

Indexing Vague Regions in Spatial Data Warehouses

Thiago Luís Lopes Siqueira1,2, João Celso Santos de Oliveira1, Valéria Cesário Times3
Cristina Dutra de Aguiar Ciferri4, Ricardo Rodrigues Ciferri1

1 Department of Computer Science, Federal University of São Carlos, UFSCar,
13.565-905, São Carlos, SP, Brazil

2 São Paulo Federal Institute of Education, Science and Technology, IFSP,
13.565-905, São Carlos, SP, Brazil.

3 Informatics Center, Federal University of Pernambuco, UFPE,
50.670-901, Recife, PE, Brazil

4Department of Computer Science, University of São Paulo, USP,
13.560-970, São Carlos, SP, Brazil

prof.thiago@ifsp.edu.br, joaocelso@comp.ufscar.br, vct@cin.ufpe.br
cdac@icmc.usp.br, ricardo@dc.ufscar.br

Abstract. A vague spatial data warehouse allows multidimensional queries with
spatial predicates to support the analysis of business scores related to vague
spatial data, addressing real world phenomena characterized by inexact
locations or indeterminate boundaries. However, vague spatial data are usually
represented and stored as multiple geometries and impair the query processing
performance. In this paper, we introduce an index called VSB-index to improve
the query processing performance in vague spatial data warehouses, focusing
on range queries and vague regions. We also conduct an experimental
evaluation demonstrating that our VSB-index provided remarkable performance
gains up to 97% over existing solutions.

1. Introduction
Decision-making support has gained the attention of researchers of Geographic
Information System (GIS), Data Warehouse (DW) and Online Analytical Processing
(OLAP). Fast, flexible, and multidimensional ways for spatial data analysis are provided
by Spatial OLAP tools that query a Spatial Data Warehouse (SDW), which is a subject-
oriented, integrated, time-variant, voluminous, non-volatile and multidimensional database
that mainly stores crisp spatial data as vector (e.g. political boundaries) and their
descriptive attributes (conventional data) [Bimonte et al. 2010]. A fact denotes the scores
of business activities through numeric measures or spatial measures, while dimensions
hold conventional attributes and spatial attributes that contextualize values of measures.
Usually, spatial range queries concerning ad hoc spatial query windows select specific
spatial objects stored in the SDW, e.g. intersection range query (IRQ) [Siqueira et al.
2012a]. The performance of query processing is a critical issue in SDW and motivates the
design of indices to reduce the elapsed time to join huge tables, process spatial predicates
and aggregate voluminous data [Papadias et al. 2001; Siqueira et al. 2012a].

 Mainly, SDWs store crisp spatial data. On the other hand, several real world
phenomena are affected by spatial vagueness, which is one kind of spatial data

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

158

imperfection concerning the difficulty of distinguishing an object shape from its
neighborhood. As a result, it is not possible to be sure if the parts of a spatial object belong
completely or partially to it or not. Exact models based on objects represent spatial
vagueness reusing well-known crisp spatial data models and extending the theory of
spatial data types and spatial predicates [Pauly and Schneider 2010].

 A vague region r has a known extent and a broad boundary comprising a two-
dimensional zone surrounding the known extent, instead of a one-dimensional line with
minimal thickness. According to Pauly and Schneider (2010), r is a pair of crisp regions:
the kernel and the conjecture. The kernel represents the known extent and is the
determinate part of r, while the conjecture represents the broad boundary and is the vague
part of r. The interior of the kernel and the interior of the conjecture are disjoint. If p is a
point and belongs to the kernel, then it certainly belongs to r. However, if p belongs to the
conjecture, then p possibly belongs to r. If p does not belong to the kernel and neither to
the conjecture, then p does not belong to r.

 Although vague SDWs store both vague spatial data and crisp spatial data, and
allow multidimensional and spatial analysis of business scores regarding spatial
vagueness, the design and use of SDWs supporting vague spatial data, i.e. vague SDWs,
are still in infancy [Siqueira et al. 2012b; Edoh-Alove et al. 2013]. Furthermore, little
attention has been devoted to the experimental evaluation of query processing
performance in vague SDWs and to the investigation of the cost to process spatial
predicates against vague spatial data represented as multiple geometries. Such
investigation could aid designers to improve the performance of their systems.

