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ABSTRACT

This paper presents a new statistical algorithm to estimate rainfall over the Amazon Basin region using
the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm relies on
empirical relationships derived for different raining-type systems between coincident measurements of
surface rainfall rate and 85-GHz polarization-corrected brightness temperature as observed by the precipi-
tation radar (PR) and TMI on board the TRMM satellite. The scheme includes rain/no-rain area delineation
(screening) and system-type classification routines for rain retrieval. The algorithm is validated against
independent measurements of the TRMM-PR and S-band dual-polarization Doppler radar (S-Pol) surface
rainfall data for two different periods. Moreover, the performance of this rainfall estimation technique is
evaluated against well-known methods, namely, the TRMM-2AI2 [the Goddard profiling algorithm
(GPROF)], the Goddard scattering algorithm (GSCAT), and the National Environmental Satellite, Data,
and Information Service (NESDIS) algorithms. The proposed algorithm shows a normalized bias of ap-
proximately 23% for both PR and S-Pol ground truth datasets and a mean error of 0.244 mm h-1 (PR) and
-0.157 mm h-1 (S-Pol). For rain volume estimates using PR as reference, a correlation coefficient of 0.939
and a normalized bias of 0.039 were found. With respect to rainfall distributions and rain area comparisons,
the results showed that the formulation proposed is efficient and compatible with the physics and dynamics
of the observed systems over the area of interest. The performance of the other algorithms showed that
GSCAT presented low normalized bias for rain areas and rain volume [0.346 (PR) and 0.361 (S-Pol)], and
GPROF showed rainfall distribution similar to that of the PR and S-Pol but with a bimodal distribution.
Last, the five algorithms were evaluated during the TRMM-Large-Scale Biosphere-Atmosphere Experi-
ment in Amazonia (LBA) 1999 field campaign to verify the precipitation characteristics observed during the
easterly and westerly Amazon wind flow regimes. The proposed algorithm presented a cumulative rainfall
distribution similar to the observations during the easterly regime. but it underestimated for the westerly
period for rainfall rates above 5 mm h-1. NESDIS1 overestimated for both wind regimes but presented the
best westerly representation. NESDIS,, GSCAT, and GPROF underestimated in both regimes, but
GPROF was closer to the observations during the easterly flow.

1. Introduction

Knowledge of spatial and temporal variability of pre-
cipitating systems (cumulonimbus, multicellular con-
vective systems, squall lines, etc.) is fundamental for
many research areas, from hydrology to global climatic
change studies, and information about storms and rain-
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fall can improve the quality of numerical weather fore-
casts and help decision-makers as they discuss actions
to be taken in areas affected by the rain.

The energy released on phase transitions during the
precipitation cycle is responsible for three-fourths of
the heat energy of the atmosphere (Kummerow et al.
1998). Additionally, two-thirds of all precipitation falls
in the tropics, an area covered mainly by oceans and
undeveloped countries. Over such areas, satellite re-
mote sensing estimates can provide the only available
information about precipitation.

There are two main spectral regions used to estimate
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precipitation from satellites-infrared and micro-
wave-and both have their advantages and drawbacks.
Infrared (IR)-based methods have high temporal reso-
lution (a geostationary satellite can produce a full-disk
image every 30 min or less), but there is little physical
basis to the retrievals: only cloud-top temperatures are
available, and these have to be related to precipitation.
Microwave (MW)-based methods, on the other hand,
have poor temporal resolution because microwave ra-
diometers are flying only on low-orbit satellites that
pass about twice a day over the same location. Initia-
tives such as the Global Precipitation Measurement
(GPM) mission (Adams et al. 2002) will improve the
temporal resolution of microwave-based observations
by launching a constellation of combined equatorial
and polar orbit satellites to produce an observation
over the same spot every 3 h (information about the
GPM mission is available online at http://gpm.gsfc.
nasa.gov).

Unlike IR radiation, MW radiation penetrates clouds
and can interact with hydrometeors, depending on the
wavelength and particle sizes. Low-frequency micro-
waves (below 50 GHz) interact with hydrometeors
through absorption and emission processes, and high-
frequency microwaves have wavelengths near particle
size, allowing interactions through scattering. The
amount of energy received by the radiometer is then
directly related to the hydrometeor profile within the
cloud, which means that MW remote sensing of pre-
cipitation has a stronger physical basis than IR meth-
ods; however, mathematical reconstruction methods
and assumptions are needed because the signal de-
tected by the radiometer is an integrated effect through
the whole hydrometeor column.

Oceans present low emissivities on the microwave
spectrum (around 0.4), and dry land presents high emis-
sivities (0.8-1L depending on soil moisture). Hydrome-
teors have emissivities near unity. Over oceans, clouds
appear as "hot" spots in contrast to a "cold" back-
ground, so low-frequency channels (which are sensitive
to emission) can be used to infer cloud properties. Over
land, because of the hot background, only scattering-
sensitive channels can be used to detect clouds, which
will appear as cold spots on a microwave image. In
addition, polarization plays an important role over
oceans because water surfaces have different emission
coefficients depending on the angle of view.

Microwave algorithms are generally classified as sta-
tistical or physical. Statistical algorithms (e.g., Grody
1991; Adler et al. 1994; Ferraro et al. 1998) use ob-
served data to derive an empirical relationship between
brightness temperatures and precipitation. Physical al-
gorithms (e.g., Mugnai and Smith 1988; Evans et al.

1995; Kummerow et al. 2001; Viltard et al. 2006) use a
database of radiative transfer calculations based on at-
mospheric profiles (observed or modeled), which are
compared with an observed set of brightness tempera-
tures. The higher the number of channels used, the
greater the chance of finding an accurate hydrometeor
profile in the database. This need for multichannel ob-
servations makes the physical approach best suited for
oceans, because over land the high emissivities mean
that only higher frequencies can be used [e.g., the
Tropical Rainfall Measuring Mission (TRMM) Micro-
wave Imager (TMI) has only two high-frequency chan-
nels, vertically and horizontally polarized 85 GHz]. Sta-
tistical algorithms are faster and simpler than physical
algorithms, and over land the advantages of statistical
algorithms tend to outweigh the disadvantages (Kidd et
al. 1998).

