

American Institute of Aeronautics and Astronautics

1

A Better Performance to INPE Satellite Control Software

Andreia Carniello
*
, Adriana Carniello

†
, Mauricio G. V. Ferreira

‡
, José Demisio S. da Silva

§

National Institute for Space Research, São José dos Campos, SP, 12227-010, Brazil

A very important issue in distributed systems is the management of load among system

nodes. Load balancing enables a better use of the system resource capabilities and a better

performance by allocating nodes that are more suitable for the execution of some tasks. This

work proposes a multi-agent load balancing architecture for distributed object applications

called MALBA which uses artificial neural networks and a set of policies to support the

process of migrating and replicating the application objects. MALBA architecture outlines a

decentralized and run-time balancing process that balances the load among nodes which

execute a distributed object application.

I. Introduction

HE availability of low-price microprocessors and the progress of the communication technology have increased

the interest in distributed systems. The main advantages of these systems are high performance, availability of

resources, and extensibility at a low cost. Taking into account these advantages, many organizations have adopted

distributed systems and the use of distributed object applications.

Distributed objects are independent programs that might be located at any node of a network and might be

accessed by remote clients via method invocation. Clients do not need to know where objects are located, i.e., if

objects are located at the client’s node or not
1
. Shortly, in a Distributed Object application the objects reside on

different machines and communicate remotely and transparently to one another to execute their functionalities. The

objects offer services and communicate by requesting services to one another. The requester is called the client and

the provider is the server. We propose a load balancing architecture to balance applications built under this

paradigm.

In a distributed system, service requests arrive randomly at the nodes. This might generate a non-balanced state

of the system that may lead to the existence of overloaded nodes and idle ones. This situation may harm services

response time by the application objects, as well as, the usage of system resources. Dynamic load balancing involves

the reallocation of the application objects to nodes after their initial assignments. This is done by migrating objects

from the overloaded nodes to other lightly loaded nodes to improve the overall system performance
2
.

The existence of a load balancing service avoids some nodes to get overloaded while others become idle. In this

paper, the main concern is how to distribute the application objects among nodes for decreasing the application

execution time and for optimizing the use of system resources.

Thus we propose a load balancing architecture called MALBA – Multi-Agent Load Balancing Architecture for

Distributed-Object Applications, which is formed by different agents working together to provide a balanced

solution for the system. Agents feel the environment and act on it by migrating objects from overloaded nodes to

idle nodes and also by replicating highly requested objects at less busy nodes in order to get a more balanced

distribution of objects and consequently balancing the system load.

Task migration could be either preemptive or nonpreemptive
8
. Preemptive task migration allows tasks in

execution to be stopped, transferred, and then resumed at another node. Non-preemptive migration allows only tasks

that have not yet started execution to be transferred. Preemptive transfer incurs more overhead than the

* Doctorate student, Applied Computing Postgraduate Program (CAP), Av. dos Astronautas 1758 Jd. Granja,

ancarnie@lac.inpe.br.

† Doctorate student, Applied Computing Postgraduate Program (CAP), Av. dos Astronautas 1758 Jd. Granja,

adcarnie@lac.inpe.br.

‡ Doctor Researcher, Satellite Control and Tracking Center (CRC), Av. dos Astronautas 1758 Jd. Granja,

mauricio@ccs.inpe.br.

§ Doctor Researcher, Applied Mathematics and Computing Associated Laboratory (LAC), Av. dos Astronautas

1758 Jd. Granja, demisio@lac.inpe.br.

T

SpaceOps 2008 Conference (Hosted and organized by ESA and EUMETSAT in association with AIAA) AIAA 2008-3530

Copyright © 2008 by Andreia Carniello. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

D
ow

nl
oa

de
d

by
 I

N
ST

 N
A

C
 P

E
SQ

U
IS

A
S

E
SP

A
C

IA
SI

 o
n

A
pr

il
20

, 2
01

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

00
8-

35
30

American Institute of Aeronautics and Astronautics

2

nonpreemptive counterpart. Hence, it should be used only if the performance gains outweigh the transfer costs. Our

approach employs non-preemptive migration.

The difference between replicating and migrating an object is that in replication the object is kept at its local

node and a copy of it is instantiated at a remote node whereas in migration the object is removed from its local node

and it is instantiated at a remote node.

