth impacts, the
relation

� = �0 + n
 �9�

holds, and therefore

h0 =
1

2
�n
�2 + � sin � . �10�

The exact phase at which impact occurs is such that the
upward movement of the platform compensates for the en-
ergy loss from the inelastic collisions so that the ball lands
and departs from the platform at the same speed v=n
 �rela-
tive to the laboratory frame�, which is consistent with the
final velocity the ball reaches after the time interval �−�0
=n
 given in Eq. �9�. Recalling that the coefficient of resti-
tution � relates to � and � through

� cos � = n

1 − �

1 + �
. �11�

Then, for a given � and period index n, the initial height h0
and phase �0 are calculated from Eqs. �9�–�11� provided the
constraint 0�� sin ��1 is fulfilled to ensure stability of the

periodic orbits. Assuring the existence of periodic orbits, Eq.
�11� has two solutions, one of which is unstable as will be
discussed next. To this end, we set � sin �=1 /2 at �=0.85
and n=1, thus resulting in a complex pair of eigenvalues
�1,2= � i��. Using Eq. �11� gives �=0.5611 and �
= �0.3501
, which combined with Eqs. �9� and �10� yields
two solutions with the corresponding starting conditions
��0=−0.6449
, h0= �
2+1� /2 and �0=0.6449
, h0
= �
2−1� /2�. Of course, dropped at such consistent starting
parameters the ball immediately enters the period-1 mode—
i.e., without overshoot or transient as shown in Fig. 6. Simi-
lar behavior is exhibited by the second �and unstable� solu-
tion indicated by the dotted line. Concerning the first
solution, it shows a robust stability with respect to initial
heights ranging in the interval as wide as �1.823, 11.510�.

To illustrate this point, by dropping from the height h0
=1.823, with the remaining parameters kept unchanged, the
ball settles down to equilibrium through a sequence of jumps
�Fig. 7� to reach the final position at the converging point
�0.3500
, 1� in phase space �� /
 ,v /
� shown in Fig. 8. We

FIG. 6. For �=0.85, period-1 modes driven at �=0.5611 with
collision phases �=0.3501
 �h0= �
2+1� /2, solid line� and
�=−0.3501
 �h0= �
2−1� /2, dashed line�.

FIG. 7. �Color online� Dropped from the height h0=1.823 at
�=−0.6499
, the ball enters the period-1 mode after an initial tran-
sient. The lower wavy curve depicts the sinusoidal vibration of the
driven platform.

FIG. 8. Phase-space plot of the period-1 mode with behavior
shown in Fig. 7.
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see in the transient behavior that the phase suffers correc-
tions after a succession of collisions on the ascending phase
to be locked in the period-1 mode at the periodic collision
phase � /
=0.3501; calculated using Eq. �11�, such a value
agrees within a 0.01% accuracy with that from the event-
driven procedure.

For the second solution at the initial time, or equivalently
at the initial phase �0=0.65001
 slightly lagging relative to
the correct phase ��0=0.6499
�, Fig. 9 explains the unstable
character of the second solution, for which a slightly delayed
collision occurs when the table in its upward movement is
rising faster, which makes the ball rise to a larger height so
as to arrive for the next collision still further delayed. As the
ball starts jumping higher and higher, it eventually lands
when the table is moving away in a descending phase, and
thereafter the collision phase suffers a correction, leading the
ball to be locked in its counterpart stable mode.

At �0=0.650 01
, now dropping the ball from a slightly
lower initial height h0=1.822 �just on the left limit of the
stability range for h0�, in this case the ball is unable to sus-

tain its motion and then comes to a permanent contact with
the platform by executing a convergent sequence of decaying
jumps. As shown in Fig. 10, after the tenth collision the
impact position commutes to a descending phase when the
base, moving downward, has a negative velocity. The ball
loses energy, and in the next collision the ball, upon rising to
a lower height, arrives further delayed; the lost synchronism
cannot be restored, and the ball rests immobile on the plat-
form.

To drive a higher-order nth-subharmonic periodic-1 mode
from required specifications—for instance, n=5 at �=0.85
and � sin �=0.8—we use Eqs. �9�–�11� to consistently ob-
tain the starting parameters �0=−4.821
, h0= �� sin �
+ �5
�2 /2�=124.17, and the drive amplitude �=1.504 by
noting that the collision phase �=0.1785
 relates to the ini-
tial phase by �=�0+5
. Instead of dropping the ball from
the calculated height �h0=124.17�, at which the ball would
enter the n=5, period-1 motion without transient, let us drop
the ball from a larger height h0=132.0. Preceded by a per-

FIG. 9. �Color online� Dropped from the height h0=4.4348 at
�0=0.6499
, the ball switches from the unstable mode to its stable
counterpart after suffering a correction on its collision phase.