 Motivated by the challenge of improving the query processing performance in
vague SDWs, in this paper, we provide the following contributions: (i) an experimental
evaluation of indices implemented by DBMSs and developed for SDWs to verify if they
offer a reasonable query processing performance in vague SDW; (ii) a progressive
approximation called MIP, which drastically reduces the cost of the spatial predicate
resolution; and (iii) the proposal of an index called Vague Spatial Bitmap Index (VSB-
index) to efficiently process multidimensional queries extended with spatial predicates
concerning vague regions in SDWs.

 This paper is organized as follows. Section 2 summarizes a case study, Section 3
surveys related work, Section 4 reports a performance evaluation of DBMS and Indices for
SDW, Section 5 describes the VSB-index, Section 6 reports the experimental evaluation
of the VSB-index and Section 7 concludes the paper.

2. Case Study: Greening
The following case study of a real problem in agriculture increases the motivation of this
work. Greening is a serious disease that infects citrus and impairs the industry. It is caused
by a bacterium transmitted by an insect. As there is not a cure so far, its control is done by
visual inspection and immediate eradication of the infected plant by the roots. Temporal
and spatial patterns of distribution of greening in the field at different scales, as plots and
cities, are crucial to reduce the rate of failures in visual inspections [Silva et al. 2011].
Every area infected by greening is a vague region with broad boundaries as shown in
Figure 1a. The kernel is the extent where plants were infected, while the conjecture is the
broad boundary where the insect possibly transmitted the bacterium to plants.

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

159

 Therefore, the vague SDW depicted in Figure 1b was built according to Siqueira et
al. (2012b). GreeningInfection is a fact table referencing dimension tables and holding the
numeric measure of eradicated plants. Inspector and Date are conventional dimension
tables. Plot is a crisp spatial dimension table with the crisp spatial attribute plot_geo of
type polygon. InfectedArea is a vague spatial measure pushed in a vague spatial dimension
table with the vague spatial attribute infectedarea_vgeo of type multipolygon. Areas
certainly infected are fetched as their kernels intersect the spatial query window w, e.g. a3
and a4 in Figure 1a. More coarsely, areas possibly infected are fetched as their conjectures
intersect w, e.g. a1, a2, a3 and a4 in Figure 1a. These queries are more relevant to aid
reducing failures in visual inspections than queries specified by exact models, e.g. Pauly
and Schneider (2010), which compare a vague region to other vague regions of the dataset.

How many plants were eradicated by team of inspectors by year in areas

[certainly|possibly] infected that intersect a given rectangle w?
(a) Vague SDW schema (b) Vague spatial data distribution

Figure 1. A vague SDW on greening infection

3. Related Work
Currently, spatial predicates are solved in vague SDWs using indices of DBMSs, which
are suitable for crisp spatial data and use the MBR as conservative approximation, e.g. R-
tree [Guttman 1984] and GiST [Aoki 1997]. The filter step of the spatial predicate
resolution uses strictly one conservative approximation: the MBR. Differently from our
VSB-index, they do not perform a multistep spatial predicate resolution [Brinkhoff et al.
1993], i.e. they do not use a progressive approximation in addition to the MBR in order to
identify answers already in the filter step to reduce the cost of the refinement step.

 A bitmap join index on the attribute C of a dimension table indicates the set of
rows in the fact table to be joined with a certain value of C [O’Neil and Graefe 1995].
Although the bitmap join index avoids joining huge tables in DWs, it cannot solve spatial
predicates. In SDWs, the aR-tree [Papadias et al. 2001], the SB-index and the HSB-index
[Siqueira 2012b] are capable to process spatial predicates, conventional predicates,
aggregation and sorting. They use a single conservative approximation on crisp spatial
data: the MBR. As a result, they produce identical sets of candidates to be processed in the
refinement step. The aR-tree and the HSB-index have hierarchical data structures and a
tree-based search in the filter step (similar to the R-tree’s), while the SB-index has a
sequential data structure and a sequential search in the filter step (similar to our VSB-
index’). Conventional predicates, aggregation and sorting are processed by the aR-tree
manipulating multidimensional arrays, while the SB-index, the HSB-index and our VSB-
index reuse bitmap join indices to process them.