The main focus of this work is the policies we propose for the load balancing process, which are performed by

the agents of MALBA architecture. An artificial neural network based agent classifies the system nodes in load

levels. An agent makes decision as to balance the system by statistically analyzing the load levels of nodes. The

selection of objects to migrate and the nodes to receive these objects is supported by migration policies which are

performed by an agent. For the replication of objects some policies are used to guide the selection of objects to be

replicated and the nodes that will receive the replica. An agent performs the replication of the objects and an agent

removes the replicas that are not in use anymore.

MALBA architecture follows a decentralized approach that means every node might take balancing decisions,

thus implying in a non-centralized balancing control. As each node has autonomy to do the balancing, if a failure

occurs at one node that does not put in risk the load balancing service.

This paper is organized as following: Section II introduces general features of MALBA architecture. Section III

describes the Time-based Load Balancing Service. Subsection A describes the load checking service, and in

Subsection B and C we present the object migration and replication policies, respectively. In Subsection D we

describe the load balancing execution service. Section IV introduces the Request-based Load Balancing Service and

in Section V some results are discussed. In Section VI we present some related works and we draw some

conclusions in Section VII.

II. MALBA Architecture

MALBA architecture applies two approaches to balance the system nodes: the Request-based Load Balancing

Service and the Time-based Load Balancing Service, both illustrated in Figure 1. The first is a load balancing

service which is activated when a request arrives at the system. When a client object requests a service to a server

object, the load balancing is activated to select the most appropriate node to execute the server. This selection is

done according to some policies that will be explained next in this paper. So, this approach worries at keeping the

system balanced at each server execution.

Whereas the Request-based approach activates the load balancing at every new request, the Time-based

approach activates the load balancing at random and it evaluates whether the system is balanced or not, and in case it

is not balanced some policies are applied to balance the system load. These policies will be explained next. So, this

approach aims at adjusting the system load from time to time.

Next we present both approaches in details, the Time-based and the Request-based one.

Figure 1. MALBA load balancing architecture.

III. Time-based Load Balancing Service

Figure 2 illustrates the Time-based Service which comprises four other services: the system load checking

service, the load balancing execution service and the services related to the policies for migrating and replicating the

application distributed objects.

D
ow

nl
oa

de
d

by
 I

N
ST

 N
A

C
 P

E
SQ

U
IS

A
S

E
SP

A
C

IA
SI

 o
n

A
pr

il
20

, 2
01

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

00
8-

35
30

American Institute of Aeronautics and Astronautics

3

In the following subsections we detail these services.

A. Load Checking Service

The load balancing is activated at random and every system node has autonomy to do so. The first step of the

balancing process is to perform the Load Checking Service which is responsible for classifying the nodes in load

levels and also for checking if there is a need to do the balancing. Two agents are in charge of performing this

service: the Load Classifier Neural Agent and the System Load Checker Agent.

Load Classifier Neural Agent – the Neural Agent is responsible for stating the load level of the system nodes and

it is present in all nodes. This agent collects two load indexes from a node: CPU usage and memory usage, and

classifies this node in one of the following levels – (level 1): strong idle; (level 2): idle; (level 3): normal load; (level

4): overload; and (level 5): strong overload. For instance, the set {3, 1, 5, 4, 2} represents the possible load levels of

a system with five nodes.

The Load Classifier Neural Agent uses an MLP neural network (Multiple Layer Perceptron) for classifying the

load level of the system nodes. Our neural network was trained in a supervisioned way by the backpropagation

algorithm
3
. Further details on our implementation is described in Section 3.

System Load Checker Agent – it has as its input the load level information generated by the Neural Agent. The

Load Checker Agent checks whether the system is load balanced or not. Just in case the system is not balanced, it

activates the balancing process.

First, the Load Checker Agent calculates the standard deviation () considering the load level of all the system

nodes, as follows:

1

)(
1

2

n

ncnc
n

i i
 (1)

where:

- nci represents the load level of node i (provided by the Load Classifier Neural Agent);

- nc represents the load level average of the n nodes of the system;

- n represents the amount of nodes in the system.