Although statistical algorithms present reasonable
results on monthly estimates, simple relationships are
not able to capture the different rain system character-
istics in instantaneous observations once these systems
begin to present different cloud and rain development
processes that are associated with different microphysi-
cal characteristics (i.e., rain droplets and ice particles)
Thus, it is expected that they will present different by-
drometeor distributions and, consequently, distinct
rainfall distributions. For example, Fig. 1 shows the cu-
mulative distribution function (CDF) and probability
density function (PDF) for the rainfall rate (RR) and
the 85-GHz polarization-corrected brightness tempera-
ture (PCT; Spencer et al. 1989) for two different rain
systems according to their size classification (mean ra-
dius <31 km and mean radius >69 km). The PCT,
which reduces the influence of water surfaces on the
rainfall retrieval, is computed for each pixel (Spencer et
al. 1989) as shown:

PCT = 1.818Tv,, - 0.8 18 T,s, (1)

where V and H stand for vertical and horizontal polar-
ization, respectively.

This example (Fig. 1) uses 545 TRMM orbits from 1
January to 30 April 1999 over the continental Amazon
region. It is evident that significant differences in rain-
fall occur between these two size classifications. For
example, the larger systems are colder and more in-
tense (50%-80% are between 260 and 270 K and 1.2
and 4.1 mm h- , respectively), and the smaller systems
are warmer and less intense (50%-80% are between
275 and 282 K and 0.5 and 2.2 mm h-t, respectively).
Moreover, this example also shows that smaller systems
have higher rainfall intensities for warmer thresholds,
while larger systems require deep convection. Thus, al-
gorithms that only use a single relationship between
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Fio. 1. (left) Rainfall rate and (right) 85-GHz PCT frequency distribution for rain systems
that are larger than 69 km or smaller than 31 km in radius.

brightness temperature and rainfall rate are not able to
capture the distinct aspects of those systems. By adjust-
ing different PCT versus RR relationships as a function
of cloud morphology, we could capture these observed
physical precipitation differences and then adequately
represent the precipitation density function as observed
in these systems.

Based on the concept that different precipitating sys-
tems will present different rainfall signatures, this study
describes a rainfall estimation algorithm (the Univer-
sity of Sdo Paulo probability algorithm, hereinafter
called USProb) that relies on a probabilistic statistical
method to correlate the 85-GHz PCT and rainfall rate
for different precipitating systems over the Amazon
basin. The developed algorithm was tested against in-
dependent rainfall measurements of the precipitation
radar (PR) on board the TRMM satellite over the
Amazon basin and against rain yields estimated from
the S-band dual-polarization Doppler radar (S-Pol)
weather radar during the TRMM-Large-Scale Bio-
sphere-Atmosphere Experiment in Amazonia (LBA)
field campaign of 1999 (Rutledge 1999). Moreover, the
algorithm performance was also compared with several
different rainfall estimation schemes: the Goddard scat-
tering algorithm (GSCAT; Adler et al. 1994), two ver-
sions of the National Environmental Satellite, Data,
and Information Service (NESDIS) algorithm (Ferraro
and Marks 1995), and the Goddard profiling algorithm
(GPROF), version 6 (Kummerow et al. 2001). Finally,

the USProb and the other four algorithms were tested
during the TRMM-LBA field campaign to verify if
they can depict the rainfall distributions observed in the
different wind flow regimes studied during the experi-
ment. In the subsequent sections we describe the
dataset and the algorithms used in the intercomparison,
as well as the development of our algorithm. In section
4, the validation of the algorithm is tested against inde-
pendent data and different rainfall schemes. Section 5
shows the main physical characteristics observed in the
rain systems according to our classification, and section
6 presents the performance of the algorithms based on
westerly and easterly wind regimes observed during the
TRMM-LBA field campaign. Our conclusions are of-
fered in section 7.

2. Data description

To develop and calibrate USProb we used 545
TRMM orbits during the period of 1 January-30 April
1999 over the region defined by latitude 5°N-16'S and
longitude 76°-48°W. We used the surface rain and rain
type from PR (TRMM product 2A25, version 6) and
the 19 v-, 2 2 v-, and 8 5V,H-GHz TMI brightness tem-
peratures (TRMM product 1Bl, version 6; the sub-
scripts V and H denote vertical and horizontal polar-
ization, respectively). The data were also interpolated
to a grid size of 0.1' X 0.1' (approximately 11 km X 11
km) to account for the different sensor resolutions,
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TABLE 1. Coefficients for the NESDIS algorithm, for both original and adjusted formulations. The a,, coefficients are used on the

SI calculations. NESDIS rain rates are defined as b(SIl), where SI > 10 K.

Formulation

I (original)
2 (adjusted)

451.88
605.56

a2

0.44
-1.9025

oI-

-1.775
-1.9674

a 4

0.0057
0.0096

b

0.0051
0.000 29

C

1.94
2.41

which can vary from 7 km X 5 km (85-GHz TMI chan-

nels) to 30 km X 18 km (19-GHz TMI channels) at

preboost conditions. Although only the 85-GHz chan-

nels are used to actually derive rainfall rates, the 19-

and 22-GHz channels are used on the screening rou-

tine. A complete and detailed reference on the TRMM

instruments is given by Kummerow et al. (1998). This

dataset is also used to study the system characteristics

presented in section 5.

USProb relies on a probabilistic statistical method

that correlates PCT and RR for different precipitating

systems. The PCT is helpful in removing cold back-

ground signatures from wet surfaces such as rivers and

lakes that can be confused with clouds. Although mi-

crowave emissivities of surface water bodies are a

strong function of polarization, radiation that is emitted

or scattered by clouds is only slightly polarized. There-

fore, for the same frequency, clouds present nearly the

same brightness temperature on both horizontal and

vertical channels, but wet surfaces, on the other hand,

will present significant differences between vertically

and horizontally polarized brightness temperatures.