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

160

 Some indices for vague spatial data focus on probability density functions and field
data [Tao et al. 2005; Zinn et al. 2007]. On the other hand, the VSB-index addresses
vector data. The vague R-tree is an index for vague regions based on the R-tree [Petry et
al. 2007]. Its intermediate nodes maintain a pair of entries per cluster of vague regions.
Entry O holds a MBR circumscribing the MBRs of the clustered vague regions, while
entry I holds a MBR circumscribing the MBRs of kernels of the clustered vague regions.
Progressive approximations were not addressed and only algorithms for point queries were
designed, differently from our VSB-index that uses progressive approximations and
tackles range queries. Besides, the vague R-tree was not assessed through an experimental
evaluation, differently from the VSB-index.

4. Performance Evaluation of DBMS and Indices for SDW
In this section we conduct an experimental evaluation to demonstrate that indices
implemented in DBMSs and indices for SDW are not suitable to manipulate vague
regions. Section 4.1 addresses the experimental setup and Section 4.2 describes results.

4.1 Experimental Setup

Regarding the dataset, we processed real polygons of the rural census of the Brazilian
Institute of Geography and Statistics to create the vague SDW shown in Figure 1b with
302,357 multipolygons in the attribute infectedarea_vgeo. The kernel was a negative
buffer on the real polygon, while the conjecture was the convex hull of the real polygon
minus the real polygon. The data generator of the Star Schema Benchmark produced
conventional data for the other tables with scale factor 10 (60 million facts).

 The workload was based on the query shown in Figure 2 (adapted from the Star
Schema Benchmark) that assesses IRQ as spatial predicate, testing the rectangular ad
hoc spatial query window w against a high cardinality attribute (e.g. infectedarea_vgeo).
We performed 10 consecutive queries using disjoint spatial query windows, flushing the
system cache between them, and gathered the average elapsed time. Given a spatial
attribute of cardinality c, and a spatial query window w that retrieves n objects, the
selectivity was n ÷ c. We used the following selectivity values for the spatial predicate:
0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03 and 0.04.
We assume that a user of SOLAP tool would hardly select more than 12,000 vague
regions to be retrieved and displayed. Time reduction measured how much a
configuration was more efficient than another. Configurations are described as follows.

 Complying with the logical design methods of Siqueira et al. (2012b),
configuration DBMS1 assessed the DBMS processing the query transcribed in Figure 2
with TABLE=InfectedArea and ATTRIBUTE=infectedarea_vgeo over the schema
shown in Figure 1b. A GiST index was built on infectedarea_vgeo to aid the processing
of the spatial predicate on multiple geometries (multipolygons).

 The SB-index and the aR-tree were evaluated due to their efficiency in SDWs.
They were implemented in C/C++ and the disk page size was set to 8 KB. The filter step
comprised index scan, while the refinement step accessed multipolygons of
infectedarea_vgeo. The SB-index built bitmap join indices on attributes team, year,
infectedarea_pk and eradicatedtrees using FastBit (https://sdm.lbl.gov/fastbit/), while

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

161

the aR-tree built a 1,0007302,357 3-dimensional array based on the cardinalities of
team, year, infectedarea_pk, respectively, to store values of the measure eradicatedtrees.

 In contrast to the logical design methods of Siqueira et al. (2012b), we created
configuration DBMS2 to assess the DBMS using a schema similar to that shown in
Figure 1b, but replacing the table InfectedArea by table InfectedArea2, whose attributes
were infectedarea_pk, infectedarea_ker_geo of type polygon storing the kernel of the
vague region and infectedarea_outb_geo of type polygon storing the outer boundary of
the conjecture of the vague region. Note that the outer boundary of the conjecture
encompasses the vague region. The query transcribed in Figure 2 had the parameters set
to TABLE=InfectedArea2 and ATTRIBUTE=infectedarea_outb_geo. GiST indices were
built on infectedarea_ker_geo and infectedarea_outb_geo to aid processing the spatial
predicate on simple polygons instead of multiple polygons (DBMS1).