Once the Load Checker Agent has calculated the standard deviation (), it applies the function bal() which

defines whether the balancing process will be activated or not according to an activation threshold. Function bal()

is as follows:

otherwise

if
bal

0
4

1
)(

max

 (2)

Figure 2. Time-based load balancing service.

D
ow

nl
oa

de
d

by
 I

N
ST

 N
A

C
 P

E
SQ

U
IS

A
S

E
SP

A
C

IA
SI

 o
n

A
pr

il
20

, 2
01

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

00
8-

35
30

American Institute of Aeronautics and Astronautics

4

where:

- n represents the amount of nodes in the system;

- max represents the maximum value of the standard deviation for n nodes.

If the result of the standard deviation () is greater than ¼ of the standard deviation maximum value max , then

the load balancing process will be activated, otherwise it will not.

The standard deviation maximum value max is calculated considering all the nodes of the system (n nodes) and

the threshold value to activate the load balancing process represents ¼ of this value, i.e., max /4.

The activation threshold was defined empirically taking into account the fact that as closer to zero the result of

the standard deviation is, more balanced is the load of the overall system, and as the standard deviation gets far from

zero, more non-balanced the overall system is and, consequently, there might be a need to activate the load

balancing process.

B. Service of Object Migration Policies

Once the Load Checking Service has identified the need to activate the load balancing process, the distributed

application, running at that moment, will have its object reallocated to better balance the overall system load.

Objects located at overloaded nodes should be migrated to idle nodes. The Service of Object Migration Policies

is responsible for performing the choice of objects to migrate and the choice of nodes to receive these objects. These

two selection processes are performed by the Migration Object Selector Agent and by the Migration Node Selector

Agent, respectively.

Migration Object Selector Agent – The first action of the Object Selector Agent is to select the load dispatcher

node (Ndispatcher), i.e., the most overloaded node in the system:

 nincN i
i

dispatcher ,...,3,2,1}{maxarg (3)

where:

- nci represents the load level of node i (provided by the Load Classifier Neural Agent);

- n represents the amount of nodes in the system.

Once a load dispatcher node (Ndispatcher) has been selected, the Object Selector Agent selects among its objects the

ones which are not in use by the running application, i.e., the objects with no active connection, that is, objects with

null connection, which are candidate objects to migrate because an object can only be migrated if it is not executing

any of its services.

In the present discussion, C will denote the set of candidate objects to migrate and Ci will denote an object of this

set.The set of candidate objects to migrate (C) is determined by the Object Selector Agent as follows:

 niONConC i
i

,...,2,1})0({arg (4)

where:

 - n represents the amount of objects in the Ndispatcher node;

 - ONi represents the object i of Ndispatcher node;

 - Con({ONi}) represents the connection of object ONi.

Once the Object Selector Agent has identified the candidate migrating objects (C), the next step is to quantify,

for each candidate object, the following features:

- the size of the candidate object (in bytes);

- the amount of relations between the candidate object and the Ndispatcher node objects;

- the amount of relations between the candidate object and the objects remote to Ndispatcher node.

A relation between two objects occurs when one of the objects calls for a service provided by the other. If an

object (obj1) relates with n other objects, the amount of obj1 relations is n.

D
ow

nl
oa

de
d

by
 I

N
ST

 N
A

C
 P

E
SQ

U
IS

A
S

E
SP

A
C

IA
SI

 o
n

A
pr

il
20

, 2
01

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

00
8-

35
30

American Institute of Aeronautics and Astronautics

5

Among the candidate objects, the Object Selector Agent identifies an object that satisfies the criteria listed

below.

(i) the object which is the biggest in size (number of bytes);

(ii) the object with the least amount of relations with the Ndispatcher node objects;

(iii) the object which has the greatest amount of relations with the objects located remotely from the Ndispatcher

node.

The Object Selector Agent selects the migrating object as the one that satisfies the greater amount of the criteria

listed before.

(i)

The Object Selector Agent identifies, from candidate objects of set C, the object (denominated i
ob

) which has the

biggest size, as follows:

 niCTami i
i

ob ,...,2,1}){(maxarg (5)

where:

 n represents the amount of objects of set C;

 Tam{Ci} represents the size of object Ci.