USProb was validated using 2 different ground-truth
datasets. The first comparison used the PR-2A25, ver-

sion 6. surface rainfall rates as a reference, using 109

TRMM orbits during the whole month of October

2005. For the second comparison, the National Center

for Atmospheric Research (NCAR) S-Pol radar
(Keeler et al. 2000) rainfall estimates (Carey et al. 2000)

available from the TRMM-LBA 1999 field campaign

were used. The experiment was conducted in the state

of Rondonia, Western Amazon, in Brazil during Janu-

ary and February of 1999. The radar covered a 200-km-
radius area, and it was centered at 62°W and 11.2°S. For

the comparison, we used 45 S-Pol coincident measure-

ments available from the TRMM orbits during 13 Janu-

ary-21 February 1999. This TRMM-LBA dataset was
also used in section 6 to verify the performance of the

algorithm based on the Amazon wind regime charac-

teristics (westerly versus easterly). Finally, USProb was

compared with GSCAT, GPROF, and the original and

modified versions of the NESDIS rain-rate algorithm.

a. GSCAT and NESDIS datasets creation

For validating the GSCAT (Adler et al. 1994) and

NESDIS (Ferraro and Marks 1995) Special Sensor Mi-

crowave Imager (SSM/I) rain-rate algorithms, rain
rates (RR) are retrieved using the following relations.

The GSCAT rain rate (rmm h-1) for each pixel, over

continental areas, is defined as

262- TH8 5
RRGscAT - 5.2373 (2)

and the NESDIS rain rate (mm h ') for each pixel is
defined as

RRNEsDIS1.2 - b(SI)c, (3)

where the scattering index (SI: Grody 1991) is defined as

SI = al + a2 Tv19 + a3Tv 22 + a 4TV22 VT85. (4)

More details on the SI physical basis will be given in

section 3a. For NESDISA, the a,, coefficients as well as
the b and c values followed the original formulations

[i.e., Grody (1991) for the SI coefficients, and Ferraro

and Marks (1995) for b and c values]. For NESDIS2, the
SI coefficients and the b and c coefficients were ad-

justed using the calibration dataset with PR surface

rainfall as the ground truth over the region of interest.

The SI coefficients and the b and c values, for both

formulations, are presented in Table 1. For both for-

mulations the rainfall threshold is SI = 10 K, which is

the value indicated in the original work of Ferraro and

Marks. No additional screening processes were per-

formed for the GSCAT and NESDIS algorithms. These

algorithms were originally developed for SSM/I, but

currently are also used with TMI data (and could be

used with any other sensor with channels around the

same frequencies).

b. GPROF rain rates

The Goddard profiling algorithm (Kummerow et al.

2001) retrieves rainfall's vertical structure by using a

Bayesian approach to match the observed brightness

temperatures to simulated brightness temperatures
from an Eddington-based radiative transfer model

(Kummerow 1993), which uses hydrometeor profiles

derived from cloud-resolving models (CRMs) as input.
The GPROF hydrometeor profiles (TRMM product

2A12, version 6) are publicly available on the Na-
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FIG. 2. Distributions from the four tests used in the screening routine for rain and nonrain
pixels (based on the PR classification): PCT, scattering index, Tv 19 - Tvs_, and std dev of
Tv85 . Thin (thick) line indicates rain (no-rain) pixels; bin size is I K.

tional Aeronautics and Space Administration (NASA)
Goddard Earth Sciences Data and Information Ser-
vices Center (GES DISC) Web site (http://disc.sci.
gsfc.nasa.gov/). The surface rain rate was the only 2A12
data used in this work.

3. Algorithm development

The development of USProb can be divided into
three steps that are described below: (i) rain screening,
(ii) clustering and system classification, and (iii) evalu-
ation of the PCT-RR relationship for each system class.

a. Rain screening

To identify the pixels or areas that are raining (or not
raining), a screening procedure based on a combination
of four methods was applied. The indexes chosen are
easy to implement and have physical bases, although
the screening methodology is a statistical procedure.
These methods are listed here.

1) The polarization-corrected brightness temperature,
defined in Eq. (1) and developed by Spencer et al.
(1989), can separate cold backgrounds (such as
oceans or rivers) from cold clouds at the frequency
of 85 GHz because of differences in the vertical and
horizontal emissivities of wet surfaces.

2) The scattering index was developed by Grody
(1991) to identify the cloud regions that have ice

particles aloft (i.e., where there is ice scattering).
The SI formulation is presented in Eq. (4), where
the first four terms on the right-hand side represent
the emission of water and cloud particles inside the
cloud, and it is expected to have the same value as
the last term in absence of scattering. If scattering
occurs, the decrease observed in the Tv 8 5 values will
cause an increase in the SI value. Because the SI was
developed for SSM/I instruments, the SI coefficients
were adjusted using TMI data, leading to different
values from those proposed by Grody in his original
work. The coefficients, original and adjusted, are
presented in Table 1.

3) The difference between Tv19 and Tv8 5 indicates if
there are ice-scattering signatures in the 85-GHz
vertically polarized channel. This method was elabo-
rated and tested during the USProb development.

4) The standard deviation of Tvs5 in a 5 X 5-pixel win-
dow, u(Tv8 5), is the last method. According to
Anagnostou and Kummerow (1997), Tv8 5 is more
variable in raining than in nonraining areas, which
leads to higher values of o,(Tv,,) in case of rain.

Figure 2 shows the distributions of the four indexes
for raining and nonraining pixels based on the PR clas-
sification. It can be noted that raining and nonraining
pixels display different characteristics in all index dis-
tributions. The raining pixel distributions have a log-
normal shape and the nonraining ones exhibit a skewed

1966
VOLUME 47

Ib

0

Qý



BISCARO AND MORALES

Gaussian form [except for the o-(Tvs5 ) distribution.,
which shows a lognormal characteristic for both raining
and nonraining pixels].

Even with these mentioned differences, choosing one
specific threshold to determine whether a pixel is rain-
ing or not is not a simple task; rather, it is necessary to
employ a combination. Therefore, we use three statis-
tical parameters (Negri et al. 1995) to identify which
conditions can be applied to screen the rain areas.
These parameters are the probability of detection
(POD), the false-alarm rate (FAR), and the critical
success index (CSI). These parameters are used to op-
timize the identification of raining and nonraining pix-
els among the four indexes described above, and they
are expressed in the following equations:

CR
POD CR + ND'

ERFAR - , andCR + ERa

CR
CR + ER + ND'

(5)

(6)

(7)

where CR is the number of pixels classified as raining
by both methods (screening and PR reference), ER is
the number of pixels classified as raining by the screen-
ing routine but as nonraining by the PR, and ND is the
number of pixels classified as nonraining by the screen-
ing routine but as raining by the PR. It is important to
note that these indexes are strongly correlated, and an
attempt to achieve better results on a particular index
can cause loss of quality on the results of other indexes.
For example, one can adjust the screening routine to
maximize the POD value, but this gain of quality in
detection of rain will lead to higher levels of FAR and,

therefore, to a low value of CSI. The ideal values of
POD, FAR, and CSI are 1, 0, and 1, respectively.