 The platform was a computer with a 3.2 GHz Pentium D processor, 8 GB of main
memory, a 7200 RPM SATA 320 GB hard disk with 8 MB of cache, Linux CentOS 6,
PostgreSQL 9.2 and PostGIS 2.0.1.

SELECT team, year, SUM(eradicatedtrees) FROM Inspector, Date, GreeningInfection, TABLE
WHERE inspkey=inspector_fk AND datekey=date_fk AND infectedarea_fk=infectedarea_pk
AND team='XY' AND INTERSECTS(ATTRIBUTE,w)
GROUP BY team, year ORDER BY team, year

Figure 2. Querying the vague SDW shown in Figure 1b

4.2 Results

Figure 3a reports the elapsed time to process queries using the configurations DBMS1,
DBMS2 and SB-index previously described. Clearly, as higher the selectivity value was,
greater was the time spent to process queries in all configurations. Furthermore, the
separation of the vague spatial attribute of type multipolygon in two attributes of type
polygon benefited the query processing performance, since DBMS2 spent less time than
DBMS1 to process queries. Such performance finding opposes the logical design
methods stated by Siqueira et al. (2012b) and indicates that designers should separate
vague regions in a vague SDW stored in the DBMS as we have done in Section 4.1.

 However, both DBMS1 and DBMS2 had prohibitive query response times and
indicated the necessity of using indices to provide a better performance. The aR-tree
greatly overcame the other configurations for selectivity values less than 0.01, while the
SB-index overcame the other configurations for higher selectivity values. Yet, both
indices spent prohibitive times to process queries with increasing values of selectivity.

 To identify the bottleneck in the query processing performance of the indices for
SDW, we measured the time spent on each phase of its query processing algorithm. The
fraction to resolve the spatial predicate is reported in Figure 3b. We concluded that the
resolution of spatial predicates against vague regions was a costly step to process
queries in vague SDWs. For the SB-index, such cost augmented as the selectivity of the
spatial predicate increased. For instance, it was less than 30% for the selectivity 0.001
and greater than 70% for the selectivity 0.04. Clearly, the SB-index does not offer
mechanisms to reduce the cost of the spatial predicate resolution against vague regions.
Conversely, such cost decreased in the aR-tree for increasing values of selectivity since
the manipulation of the multidimensional array imposed a larger overhead.

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

162

— DBMS1 — DBMS2 — SB-index — aR-tree

(a) Total elapsed time (b) Fraction of the spatial predicate

Figure 3. Results of DBMS and Indices for SDW

5. The Vague Spatial Bitmap Index
To propose the VSB-index, some design choices were made as follows, based on the
previous discussions. We prioritized a multistep resolution of the spatial predicate and
then created a specific progressive approximation to be used in the filter step and reduce
the cost of the refinement step. We have chosen range queries as the spatial predicates to
be supported by the VSB-index, initially, to satisfy the case study requirements. Since
queries issued on a vague SDW process not only spatial predicates, but also conventional
predicates, aggregation and sorting, the latter three are processed by bitmap join indices
that are commonly used in DWs. This section details the proposal of the VSB-index and is
organized as follows. Section 4.1 introduces the progressive approximation MIP. Section
4.2 defines the data structure of the VSB-index. Section 4.3 addresses the building
operation of the VSB-index. Section 4.4 focuses on the VSB-index query processing.

5.1. Maximum Area Inscribed Polygon

The Maximum Area Inscribed Polygon (MIP) is a progressive approximation consisting of
a polygon with x vertices. The number of vertices is the suffix, e.g. MIP5 for x=5. We
define MIP to be applied specially on vague regions, to improve the resolution of spatial
predicates in query processing. Figure 4a shows a vague region, its conjecture (light
green), its kernel (dark green) and a MIP5 on its kernel (red contour). The outer
boundary of the conjecture encompasses the vague region and therefore a MIP5 on the
kernel is also a subset of the outer boundary of the conjecture, as shown in Figure 4b.