(ii)

Among the candidate objects in set C, the Selector Agent identifies the object (denominated j
ob

) which has the

least amount of relations with the Ndispatcher node objects, as follows:

 niCRIj i
i

ob ,...,2,1}){(minarg (6)

where:

- n represents the amount of objects of set C;

- RI{Ci} represents the amount of object Ci relations with objects of set ON.

(iii)

The Object Selector Agent identifies, from candidate objects of set C, the object (denominated k
ob

) which has the

greatest amount of relations with the objects located remotely from Ndispatcher node, as follows:

 niCREk i
i

ob ,...,2,1}){(maxarg (7)

where:

- n represents the amount of objects of set C;

- RE{Ci} represents the amount of object Ci relations with objects remote to Ndispatcher node.

Once i
ob

, j
ob

, and k
ob

 have been defined, the Object Selector Agent creates a histogram for each object in the

Ndispatcher node representing the object frequency in set = {i
ob

, j
ob

, k
ob

}.

The set ON represents all the objects in Ndispatcher node and considering r ON, the histogram Hr is defined as

follows:

otherwise

rqif

qH

r

q

rr

0

)(1
1

)),((1
3

1

 (8)

D
ow

nl
oa

de
d

by
 I

N
ST

 N
A

C
 P

E
SQ

U
IS

A
S

E
SP

A
C

IA
SI

 o
n

A
pr

il
20

, 2
01

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

00
8-

35
30

American Institute of Aeronautics and Astronautics

6

The Object Selector Agent finally defines the object to migrate (Omigrate) as follows:

 ntHO t
t

migrate ,...,2,1})({maxarg (9)

where:

- n represents the amount of objects in Ndispatcher node.

Migration Node Selector Agent – Once the object to migrate (Omigrate) has been selected, the Node Selector Agent

chooses the most suitable node to receive this object.

The first step of the Node Selector Agent is to select the node which has the least load in the system, based on

the load level of nodes. In case there are nodes with the same least load level then a decision criterion is used to

select the node to receive the object Omigrate as the one with the greastest amount of relations with the object Omigrate.

C. Service of Object Replication Policies

According to Ferreira
4
, object replication benefits the load balancing of the overall system because it can relieve

the load of a node by replicating its highly requested object at another node, implying that new service requests will

be answered by the replicated object.

The Service of Object Replication Policies is responsible for leading the selection of the object to replicate and

the selection of the replica receiver node. These selections are performed by the Replication Object Selector Agent

and by the Replication Node Selector Agent, respectively. The former selects from the candidate objects (which are

the objects in the most overloaded node that have active connections, i.e., the objects in use at the moment) the one

which has the greatest amount of active connections to be the object to replicate. The node to receive this replica is

selected by the latter agent as the one with the least load level in the system or in case there are nodes with the same

least load level the one which has the greatest amount of active connections with the object to replicate.

D. Load Balancing Execution Service

The Load Balancing Execution Service is responsible for reconfiguring the distribution of objects of the

application in order to get a more load-balanced system. This service is formed by the Object Migrator Agent, the

Object Replicator Agent, and the Replica Remover Agent.

Object Migrator Agent – This agent is responsible for migrating objects from overloaded nodes to idle nodes.

This agent communicates with the agents of the Migration Policies Service in order to be aware of the object to

migrate and the load receiver node. Based on these perceptions, the Object Migrator Agent performs the object

migration.

Object Replicator Agent – This agent is responsible for replicating objects from overloaded nodes to idle nodes.

This agent communicates with the agents of the Replication Policies Service in order to be aware of the object to

replicate and the replica receiver node. Based on these perceptions, the Object Replicator Agent performs the object

replication. Once replication occurs, all the future requests to the replicated object will be answered by its replica,

because the replica has higher priority than the original object.

Replica Remover Agent – This agent is responsible for removing object replicas, in overloaded nodes, which are

no longer in use (connection = 0).