In this study, the optimal combination of POD, FAR,
and CSI values found was 0.641, 0.280, and 0.511, re-
spectively. These values were obtained using the
screening procedure described in the flowchart in

Fig. 3, which is actually the screening routine used in

USProb.

b. Clustering and system classification

According to the above screening procedure (Fig. 3),
a raining system is defined as a group of interconnected
pixels (a cluster) with PCT values lower than 277 K

(this is the PCT value at the boundary between the
raining and nonraining distributions). Once the cluster
is delineated, the screening routine is applied to ex-

FiG. 3. Flowchart of the screening routine, defining the
rain/no-rain classification.

clude the nonraining pixels. After the screening, the
clusters are classified according to their sizes and PCT
distributions. The size classification is stratified in three
categories: systems smaller than 3000 km2, systems be-

tween 3000 and 15 500 kM2x, and systems larger than
15 500 km 2. Cluster sizes are computed by multiplying
the number of pixels in each cluster by the pixel area
(0.10, according to section 2). The other criterion is
based on what we define as mean lower temperature

(MLT). The MLT is defined by computing the PCT
distribution and then calculating the mean of the lowest
10% of values. It is expected that systems with strong
convective cores will have lower MLT values than
stratiform systems. Using histogram analysis and statis-
tical tests, we chose a threshold value of 220 K because
differences between the rainfall-rate distributions of
systems above and below this MLT threshold can be

found.
After combining these categorizations (the system

size and the MLT), five different classes were created,
as presented in Table 2. Classes 1 and 3 represent
colder systems (class 1 includes larger systems and class
3 has medium-sized systems), and classes 2 and 4 rep-

resent warmer systems (class 2 has larger systems and
class 4 has medium-sized systems). Class 5 does not use
the PCT classification because it represents small sys-
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TABLE 2. Systems classification criteria, based on size and PCT distribution.

Threshold 1 (kM 2)

Area > 15 500
Area > 15 500
3000 -s area < 15 500
3000 :S area < 15 500
Area < 3000

Threshold 2 (K)

MLT < 220
MLT > 220
MLT < 220
MLT > 220

System examples

MCSs, squall lines
MCSs. squall lines
Supercells, multicellular systems
Supercells, multicellular systems
Cumulonimbus clouds

tems, and it therefore may not be representative of the
calculation of the MLT values. Judging by visual in-
spections of TMI and Visible and Infrared Scanner
(VIRS) images over the Amazon region, classes 1 and
2 bore some resemblance to mesoscale convective sys-

990201.6788

Class 1: MCS (growing stage)

4. . l i ii .....j...!

-10

2

-2

.4

990113.6494
(jIj"& It 4Q-.nU 1 6

tems (MCSs), mesoscale convective complexes (MCCs),
and squall lines; classes 3 and 4 somewhat resembled
supercells and multicellular systems; and class 5 resem-
led cumulonimbus clouds. An example of these catego-
rizations is presented in Fig. 4.

2

0

-4L

990205M684

Cks 3. superoel

-2

-4

150 180 210 240 270 300

Fic. 4. Combined VIRS and TMI images of some systems following the USProb categorization
scheme: mesoscale convective systems (top left) growing and (top right) decaying stages, (bottom left)
squall lines, and (bottom right) supercells; colors denote PCTs and gray shades IR temperature.

Class

1
2
3
4
5

VOLUME 471968



BISCARO AND MORALES

0 5 ~RR ,(m-/hl

.0 T rvh r

.4

.2

0

200 220 240 260
PC (

r71ný 4

RR ( )
10 15

200 220 240
PCT (K)

260 280

Class 2

RR (mm/h)
I6 ( )

280 200 220 240
PCT (K)

Class 3
RR -15 05 10mht

0

260 280 200 220 240 260 280
PCT (K)

Class 5
RR (-/ih)

15

10.

f / ' -
08 /-

/- /1

02j

0.0 2 0 24
200 220 240

PCT (K)

PCT (K)

Rain rate (mr

260 280

FIG. 5. CDFs for the five system classes defined in Table 2. PCT (RR) is indicated by solid (dashed) lines.

c. PCT-rainfall-rate relationships

Finally, we applied the probability matching method
(PMM) developed by Calheiros and Zawadzki (1987)
to derive the PCT-RR relationships. The main idea
behind the PMM is to relate two independent variables
through their probability frequencies. In the case of this
study, these two independent variables are the PCT and
RR for different system categories. To build the rela-
tionships, we computed the PCT and RR CDFs for
each one of the five classes, as shown in Fig. 5. By
relating each pair of CDFs, we were able to develop
five different PCT-RR lookup tables (LUTs), which
are graphically represented in Fig. 6.

These relationships show that colder systems (classes
1 and 3) will produce less rain for the same PCT value
when compared with classes 2 and 4 (warmer systems).
This can be explained by the differences between the
system hydrometeor contents. Colder systems, which
present strong convective cores, can produce high
large-sized ice particle quantities. At 85 GHz, these

particles have a very high scattering efficiency, resulting
in low PCT values. Because this PCT drop can be
wrongly associated with high values of rainfall, when
comparing PCT and PR surface rainfall from stratiform

- ) F _ 7 -

S1 11 T K

FiG. 6. PCT vs RR curves for each system class, derived with
the PMM.
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FIG. 7. PR reflectivity vs height for system classes 1, 2. 3. and 4.

and convective systems the nonprecipitating ice par-
ticles scattering produced by convective clouds must be
taken into account. Therefore, convective systems will
present lower PCT values for the same amount of rain-
fall.

Figure 7 presents the PR reflectivity occurrence with
height for MLT-dependent classes, where several dif-
ferences between colder (classes 1 and 3) and warmer
(classes 2 and 4) systems can be noted (such as no oc-
currence of reflectivity values greater than 20 dBZ be-
tween 2 and 3 km for warmer systems, although classes
1 and 3 present values over 30 dBZ). Warm systems
have well-defined occurrence peaks between 2 and 4
kin, with values near 15 dBZ (light rain). Classes 1 and
3 present values over 30 dBZ from 3 km up to 15 km;
however, high reflectivity values only occur near 15 km

for classes 2 and 4. [It is important to note here that the
term "warmer systems" does not mean systems without
the ice phase; rather, it means systems with higher
MLTs (i.e., less ice) than classes 1 and 3.]