(a) MIP5 on the kernel (b) MBR on outer boundary

and MIP5 on kernel
(c) IRQ on OK

Figure 4. Vague region, approximations and query

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

163

5.2. Data Structure

The VSB-index for vague regions is an array whose entries have the type vrbitvector
(vague region bit-vector), comprising: (i) one key value pk; (ii) one mandatory
conservative approximation O on the outer boundary of the conjecture; (iii) one optional
progressive approximation O on the outer boundary of the conjecture; (iv) one optional
conservative approximation K on the kernel; (v) one optional progressive approximation
K on the kernel; and (vi) a pointer ptr to the bitvector of the key value in a bitmap join
index. The nomenclature considers the conservative approximation  as a superset of the
vague region, and the progressive approximation  as a subset of the vague region. All
feasible configurations for the VSB-index are listed in Table 1. The conservative
approximation O is mandatory to enable the query processing since the outer boundary
of the conjecture encompasses the vague region. Except O , the other approximations
are optional and allow flexible data structures and query processing algorithms (Section
5.4). We encourage using MIP as progressive approximations O and K.

5.3. Building Operation

The building operation of the VSB-index issues a SQL query selecting the primary key
and the spatial attribute from the spatial dimension table and sorting the results in
ascending order based on the primary key. For each row retrieved, the approximations of
the vague region are calculated and copied together with the key value into one entry of an
array in the main memory. When the array becomes full, it is written to a disk page of the
index file. After processing all rows and writing all disk pages, a bitmap join index is built
on primary key values. Since the entries of the VSB-index are sorted by the primary key
values, VSB-index[i] refers to the bitvector B[i] of the bitmap join index.

 The size of a VSB-index entry, in bytes, is s = sizeof(int) + sizeof(O) + sizeof(O)
+ sizeof(K) + sizeof(K). Each disk page with l bytes maintains L = l DIV s index entries.
Some unused bytes U = c MOD L, where c is the cardinality of the indexed vague spatial
attribute, are left between different disk pages to avoid fragmented entries and prevent two
disk accesses to obtain a single entry. There is also a header disk page to store metadata.
Then, A = 1 + c DIV L + y disk pages are required to store the VSB-index, where y=0, if c
MOD L = 0; and y=1, otherwise. Besides, A disk accesses are required to build the index
file. Table 1 exemplifies values of s, L and A for MIP5, l=8192 bytes and c=302,357.

Table 1. Index entry sizes in bytes (s), number of entries per disk page (L) and
number of disk pages used to store the index file (A).

 OOKK OOK OOK OO OKK OK OK O

s 228 148 196 116 148 68 116 36

L 35 55 41 70 55 120 70 227

A 8640 5499 7376 4321 5499 2521 4321 1333

5.4. Query Processing

The range queries supported by the VSB-index are the following. Let w be an iso-oriented
rectangle called ad hoc spatial query window and S be a set of vague regions. An
IRQposs(w,S) concerns an intersection that is possibly true and retrieves vague regions in S
whose outer boundary of the conjecture intersects w. Conversely, an IRQcert(w,S) concerns

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

164

an intersection that is certainly true and retrieves vague regions in S whose kernel
intersects w. CRQposs and CRQcert are defined analogously for the relationship of
containment. ERQposs and ERQcert are defined analogously for enclosure (“inside of”).

 The VSB-index query processing firstly performs a filter step as a sequential scan
on the index file which requires A disk accesses (Section 5.3). The functions that execute
such filter step are function f1 detailed in Algorithm 1 and function f2 detailed in
Algorithm 2. They produce candidates and answers of the spatial predicate and store them
in their proper sets in the main memory, i.e. setCandidates and setAnswers, respectively.

 Function f1 performs a sequential scan over the index file (lines 2-7), which
retrieves each disk page (line 3) and temporarily stores it in the main memory (line 4).
Function get obtains the conservative approximation of every entry transferred to main
memory (line 6). Such conservative approximation is O or K, depending on the
parameter passed, and is tested against the ad hoc spatial query window (line 6). If the
spatial relationship is satisfied, the entry’s primary key value is appended to a set (line
7). Finally, the index file is closed (line 8). The aforementioned set might be the set of
candidates or the set of answers, depending on the parameter passed.