FIG. 10. Differently from Fig. 7, the ball dropped from h0

=1.822 is unable to enter the period-1 mode. Transient motion is
zoomed in on in the inset.

FIG. 11. Dropped from h0=132.0, at �=0.85 and � sin �=0.8
with �=1.504, the ball reaches the period-5 mode.

FIG. 12. Phase-space plot of the ball motion shown in Fig. 11.
The system evolves to the converging point �� /
 ,v /
�
= �0.1775,5� identifying a n=5 periodic mode; the three clusters of
points are remnants from the period-tripling transient time series
displayed in Fig. 11.
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sistent sequence of somehow period-tripling oscillations, as
shown in Fig. 11, the ball ultimately reaches its steady state
of motion past the time span of nearly 3500 /2
 oscillation
periods through exponentially damped oscillations, as in this
case the resulting eigenvalues �1,2=0.5500� i0.7362 typify a
stable focus. After the transient is finished, the ball reaches
the collision velocity v=5
 at the phase �=0.1785
, as por-
trayed in the phase-space plot in Fig. 12. Detailed in Fig. 13,
the steady-state oscillations consist of equal jumps separated
by a periodic time span of 5
; each jump is 25 times as high
as the single jump in the n=1 periodic mode discussed in
Fig. 6. Here we note that for a nth-subharmonic periodic
mode the maximum height relative to the impact point is just
�n
�2 /2, irrespective of the drive amplitude �. In spite of
increasing � the relative height remains constant; otherwise,
the ball would start jumping higher, thus leading to longer
flights which would not be synchronized with the oscillation
period of the platform. In preserving its relative height to the
collision point, the wavetrain of parabolic jumps shifts as a
whole by searching for a new footpoint so as to keep both
the landing and departure velocities matched at the synchro-
nous value v=n
. This statement is expressed geometrically

by the stable branches shown in Fig. 5, where each branch, at
a given mode index n and an assigned �, follows the con-
straint � cos �=n
�1−�� / �1+��=const.

Without changing the previous control parameters � and
�, now dropping the ball from a bit larger height—namely,
h0=135.0—chaotic oscillations are generated �Fig. 14�. Cha-
otic trajectories do not fill the phase space in a random man-
ner. As seen in the map �Fig. 15� encompassing many un-
stable orbits which remain in the system, the trajectories fall
onto a complex but well-defined and bounded object �chaotic
attractor� which is cut at the bottom by a cosine-shaped
boundary rendered by the velocity time profile �� cos �ti
with �ti=�i� of the table oscillation. That the orbits remain
bounded can be seen from Eq. �5�—i.e., 	vi+1	 	�vi
+� cos �i	�	vi	+�; provided that �� 	vi	�1−��, this gives
	vi+1	 	vi	, implying that all orbits stay confined in a strip
v= �� / �1−��. At �=1.504 and �=0.85 one finds 	v	
=10.027, which is in good agreement with the velocity range
�−1.504, 9.291� portrayed in Fig. 15.

Discussing now the perfectly inelastic case �=0, and ac-
cording to Eq. �5b�, the relative take-off velocity vi+1−vbase

FIG. 13. Periodic mode with subharmonic index n=5: both the
landing and departure velocities are 5
, and two consecutive colli-
sion phases are spaced by 5
.

FIG. 14. At �=0.85 and � sin �=0.8 with �=1.504, but
dropped from h0=135.0 the ball enters a chaotic motion.

FIG. 15. Phase-space plot of the chaotic motion in Fig. 14.

FIG. 16. Motion at �=0, �0=0, h0=10.00, and �=3.1. The ball
�solid circles� waits on the platform until � sin �=1, the instant at
which the ball is relaunched with a positive velocity and the process
repeats itself periodically.
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of the ball vanishes identically. After impact, therefore, the
ball acquires as its own velocity that of the platform. Thus
losing all memory of its earlier velocity the ball sits on the
platform and waits there until the platform’s downward
acceleration equals the gravity; having reached this condi-
tion, the ball is ejected from the platform on its ascending
phase. This situation is shown in Fig. 16, on using �=3.1
and �0=0.