Shin et al. (2000), using 1 yr of TRMM data, showed
that the freezing level over the Amazon region varies
from 3 to 5.5 km, with higher values occurring during
austral summer. The high reflectivity values presented
in Fig. 7 at levels higher than the climatological freezing
level reinforce the hypothesis that the aforementioned
PCT drop is caused by nonprecipitating hydrometeors.

As presented above, PCT-rainfall relationships are
clearly system-type dependent, and an algorithm that
attempts to use a single relationship between brightness
temperatures and rainfall rate may lead to unrealistic
results that are amplified on instantaneous retrievals.
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TABLE 3. POD, FAR, and CS1 values for rain/no-rain
classification, for all five algorithms.

Algorithm

USProb
NESDIS,
NESDIS,
GSCAT
GPROF

POD

0.710
0.854
0.727
0.616
0.763

FAR

0.398
0.660
0.538
0.398
0.298

CSt

0.483
0.321
0.394
0.438
0.576

However, for monthly and weekly averages a single-
relationship algorithm can achieve good results, as
demonstrated by Adler et al. (1994) and Ferraro and
Marks (1995). In the next section, a comparison be-
tween USProb and four other algorithms (GPROF,
GSCAT, NESDIS1, and NESDIS2 ) is presented.

4. Validation

In this section, the USProb algorithm is evaluated in
terms of both screening procedure efficiency and rain-
fall retrieval. This evaluation is based on a comparison
with the rainfall products of 109 TRMM-PR orbits dur-
ing October 2005 and the 45 coincident TRMM-LBA
S-Pol observations during January-February 1999. Fur-
thermore, the new scheme is compared with the well-
known rainfall estimation algorithms GSCAT,
NESDIS, and GPROF. The rainfall retrieval is divided
into three main categories: rain volume estimates, rain-
fall distribution, and error analysis. The S-Pol reference
data were used only in the study of the rainfall distri-
bution and the error analysis.

a. Screening efficiency

The screening routine efficiency is evaluated by com-
puting the POD, FAR, and CSI indexes, as well the

raining area detected by the algorithms, against the
ground truth.

Table 3 shows the POD, FAR, and CSI values for
rain versus no-rain classification, using 109 TRMM or-
bits with the PR as the ground truth, and Fig. 8 shows
the performance of the indexes as a function of the
PR-observed rainfall rate. The five algorithms show an
improvement in the index values as the rain rate in-
creases. Although the NESDIS1 algorithm has the best
POD scores, its FAR values are too high, which leads to
poor CSI results until the observed rainfall reaches 10
mm hI'. GSCAT shows low values of POD and high
values of FAR. As a consequence, the GSCAT CSI
scores are the lowest observed. The low NESDIS 2 FAR
scores show the improvement obtained by using ad-
justed coefficients for the area of interest. The GPROF
screening routine presents the highest CSI values, and
the USProb screening scheme, although not scoring the
best CSI values instantaneously, agrees with GPROF
after 2 mm h-1 because of its low values of FAR (lower
than GPROF).

To determine the rain area extent associated with a
cloud, the 10.8-tim IR channel of TRMM-VIRS is em-
ployed to delineate the precipitating clouds. We de-
fined a rainy cloud as a region with pixels that have a
brightness temperature lower than 273 K in the IR
channel, and within the IR cloud the number of raining
pixels (observed by PR and estimated by each algo-
rithm) is computed. This value of 273 K is necessary to
avoid the inclusion of warm clouds in the analysis; over
the continent the TMI warm cloud signatures are close
to the continental background brightness temperatures
and the surface noise (variability of the surface emis-
sivity).

Figure 9 shows the scatterplots of the estimated and
observed rain areas and Table 4 presents the correla-

nt ity cf de-_ect on
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FIG. 8. POD. FAR. and CSI evolution as function of the PR observed surface rain.
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FIG. 9. Scatterplots of the estimated rain

area vs the PR-observed rain area, using
VIRS to determine cloud areas. From
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tion coefficient (CC), normalized bias (NBIAS), and
fractional standard error (FSE) calculated for the five
algorithms. These coefficients are defined as follows:

CC -

WN O N N

iEi OjE - 2 i Ei

N

Omean)2 • (Ei - En.an )
2

i=1

1N
1 (Ei - od)

NBIAS N and

N, 0iNi=1

FSE

1:N1: (Ei , )2

N i=

(0i Ome~an)

(9)

where N is the total number of coincident observed (0)
and estimated (E) variables (in this case, clouds). CC
varies from 0 to 1, where 1 represents the highest cor-
relation between the two variables. The NBIAS repre-
sents the fraction of overestimation (>0) or underesti-
mation (<0) with respect to the reference value. FSE is
the error variance normalized by the variance of the
predicted variable: the smaller the values are, the lower
is the variability of the error with respect to the natural
variability of rainfall (Morales and Anagnostou 2003).

The results in Fig. 9 and Table 4 show that USProb
presented the lowest NBIAS (0.023) and FSE (0.310)
values and NESDIS, presented the highest values

TABLE 4. CC, NBIAS, and FSE statistics for all five algorithms'
rain-area estimates, with PR as the reference.

Algorithm

USProb
NESDIS,

(10) NESD'S 2
GSCAT
GPROF

CC

0.965
0.971
0.965
0.965
0.987

NBIAS

0.023
1.231

-0.245
0.192
0.773

FSE

0.310
1.264
0.487
0.460
0.747
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Observed rain volume (mý

-Ht-

101 10 o 0 10"'
Observed rain voiumre (m)

(NBIAS = 1.231 and FSE = 1.264). All algorithms
showed CC higher than 0.96, meaning that they are all
well correlated with the PR reference. GPROF pre-

sented high NBIAS (0.773) and FSE (0.747), which in-
dicates an overestimating of the rain area as well as the

error variability. NESDIS2 was the only algorithm to
underestimate the rain area (NBIAS = -0.245) and
presented an FSE of 0.487. GSCAT presented the sec-
ond-best results, with an NBIAS of 0.192 and an FSE of

0.460.

b. Retrieval efficiency

In this section, the USProb rainfall retrieval effi-
ciency is tested by comparing the estimated rain vol-
umes computed for each cloud and the total esti-
mated rainfall distributions, using the PR and S-Pol
surface rain rates as the ground truth (S-Pol data were

used only for comparing rainfall distributions). The er-
ror distributions were also compared for both refer-
ences.