 To identify answers already in the filter step, function f2 performs a sequential
scan that firstly tests the conservative approximation and secondly tests the progressive
approximation. For each entry (lines 5-10), if the spatial relationship is satisfied for both
the conservative and progressive approximations, the entry is considered an answer and its
primary key value is stored in the set of answers (lines 6-8). However, if only the
conservative approximation satisfies the spatial relationship, the entry is considered a
candidate and its primary key value is stored in the set of candidates (line 10). According
to the calls, f2 is particularly useful for IRQposs when O and O are available, and for
IRQcert when K and K are available. Also, K can be used to fetch results when querying
IRQposs, as well as O can be used to indicate candidates when querying IRQcert.

Algorithm 1: f1(R, w, conservative, set, idx, L)

Input: parameters described in Table 2

Declarations: page, array

Output: a set of candidates or a set of answers of
the spatial predicate

1 open (idx)

2 while not (eof(idx)) do

3 read (idx, page)

4 copy (page, array)

5 for i ← 0 to L do

6 if R(w, get(array[i],conservative))

7 append(set, array[i].pk)

8 close(idx)

Algorithm 2: f2(R, w, conservative, progressive,
setCandidates, setAnswers, idx, L)

Input: parameters described in Table 2

Declarations: page, array

Output: the set of candidates and the set of
answers of the spatial predicate

1 open (idx)

2 while not (eof(idx)) do

3 read (idx, page)

4 copy (page, array)

5 for i ← 0 to L do

6 if R(w, get(array[i],conservative))

7 if R(w, get(array[i],progressive))

8 append(setAnswers, array[i].pk)

9 else

10 append(setCandidates, array[i].pk)

11 close(idx)

 The filter step is a call to an adequate function based on a decision regarding the
spatial predicate to evaluate and which approximations are available among O, O, K

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

165

and K. There are a total of 48 situations, but in this paper we focus on IRQcert and IRQposs
which are solved by f1 or f2. The 16 calls to process IRQcert and IRQposs are listed in Table
3. For instance, f2 is called to process both IRQcert and IRQposs for OK and adds the
vague region shown in Figure 4c to the set of answers already in the filter step.

 After the filter step, the refinement step is performed using the DBMS and its
results are recorded in setAnswers. Further, a key-matching produces a string with a
conventional predicate based on primary key values of those vague regions that satisfy the
spatial predicate. Such string replaces the spatial predicate of the query submitted to the
vague SDW. For instance, “INTERSECTS…” in Figure 2 is replaced by “(infectedarea_
pk=10 OR infectedarea_pk=15)”, where 10 and 15 are key values of vague regions that
satisfy the spatial predicate. Finally, the rewritten query is solved by efficient bitmap join
indices that avoid joining huge SDW tables and provide the query answer.

Table 2. Parameters of Algorithms 1 and 2.

Parameter Description
conservative Indicator for O or K
conservativeK Indicator for K

conservativeO Indicator for O
idx The VSB-index file
L The maximum number of index entries that a disk page can hold

progressive Indicator for O or K
progressiveK Indicator for K

progressiveO Indicator for O
pk The primary key attribute of table
R The spatial relationship (intersection, containment or enclosure)

setAnswers The set of answers of the spatial predicate
setCandidates The set of candidates (possible answers) of the spatial predicate

table The vague spatial dimension table queried
vsa The vague spatial attribute of table
w The ad hoc spatial query window

Table 3. Calls made to functions f1 and f2 by configuration of the VSB-index.
Configuration Function calls of IRQcert and IRQposs (R=intersection)

OOKK IRQcert: f2 (R, w, conservativeK, progressiveK, setCandidates, setAnswers, idx, L)
IRQposs: f2 (R, w, conservativeO, progressiveO, setCandidates, setAnswers, idx, L)

OOK IRQcert: f1(R, w, conservativeK, setCandidates, idx, L)
IRQposs: f2 (R, w, conservativeO, progressiveO, setCandidates, setAnswers, idx, L)