IV. Request-based Load Balancing Service

The main goal of the Request-based Load Balancing Service is decomposed according to the goal decomposition

diagram in Figure 3. The main goal “Keep the system load balanced when executing new requests” is decomposed

into sub-goals “Execute new requests in the server node when its load level is not classifications 4 and 5” or

“Execute new requests in the client node when its load level is not classifications 4 and 5” or “Execute new requests

in a selected system node”. The main goal is satisfied when one of the three sub-goals is satisfied. Thus, the goal

“Keep the system load balanced when executing new requests” is satisfied when: (1) the new request is executed in

the server node when its load level is not overloaded; or when (2) the new request is executed in the client node

D
ow

nl
oa

de
d

by
 I

N
ST

 N
A

C
 P

E
SQ

U
IS

A
S

E
SP

A
C

IA
SI

 o
n

A
pr

il
20

, 2
01

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

00
8-

35
30

American Institute of Aeronautics and Astronautics

7

when its load level is not overloaded; or when (3) the new request is executed in any other node of the system that is

not overloaded.

Goal 1 on its turn is satisfied when the arrival of the requests in the server node is monitored and when the load

of the server node is classified. Goal 2 is satisfied when the load of the client node is classified and when the server

object is migrated to the client node. Goal 3 is satisfied when a node that is not overloaded is selected to receive the

server object.

Figure 3. Goal decomposition diagram for the request-based load balancing service.

V. Tool and Results

A prototype tool is under development to realize the MALBA architecture project. We have currently

implemented MALBA Load Checking Service which is executed by the Load Classifier Neural Agent and the

System Load Checker Agent.

In order to implement the Neural Agent, we firstly practiced some knowledge engineering to associate CPU and

memory usages to the five load levels defined in Subsection A. Table 1 presents these associations.

The Load Classifier Neural Agent uses an MLP neural network (Multiple Layer Perceptron) which has been

trained in a supervised way by the error backpropagation algorithm
3
. The network architecture is formed of 02

entries, 37 neurons in the hidden layer and 03 neurons in the output layer, having as their activation function the

hyperbolic tangent and the sigmoid logistic, respectively.

The training set had 10201 inputs and in 30000 epochs the network achieved an error of 0.000008.

The Neural Agent outputs, i.e., the load level of system nodes, are the entries to the Load Checker Agent which

uses these values to statistically verify whether it is necessary to balance the system load or not. For further details

on the Load Checker Agent behaviour see Subsection A.

After training the Neural Agent and coding the Load Checker Agent behavior, tests were conducted to validate

MALBA architecture tool. Table 2 shows the specification of two test cases. The execution of these test cases

produced the expected results presented in Table 2.

Table 1. CPU and memory usages associated to our five load levels.

 D
ow

nl
oa

de
d

by
 I

N
ST

 N
A

C
 P

E
SQ

U
IS

A
S

E
SP

A
C

IA
SI

 o
n

A
pr

il
20

, 2
01

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

00
8-

35
30

American Institute of Aeronautics and Astronautics

8

In Test Case 01 execution, the Neural Agent output was the following load levels: 5, 2, 4. The standard deviation

of the system node load levels was 1.247219128924647 and the maximum standard deviation for this three-

node system was 1.8856180831641267. Thus, the balancing decision was to activate load balancing. In Test

Case 02, the Neural Agent output was 3, 4, 3, the standard deviation was 0.4714045207910317 and the

maximum standard deviation was 1.8856180831641267. Thus, the decision was not to activate load balancing.

A relevant issue is that MALBA architecture considers that the system nodes are homogeneous, i.e. all the nodes

are equivalent in their hardware and software architectures. This allows the application objects to be located at any

system node. Besides that, nodes are considered to be equivalent in their processing and storage capabilities.

VI. Related Works

Load balancing is a classical problem and there is an extensive literature on it.

Suri, T´oth and Zhou in Ref. 5 consider load balancing as a game. There is a set of clients, each of whom must

choose a server from a permissible set. Each client has a unit-length job and selfishly wants to minimize its own

latency (job completion time). This interaction was modeled by the authors as an atomic congestion game which is

part of game theory.

Nogueira, Yamin, Vargas and Geyer in Ref. 6 present a framework developed with the objective of assisting

designers of high performance distributed applications to construct, simulate, and understand clearer the impact

caused by the balancing decisions in the system general performance.

MALBA migration and replication policies consider communication costs related to local objects and also to

remote objects. The idea is to locate objects that communicate to each other, i.e., objects that call other object

services, together in the same node in the system to reduce the remote communication costs. In Ref. 7 these policies

are not defined and in Ref. 2 they are defined, however the authors consider just the communication costs among

local tasks.