FIG. 10. As in Fig. 9, but for rain volume.

101 1 10 o
Observed rain volume (mn')

1) RAIN VOLUME

Using the same approach used to compute rain areas,

the rain volume is computed by multiplying the rain
rate at each pixel within a cloud by the pixel area. Fig-

ure 10 shows the rain volume estimated by each algo-
rithm against the PR-observed rain volumes, and Table
5 shows the CC, NBIAS, and FSE calculated for the
five algorithms.

All algorithms produced a CC higher than 0.93, ex-
cept NESDIS2, with a CC equal to 0.826. The rain-vol-
ume estimate depends on the rain-area estimate, so the

error statistics tend to have the same behavior, that is,

TABLE 5. As in Table 4, but for rain-volume estimates.

Algorithm

USProb
NESDIS1

NESDIS2
GSCAT
GPROF

CC

0.939
0.955
0.826
0.939
0.977

NBIAS

0.039
1.176

-0.248
0.199
1.030

FSE

0.352
0.979
0.608
0.365
0.765

USProb

E

o

NESDI

E

'CAT 3SPROF
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FIG. 11. Rainfall distributions for each algorithm (thin line) and the PR reference (thick line). From upper left to bottom right:
USProb, NESDIS1, NESDIS 2, GSCAT, and GPROF. Bin size is I mm h-'.

algorithms that have good performance on rain-area
estimation tend to have a good rain-volume estimate if
their rain estimates are reasonable. Hence, USProb
presented the NBIAS (0.039) closest to zero and the
lowest FSE (0.352), and NESDIS, presented the high-
est NBIAS (1.176) and FSE (0.979). NESDIS 2 under-
estimated the rain volume by about 25% and showed a
FSE of 0.608. Again, GSCAT presented the second-
best results (NBIAS = 0.199 and FSE = 0.365), and
GPROF overestimated the rain volume by over 100%,
with a high error variability (FSE = 0.765).

2) RAINFALL DISTRIBUTIONS

High-quality precipitation retrievals also require the
equal quality observed rainfall distributions because
some applications such as hydrology studies and flash
flood predictions require an accurate estimate of the
rainfall probability density function. Accordingly, his-
tograms were created using a bin size of 1 mm h-' for

PR data (Fig. 11) and 2 mm h-1 for S-Pol data (Fig. 12),
and the RR frequencies of occurrence were weighted
by the total rain volume of each dataset. S-Pol histo-
grams use a larger bin size to compensate for the small
amount of observed data.

Using the PR as a reference, the USProb and
GPROF algorithms achieved the best results, but with
two main differences: GPROF slightly overestimates
rainfall up to 5 mm h-' and shows a second peak from
28 to 39 mm h-', which leads to a bimodal distribution;
while NESDIS1 distribution shows a quasi-linear be-
havior, underestimating rainfall under 15 mm h-1 and
overestimating above this value. NESDIS2, because of
its adjusted coefficients, shows better coincidence than
NESDIS, which reinforces the utility of generating a
unique set of coefficients for each location instead of
using a global coefficient set. GSCAT overestimates
rainfall from 4 to 12 mm h-1, but over 12 mm h-' shows
similar results.

!0

Bin size: 1 mm/h

SEstimated rain

Observed rain
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FIG. 12. As in Fig. 11, but using S-Pol instead of PR as the reference. Bin size is 2 mm h-1.

The S-Pol comparisons (Fig. 12) show discontinuous

patterns because we have a small dataset of only 45
TRMM orbits, some with no rain at all. Even with this

small dataset, however, some characteristics can be ob-
served. GSCAT presents a strong peak at 10 mm h-1

and an absence of rain after 22 mm h-', GPROF dis-
tribution is similar to the S-Pol reference until 18 mm

h-1 but is shifted by 2 mm h-1, the NESDIS1 histogram
shows a linear decay without strong peaks, and

NESDIS2 presents a series of peaks throughout the dis-

tribution. The USProb histogram shows reasonable re-

sults with the S-Pol data from 30 to 40 mm h-' and is
able to estimate the peaks around 50 and 65 mm h-1.

On the other hand, the histogram shows overestima-
tions between 3 and 14 mm h-1 and underestimations

from 18 to 30 mm h'.

3) ERROR DISTRIBUTIONS

As noted in the previous item, there are some differ-
ences among the rainfall rate distributions estimated by

each algorithm. Therefore, to quantify these different
error distributions, the NBIAS, FSE, and the mean er-
ror [MERR, shown in Eq. (11)] are computed and pre-

sented in Fig. 13 and Table 6 (with PR as the reference)
and again in Fig. 14 and Table 7 (with S-Pol as the

reference). MERR (mm h-1) is defined as follows:

1 NMERR 0=I (Ei,- Oj),

N iI
(11)

where E is the estimated rain rate by each algorithm
and 0 is the PR or S-Pol observed rain rate.

GPROF shows a bimodal error distribution for both
ground-truth references and high NBIAS values (0.685

for PR and 1.261 for S-Pol); this can be an artifact of its
convective and stratiform classifications. Also, it has

the second-highest MERR (1.430 mm h-1 for PR and

0.637 mm h 1 for S-Pol). NESDIS2 shows negative

NBIASs for both references (-0.023 for PR and

-0.193 for S-Pol), which indicates underestimation.

Moreover, its MERRs are also negative for both refer-
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FIG. 13. Error distributions (probability = solid lines; cumulative = dashed lines) for each algorithm, with PR as the reference. From
upper left to bottom right: USProb, NESDIS1 , NESDIS2 , GSCAT, and GPROF. Bin size is 0.5 mm h '. MERR (mm h-1) is indicated
on each plot.

ences, -0.548 mm h-1 for PR and -0.476 mm h-1 for
S-Pol. In contrast with NESDIS2, NESDIS1 has the
highest MERRs (5.034 mm h-' for PR and 1.334 mm
h-1 for S-Pol:) and NBIASs (2.194 for PR and 2.271 for
S-Pol), showing overestimations greater than 200% in
both cases. GSCAT shows the lowest MERR for the
S-Pol comparison (-0.010 mm h-1) and an overestima-
tion about 35% for both references. USProb has an
overestimation of about 23% for both comparisons and
the lowest MERR (0.244 mm h-1) for the PR compari-
son. The MERR for the S-Pol comparison is also near
zero (-0.157 mm h-1). All algorithms presented a
value of FSE near 1, indicating that the error variability
is very high.