OOK IRQcert: f2 (R, w, conservativeO, progressiveK, setCandidates, setAnswers, idx, L)
IRQposs: f2 (R, w, conservativeO, progressiveO, setCandidates, setAnswers, idx, L)

OO IRQcert: f1(R, w, conservativeO, setCandidates, idx, L)
IRQposs: f2 (R, w, conservativeO, progressiveO, setCandidates, setAnswers, idx, L)

OKK IRQcert: f2 (R, w, conservativeK, progressiveK, setCandidates, setAnswers, idx, L)
IRQposs: f2 (R, w, conservativeO, progressiveK, setCandidates, setAnswers, idx, L)

OK IRQcert: f1(R, w, conservativeK, setCandidates, idx, L)
IRQposs: f1(R, w, conservativeO, setCandidates, idx, L)

OK IRQcert: f2 (R, w, conservativeO, progressiveK, setCandidates, setAnswers, idx, L)
IRQposs: f2 (R, w, conservativeO, progressiveK, setCandidates, setAnswers, idx, L)

O IRQcert: f1(R, w, conservativeO, setCandidates, idx, L)
IRQposs: f1(R, w, conservativeO, setCandidates, idx, L)

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

166

6. Experimental Evaluation of the VSB-index
This section reports the remarkable performance of the VSB-index. The experimental
setup is described in Section 5.1, the building operation and the storage requirements are
discussed in Section 5.2, and IRQposs and IRQcert are tackled in Section 5.3.

6.1 Experimental Setup

We extended the experimental setup described in Section 4.1 as follows. Five
configurations of the VSB-index were reported because their results were more notable:
O , OK , OK , OO and OOKK. We used MBR as conservative approximation
and MIP5 as progressive approximation – 5 vertices by analogy with 5C from Brinkhoff et
al. (1993). The VSB-index was implemented in C/C++ and the disk page size was set to 8
KB. MIP5 was built using the CGAL, Computational Geometry Algorithms Library
(http://www.cgal.org) version 4.0.2 and the method CGAL::maximum_area_inscribed
_k_gon_2. The method uses monotone matrix search [Aggarwal et al. 1987] and has a
worst case running time of O(x×n + n×log n), where n is the number of vertices provided
as input to build the MIP and x is the number of vertices of the output.

6.2 Time spent and storage requirements to build

Figure 5a reports the elapsed time to build the sequential file of the VSB-index for each
configuration and separates: (i) the time spent to extract the boundary of the kernel or
the outer boundary of the conjecture; and (ii) the time spent to build the approximations
and store them in disk. The configurations that hold only MBRs were built in shorter
time, i.e. O and OK. Also, the overhead to build the MIP5 on the outer boundary of
the conjecture was significantly lower than the overhead to build the MIP5 on the
kernel. Then, the time spent to build the configuration OO was shorter than to build
the configurations OK and OOKK. In fact, the boundary of the kernel is a
negative buffer and has more vertices than the outer boundary of the conjecture that is a
convex hull (Section 4.1). Therefore, the high number of vertices of the kernel impaired
the calculation of the MIP5 for configurations OK and OOKK. The storage
requirements for the VSB-index are detailed in Figure 5b. As expected, configurations
that hold more approximations also require more storage space (Table 1). Considering
that bitmap join indices occupied 4GB (Section 4.1), then the VSB-index’ sequential
file added at least 0.25% (O) up to at most 1.7% (OOKK) to storage requirements.

■ kernel ■ conjecture  approximations

(a) Time spent (b) Storage requirements

Figure 5. Results to build the VSB-index.