In Ref. 8, a taxonomy of approaches to the distributed scheduling problem is presented in an attempt to provide a

common terminology and classification mechanism necessary in addressing this problem. MALBA architecture

belongs to the dynamic distributed classification described in Ref. 8, which consists of making balancing decisions

at run time and the work involved in making these decisions is physically distributed among the nodes. This

descentralized approach makes MALBA a safe load balancing service because there is not the existence of a unique

failure point in the system whereas non-distributed load balancing approaches
9, 7, 10

 might put load balancing in risk

if the central node fails.

VII. Conclusions

MALBA architecture has been designed to provide system load equilibrium by a better distribution of the objects

in a distributed application. MALBA load balancing service is performed in a decentralized and dynamical way,

redistributing the load among system nodes at execution time. This redistribution is based on a set of policies which

leads the object migration/replication process. These policies are guidelines to select objects to migrate/replicate and

also to select the recipient nodes of these objects.

In MALBA architecture, the load balancing is performed by means of agents that communicate to each other to

take balancing decisions. This multi-agent architecture uses artificial neural networks, by means of a neural agent, to

classify the load level of system nodes.

Table 2. Test cases executed for testing MALBA architecture Load Checking Service.

D
ow

nl
oa

de
d

by
 I

N
ST

 N
A

C
 P

E
SQ

U
IS

A
S

E
SP

A
C

IA
SI

 o
n

A
pr

il
20

, 2
01

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

00
8-

35
30

American Institute of Aeronautics and Astronautics

9

In order to validate MALBA architecture, we intend to apply the proposed ideas to a distributed object

application such as the Prototype of INPE (National Institute for Space Research) Satellite Control System.

Optimizing the use of INPE computational resources is a mean for the Control Satellite System to be improved to

support additional new satellites, operating at computational conditions that avoid overloads.

Acknowledgments

This work was financially supported by Coordination of Postgraduate Personnel Improvement (CAPES) from

the Brazilian Government.

References
1Purao, S., Jain, H. K., and Nazareth, D. L., “Effective Distribution of Object-Oriented Applications,” Communications of the

ACM, 41(8), 1998, pp. 100-108.
2El-Abd, A., and El-Bendary, M., “Neural-Based Selection and Location Policies for Dynamic Load Balancing in Distributed

Computing Systems,” Proceedings of the IASTED International Conference on Modeling and Simulation, 1998.
3Haykin, S., Neural Networks – A Comprehensive Foundation, Macmillan, New York, 1994.
4Ferreira, M. G. V., “A Dynamic and Flexible Architecture for Distributed Objects applied to Satellite Control Software,”

Doctorate Thesis in Applied Computing Postgraduate Program, INPE, São José dos Campos, Brazil, 2001.
5Suri, S., T´oth, C. D., and Zhou, Y., “Selfish Load Balancing and Atomic Congestion Games”, Algorithmica, Springer-

Verlag, New York, Vol 47 , No 1, 2007, pp. 79 – 96.
6Nogueira, M. L. B., Yamin, A. C., Vargas, P. K., Geyer, C. F. R., “Load Balancing in Distributed Systems: An Evaluation

Environment Proposal”, XXVII Latin-American Conference on Informatics (CLEI 2001), Mérida, 2001.
7Yang, J., Jizhou, S., and Zunce, W., “Load Balance in a New Group Communication System for the WAN,” CCECE –

CCGEI, IEEE, Montreal, 2003.
8Casavant, T. L., Kuhl, J. G., “A Taxonomy of Scheduling in General-Purpose Distributed Computing Systems”, IEEE

Transactions on Software Engeneering, Vol 14, No 2, 1988, pp. 141-154.
9Schlemer, E., “A Scheduling Solution for DPC++,” Master Dissertation in Computer Science, UFRGS, Porto Alegre-RS,

Brazil, 2002.
10Alvim, R., Grossmann, F., and Dantas, M., “Implementation of a Distributed Architecture with High Availability for

Linux,” Electronic Journal of Scientific Initiation, Brazilian Computer Society, Vol. 2, No. 3, 2002.

D
ow

nl
oa

de
d

by
 I

N
ST

 N
A

C
 P

E
SQ

U
IS

A
S

E
SP

A
C

IA
SI

 o
n

A
pr

il
20

, 2
01

5
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

00
8-

35
30