5. Raining systems characteristics

Because USProb is based on the classification of pre-
cipitating systems (Table 2), it is important to under-

stand the main physical characteristics observed in
those systems, which can help future precipitation esti-
mation algorithms and numerical weather prediction
parameterizations.

To evaluate these characteristics, the 2A25-PR mea-
surements from 545 TRMM orbits during the period of
1 January to 30 April 1999 are employed. Table 8 pre-
sents the number of systems detected, the volume and
area fractions relative to the total rain volume and area

TABLE 6. MERR, NBIAS, and FSE statistics for all five
algorithms' rain volume estimates, with PR as the reference.

Algorithm

USProb
NESDIS1
NESDIS2
GSCAT
GPROF

MERR(mmh-1)

0.244
5.034

-0.548
0.358
1.430

NBIAS

0.229
2.194

-0.023
0.346
0.685

FSE

1.400
2.433
1.279
0.978
1.149
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FIG. 14. As in Fig. 13, but for S-Pol as the reference.

estimated, and the volume/area ratio. The large systems
(classes 1 and 2) represent over 75% of the rainfall
volume and over 70% of the rain area, and medium-
sized systems (classes 3 and 4) share over 15% of the
volume and 13% of the area estimated. The smaller
systems (class 5), represented by 3290 systems, are re-
sponsible for 8.38% of the volume detected and 12.8%
of the area.

Classes 1 and 3 have MLT values lower than 220 K,
representing colder systems, which can be associated

TABLE 7. As in Table 6, but with S-Pol as the reference.

Algorithm

USProb
NESDIS,
NESDIS2

GSCAT
GPROF

MERR (mm h-')

-0.157
1.334

-0.476
-0.010

0.637

NBIAS

0.232
2.271

-0.193
0.361
1.261

with strong convection within the system. Therefore, it
is expected that these systems will present larger rain
volumes. The volume/area ratio for cold classes is 1.76;
the other classes show values lower than 0.9. This sug-
gests that colder systems are more efficient in produc-
ing rain than the warm ones. In fact, although colder
systems represent only about 30% of the rainy area,
they contribute almost 52% of the rain volume.

TABLE 8. Number of systems detected, PR rain area fraction,
PR rain volume fraction, and volume/area ratio, for each

USProb system class.

No.
FSE Class systems

1.246
2.149
1.215
1.137
1.227

1
2
3
4
5

81
135
175
260

3290

Area Volume Volume/area
fraction (%) fraction (%) ratio

23.93 42.22 1.76
48.05 30.94 0.64

5.31 9.34 1.76
9.81 6.54 0.67

12.89 10.97 0.85
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TABLE 9. PR rain volume fraction (%) of each USProb class
according to 2A25-PR rain type.

Class

1
2
3
4
5

Stratiform
area

69.74
90.94
61.05
83.65
64.94

Convective Stratiform
area rain

23.20 47.21
5.35 57.13

28.10 32.16
10.56 58.71
21.42 30.14

Convective
rain

40.77
23.33
54.62
28.91
53.70

Because the 2A25-PR product discriminates among
rain types [stratiform, convective, and other, where
"other" usually refers to regions of precipitation aloft
with no precipitation near the surface (Schumacher and
Houze 2003), with a negligible (<0.2%) contribution to
total rain], we can evaluate the percentage of these
types in the above systems. Because the data are inter-
polated into a regular grid, two different types of rain
can occur within the same grid point. Therefore, the
"mixed" rain type was created, which combines convec-
tive and stratiform rain types in the same grid point.
Table 9 shows the statistics of these classifications
weighted by the PR rain volume according to the
USProb raining classification.

Cold systems (classes 1 and 3) have the largest con-
vective area fractions, over 23% each. The class 1 con-
vective rain fraction is lower than the stratiform rain
fraction, probably because of the occurrence of strati-
form precipitation associated with convective cells in
MCSs. Class 3 presents 54% of the convective rain frac-
tion, but classes 2 and 4, on the other hand, have about
2 times more stratiform rain than convective rain. Fi-
nally, class 5 has almost 54% convective rain and about
30% stratiform rain, with 21% of convective area,
which can be credited to isolated cumulonimbus.

We can look at these results as a simplified convec-
tive-stratiform classification, where the classification
procedure used by USProb may determine the pre-
dominance of stratiform and convective areas and rain-
fall. Schumacher and Houze (2003) stated that over the
Amazon region the stratiform rain volume fraction is
about 35 % and the stratiform rain area fraction is about
75%, leading to a volume/area ratio of 0.47 for strati-
form precipitation and 2.6 for convective precipitation.
Our results agree with their study, even though a fur-
ther look at seasonal variabilities may be necessary.

6. Rainfall dependency: Westerly and easterly
wind regimes during the TRMM-LBA 1999
field campaign

In addition to all statistical tests performed in the
prior sections, it is important to evaluate the perfor-

TABLE 10. List of periods of westerly and easterly flows. All
periods are from 1999, and dates start and end at 0000 UTC.

Zonal wind regime

Easterly 1
Westerly 1
Easterly 2
Westerly 2
Easterly 3
Westerly 3

Period

11-14 Jan
14-19 Jan
19-29 Jan

29 Jan-8 Feb
8-22 Feb

22 Feb-1 Mar

mance of the algorithms in raining systems that depend
on climate conditions to determine whether they are
suitable to represent these dependencies. For example,
during the wet season (January and February) in the
southwestern Amazon, the large-scale circulation
changes the wind flow (westerly and easterly) as a re-
sult of the South Atlantic Convergence Zone (SACZ)
and squall lines propagate eastward from the east coast
of Brazil (Kodama 1992; Liebmann et al. 1999; Herdies
et al. 2002). As a consequence, rain systems have dif-
ferent characteristics in each wind regime (Rickenbach
et al. 2002; Williams et al. 2002). During westerly wind
regimes, the presence of the SACZ can be observed,
with large stratiform rain, shallow convection, and low
lightning activity. During easterly wind regimes, strong
or deep convection with high lightning activity is more
typical, with a predominance of convective rain.