Dropped from h0=10.00, the ball hits the platform and
remains sitting there for nearly one-quarter of a cycle until at
t2=6.618 the ball flings off the platform. During the waiting
period, the ball is unable to depart inasmuch the platform is
rising with a positive velocity because the base acceleration
is still less than that of gravity, with the dimensionless value
of −1. Quantitatively, the acceleration −� sin��+�0� of the
base equals −1 at the departure phase �2=0.1045
, calcu-
lated by � sin��2−2
�=1, and hence the take-off velocity is
� cos �2=2.9343, a value 0.3% above that calculated by the
event-driven procedure. In the present example and calcu-
lated as �v2 /2�−� sin �2, the maximum height relative to the

impact point is 4.304, which is shorter than the height of

2 /2=4.934 for a pure period-1 mode, for which the pre-
and post-impact velocities are the same. For exciting such a
pure mode, we make � sin �=1 and use � cos �=
 �ob-
tained from Eq. �5b�� and � cos �=n
�1−�� / �1+��, at �
=0, to obtain the drive amplitude �=3.296 and �=0.098
.
Dropped from the same height h0=10.00 as before �Fig. 16�,
but at �0=0.9019
�=
−�� and �=3.296, the resulting tra-
jectory undergoes single 1-periodic jumps without the ball
staying in contact with the base, as shown in Fig. 17.

In concluding this section, we discuss the elastic case
�=1, by considering first the equation v2=�v1+ �1
+��� cos � that relates the pre- and post-collisional veloci-
ties of the ball upon impact against the moving platform,
where v1�0 denotes the incoming velocity. Then, at �=1
and for head-on collisions, in which the base moves up-
wards, the post-collisional reduces to v2=v1+2� cos �,
while for overtaking collisions �with the base moving down-
wards� the post-velocity turns into v2=v1−2� cos �, where
� is the collision phase. If the post-collision velocity is nega-
tive �particle still moving down�, then a second impact will
occur, provided that V�v1�2V, where V= 	2� cos �	. But

FIG. 17. Period-1 mode at the completely inelastic case �=0.
The starting parameters �0=−0.9019
, h0=10.00, and �=3.296 are
consistently calculated for the ball to depart without sticking on the
platform.

FIG. 18. Period-1 mode at �=1 ��=0.5, �=
 /2�.

FIG. 19. Sixth subharmonic mode at �=1. The inset shows that
two consecutive collisions are spaced by six periods of the base
oscillation.

FIG. 20. Amplitude modulated version of the period-1 mode at
�=1.
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for both types of collisions, when �=n
 /2, n integer, the
ball bounces back after collision with a departure velocity,
which is simply the reverse of the velocity before the
bounce, neither gaining nor losing energy on the collision.
For the period-1 mode, at �0=−
 /2, �=0.5, and h0=
2 /2
+�, this situation is shown in Fig. 18. At such starting con-
ditions, the time length between collisions is matched with
the period of the platform motion, with the ball performing a
sequence of perfectly equal jumps and seeing the base as it
were static. Accordingly, by dropping the ball from h0
= �6
�2 /2+� at �0=−11
 /2, the ball will execute a n=6
subharmonic motion �Fig. 19�, in which two consecutive col-
lisions are spaced by six periods of the base oscillation.

On the other hand, when the extra term Z in h0=
2 /2
+Z differs from the oscillation amplitude � as required for
driving periodic modes, the resulting trajectories become
amplitude modulated as pictured in Fig. 20, where �=0.5
and Z=10. In its phase-space plot �Fig. 21� the motion ap-
pears as an ellipticlike curve enclosing the fixed point
�� ,
�= �
 /2,
�.

Releasing now the ball from h0=0.5 at �=0.5 and �0
−
 /2, we see in Fig. 22 that the jumps starts increasing

without limit, an example that exhibits Fermi
acceleration—a process in which the particle gains energy by
collision against a moving scatterer. Gain or loss of energy
occurs on head-on �base moves towards the incoming par-
ticle� and overtaking collisions �base moves away from the
particle�, but the net result will be an average gain by the
reason that increasing velocities make head-on collisions
more frequent. In fact, averaging from v2=v1+2� cos � the
square velocity v2 over an oscillation period leads to �v2

2
= �v1

2+2�2, which describes a constant net energy gain per
collision, thus meaning that the particle’s energy �or height�
tends to increases linearly with time. This is shown in Fig.
22, where the increase of the particle energy roughly follows
a linear growth, thus characterizing a random walking par-
ticle, for which the average velocity scales with the collision
number as �v��N �5�. In the phase-space plot �Fig. 23� of
this motion, there appear stochastic layers, which, separated
from each other, seem to be limited in their width.

To examine some stability issues at �=1.1 and �=
 /2,
we set the initial conditions as h0= �6
�2 /2+0.5 and �0
=−11
 /2 and obtain the motion pictured in Fig. 24, where
we see that the amplitude still remains modulated up to �104

FIG. 21. Phase-space plot of the motion in Fig. 20.

FIG. 22. At �=1 with the start conditions h0=0.5, �0=−
 /2,
and �=0.5, the amplitude of the period-1 mode shows a boundless
increase.

FIG. 23. Phase-space plot of the motion in Fig. 22.

FIG. 24. Motion at �=1 and �=1.1 with starting conditions
h0= �6
�2+0.5 and �0=−11
 /2.
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periods of the base oscillation. After that span of time the
mode destabilizes and the ball goes jumping higher and
higher. Characteristically asymmetric, the associated phase-
space plot �Fig. 25� shows an elliptic-shaped structure �con-
strained in the phase interval 0�� /
�1� surrounded by
scattered points. A zoomed-in view �Fig. 26� of such an ob-
long structure �up to the running time of 63.3�103� reveals
a pinched ellipsis centrally filled with a cloud of points.
Moreover, the cloud is centered at �� ,v�= �
 /2,6
�, which,
appearing as an n attracting center, just corresponds to the
stable fixed point of the n=6 period-1 motion. This suggests
that the scattered points are associated with the growing-
amplitude motion that develops after the period-6 mode be-
comes unstable. From this motion ��=1.1, �=
 /2, �=1�
emerge the eigenvalues �1=−0.5367 and �2=−1.863 �often
categorized as a hyperbolic fixed point since both of them lie
off the imaginary axis�, which correspond to an attracting
node, thereby explaining the robust stability of the period-6
mode, which remained stable for 104 oscillation periods. In
the previous cases ��=0.5, �=
 /2�, by contrast, their asso-
ciated eigenvalues all are a center ��1,2= � i�, thus character-
izing fragile trajectories, which are affected by small pertur-
bations, which make the motion depart from the equilibrium.

IV. CONCLUSIONS

Through numerical examples from computer simulations
guided by analytical considerations, this paper has presented
a quantitative description of the bouncing ball problem. The
dynamics is modeled on the basis of a discrete map of dif-
ference equations for the trajectory �describing the ball free
fall under gravitational acceleration�, velocity, and phase of
the ball’s motion on assuming a constant restituition coeffi-
cient and the collisions to be instantaneous.

Once iterated numerically, the equations fully reveal a
rich variety of nonlinear behaviors, including nonperiodic
motions as well as chaotic and stochastic phenomema. In the
context of the high-bounce approximation �the landing ve-
locity at the �i+1�th collision is the reverse of the of the
take-off velocity of the prior collision—i.e., Ui+1=−Vi� and

in the case of periodic motion �in which the ball makes iden-
tical jumps upon collision with the table at the same phase of
the ball’s motion�, the system simplifies to a pair of equa-
tions. Holding exactly for periodic motions, the reduced sys-
tem is then linearized about the fixed point to give a charac-
teristic equation from which the stability and bifurcation
conditions are determined and expressed as 0�� sin ��1,
showing that asymptotic stability is ensured when the colli-
sion phase lies in the range 0��
 /2. Outside the stability
range, two types of unstable motion exist for period-1
orbits—saddle of the first kind for 
 /2���0 and saddle of
the second kind for � sin ��1—while the boundaries be-
tween stable and unstable solutions define the onset of bifur-
cations: period doubling at � sin �=1 and saddle-node bifur-
cation at � sin �=0.

Following such analytical considerations, numerical ex-
amples have demonstrated that the bouncing ball behavior is
strongly dependent on the control parameters �� and �� and
also on the initial conditions. At correct initial values of the
height �h0=n
2 /2+� sin �� and phase ��0=�−
�, the ball
is instantaneously locked in the periodic modes. For in-
stance, setting � sin �=1 /2, n=1, and �=0.85, the correct
initial conditions for such a period-1 mode are calculated as
�0=0.6499
 and h0=5.4348. But dropping the ball from
h0=1.822 �while keeping the remaining parameters constant�
leads to chattering, by which the ball gets locked onto the
table through a sequence of decaying jumps, while at h0
=1.823 the ball motion still evolves to period-1 motion. At
� sin �=0.8, �=0.85, h0=132.0 the ball reaches n=5 sub-
harmonic motion after executing a long-lasting sequence of
period-tripling oscillations. Dropped from h0=135.0, by con-
trast, there appear irregular periodic orbits that converge to-
ward a strange attractor bounded by the velocity strip
v= ���1−��.
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FIG. 25. Phase-space plot of the motion in Fig. 24. FIG. 26. A zoomed-in view of the phase-space plot in
Fig. 25.
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