To evaluate the performance of the rainfall estima-
tion algorithms on such different climate regimes, we
used the wind regime periods computed by Rickenbach
et al. (2002) (Table 10) during the TRMM-LBA 1999
field campaign. We computed the rainfall CDF for
these time periods over the area of the S-Pol radar site
(60°-64°W, 9°-13-S) for each of the rainfall estimation
algorithms and also for the estimated S-Pol rainfall rate
available during the period 13 January-21 February of
1999 (Fig. 15), thus excluding the easterly 1 and west-
erly 3 periods.

As pointed out by Rickenbach et al. (2002) and
Anagnostou and Morales (2002), the easterly wind re-
gimes have higher rainfall rates as observed by the S-
Pol rainfall CDF, with 15% of the rainfall rates are
above 40 mm h-1; in the westerly wind region, the rain-
fall rate does not exceed 38 mm h-1.

By comparing the S-Pol distribution with the other
algorithms, it is observed that USProb results are in
agreement with the observed S-Pol rainfall distribution
for the easterly periods, and the cumulative frequencies
for 5, 10, 20, 30, and 40 mm h-1 present a maximum
absolute error of 0.05 when compared with the S-Pol
distribution. During the westerly regimes, USProb un-
derestimates for rainfall rates above 5 mm h-1, with the
maximum value at 28 mm h -. NESDIS, overestimates
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FiG. 15. Westerly (thick) and easterly (thin) rainfall CDFs for each algorithm and the S-Pol reference. From upper left to bottom
right: S-Pol, USProb, NESDIS1, NESDIS 2, GSCAT, and GPROF.

for both wind regimes, but it presents the best estimate
for the westerly flow when compared with the other
algorithms. For NESDIS2, GSCAT, and GPROF, the
westerly CDFs are underestimated and do not present
rain occurrence above 15 mm h- 1; however, in the east-
erly regime NESDIS2 and GSCAT reach their maxi-
mum at 34 and 25 mm h-1 respectively. Hence, under-
estimating. GSCAT presents higher rainfall occurrence
in the easterly regime than in the westerly flow for
rainfall rate lower than 8 mm h -1, which does not agree
with the observed results. For the GPROF, the esti-
mates during the easterly regime are very similar to
USProb, with only a slight underestimation.

7. Conclusions

In this paper we presented USProb, a new algorithm
for rainfall retrieval over the Amazon basin region.
Tests and comparisons with GSCAT, NESDIS, and

GPROF showed that USProb achieved good results for
instantaneous rainfall retrieval when comparing all al-
gorithms with two different ground-truth datasets, PR
and S-Pol.

When comparing the rain areas and rainfall volumes,
USProb showed a high correlation (CC > 0.9) and low
bias (NBIAS < 0.04) and presented the lowest FSE for
both comparisons (0.310 for PR and 0.352 for S-Pol).
GSCAT has the second-best NBIAS and FSE values.
NESDIS1 presented NBIAS and FSE near 1 for both
comparisons, indicating an overestimation of more than
100% on rain areas and volumes. NESDIS 2, on the
other hand, presented better results for both compari-
sons because of its adjusted coefficient sets. Kidd et al.
(1998) concluded that any rainfall estimation algorithm
that is applied in different conditions requires some
adjustment, which supports the better results obtained
by NESDIS2 when compared with NESDIS1.

USProb and GPROF rainfall histograms showed

0.8-
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similar agreement with the PR reference, but GPROF
showed a bimodal-type distribution. The error analysis
showed that NESDIS, had the highest MERR (5.034
mm h-' for PR and 1.334 mm h-1 for S-Pol), NBIAS,
and FSE (>2 for both comparisons); and NESDIS 2 pre-
sented the lowest NBIAS (-0.023 for PR and -0.193
for S-Pol) and had an MERR near -0.5 mm h-'. This
result reinforces the need for a recalibration of the algo-
rithms depending on the region where they are applied.

GSCAT overestimated rain by about 35% for both
references, and produced an MERR of 0.358 mm h-1
for the PR comparison and -0.010 mm h-1 for the
S-Pol comparison; this is the best MERR value found in
this study. GPROF was highly biased, overestimating
rain in 126% for S-Pol and 68% for PR. All algorithms
presented FSE values near 1 for both references, except
NESDIS1, with an FSE of about 2. These high error
variabilities demonstrate how difficult is to estimate
rain in an instantaneous manner. USProb overesti-
mated rain by about 23% for both references and had
an MERR of <0.25 mm h-1, with its error distributions
presenting a Gaussian shape centered around zero for
both PR and S-Pol references.

According to the USProb system classification analy-
sis, it was found that colder systems have a higher rain
volume/area ratio (1.76) than the warmer systems
(<0.7). These low volume/area ratio values presented
by classes 2 and 4 show that warmer systems are less
efficient rain producers, a characteristic mainly attrib-
uted to the larger area of stratiform rain of the warmer
systems when compared with the colder ones. Smaller
systems (class 5) that do not use the temperature clas-
sification presented more than 50% of the rain classi-
fied as convective, probably due to isolated cumulo-
nimbus. Additionally, the class 5 volume/area ratio
(0.85) is higher than that of the warm systems.

The main westerly and easterly wind regime rainfall
characteristics (e.g., lower rain rates for westerly peri-
ods) were correctly captured by all algorithms except
for GSCAT. NESDIS, presented the best westerly es-
timate, and USProb showed the best easterly estimate.
NESDIS2 and GSCAT did not present good results,
especially in the westerly regime. GPROF presented
lower rain rates than S-Pol for both regimes, but not as
low as NESDIS2 and GSCAT.

Summarizing the results, we conclude that USProb is
more compatible and efficient in retrieving surface
rainfall over the region of interest on an instantaneous
basis than the other algorithms tested, which is sup-
ported by the rain classification analysis and the correct
repreasentation of Amazon rainfall east-west variabil-
ity. Further studies are needed to compare USProb
with the NESDIS, GSCAT, and GPROF algorithms at

monthly scales, given that they achieved good monthly
precipitation estimate results, as demonstrated by
Adler et al. (2001).
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