 O OK OK OO OOKK

 O OK OK OO OOKK

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

167

6.3 IRQposs and IRQcert
Instead of examining the time to process a complete query in the vague SDW (Section
3), this section focuses the resolution of the spatial predicate, motivated by the results
discussed in Section 4.2. As SB-index’ and aR-tree’s performances were similar to the
results achieved by the configuration O, we reported them together. A very low
selectivity value of 0.0001 was included. Figure 6a shows the results of IRQposs. The
configuration OO outperformed the other configurations because since MIP5 allows
identifying answers of the spatial predicate in the filter step. Although the configuration
OOKK produces the same set of candidates, given by the same call to function f2,
more disk accesses are performed in the filter step due to a larger index entry size in
bytes required to store four approximations (Table 1). Even though the query assessed
the outer boundary of the conjecture, the progressive approximation MIP5 on the kernel
of OK provided a shorter query response time than configuration OOKK that has
the MIP5 on the outer boundary of the conjecture. Both configurations O and OK do
not maintain a progressive approximation and therefore were severely impaired because
they did not identify answers in the filter step and had a costly refinement step.
Although the IRQ was issued over the outer boundary of the conjecture, a progressive
approximation on the kernel improved the query processing performance, as the
configuration OK provided a time reduction of at least 23% and at most 97% over
SB-index and aR-tree (O), for selectivity values 0.0001 and 0.04, respectively.

— O - - - OK     OK — OO -  -  OO KK

(a) IRQposs (b) IRQcert

Figure 6. Results for IRQposs and IRQcert.

 As for the VSB-index, Figure 6b shows the results of IRQcert. Curves for
configurations O, OK and OO overlap each other. These configurations do not hold
a MIP5 on the kernel and therefore had worst performances. As for the configuration
OO, the progressive approximation the outer boundary of the conjecture could not
improve the query processing performance of IRQcert, since it is not possible to obtain
answers by calling the function f1. On the other hand, configurations OOKK and
OK provided shorter query response times because they hold a MIP5 on the kernel and
therefore can identify answers in the filter step. Again, the configuration OOKK was
impaired by its larger entry size that lead to more disk accesses to perform the filter step
than the configuration OK. The configuration OK provided a time reduction of at least
36% and at most 97% over SB-index and aR-tree (O), for selectivity values 0.0001 and
0.04, respectively. Notably, configuration OK efficiently processed IRQcert and IRQposs.

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

168

7. Conclusions and Future Work
In this paper, we identified the lack of an index for vague SDW and the bottleneck to
process vague spatial data using indices designed for crisp SDW. We also have gone one
step forward and introduced the VSB-index to provide efficient processing of
multidimensional queries extended with range queries against vague regions in vague
SDWs. The VSB-index has a flexible data structure that enables the use of multiple
approximations such that its query processing algorithm fits according to them. We also
presented the progressive approximation MIP used by the VSB-index to reduce the cost of
the refinement step in the spatial predicate resolution. An experimental evaluation
corroborated the efficiency of the VSB-index that had remarkable performance gains up to
97% over existing solutions. Also, a study case was described to reinforce the feasibility of
using our VSB-index in real applications. We are currently evaluating containment range
queries and enclosure range queries. As future work, we intend to extend the VSB-index
to support nearest neighbor queries and spatial joins, to index other data types as vague
points and vague lines, and to enable SOLAP operations as roll-up and drill-down.
Acknowledgements. This work has been supported by FAPESP, CNPq, CAPES, INEP and
FINEP. The 2nd author thanks PIBIC/CNPq/UFSCar for the undergraduate scholarship.

References
Aggarwal, A., Klawe, M. M., Moran, S., Shor, P. W., Wilber, R. 1987. Geometric applications of a matrix-

searching algorithm. Algorithmica, 2, 195-208
Aoki, P.M. 1997. Generalizing "Search" in Generalized Search Trees. In ICDE, 380-389
Bimonte, S., Tchounikine, A., Miquel, M., Pinet, F. 2010. When Spatial Analysis Meets OLAP:

Multidimensional Model and Operators. IJDWM, 6, 4, 33-60
Brinkhoff, T., Kriegel, H. P., Schneider, R. 1993. Comparison of Approximations of Complex Objects Used for

Approximation-based Query Processing in Spatial Database Systems. In ICDE, 40-49
Edoh-Alove, E., Bimonte, S. Pinet, F., Bédard, Y. 2013. Exploiting Spatial Vagueness in Spatial OLAP:

Towards a New Hybrid Risk-Aware Design Approach. In AGILE, 4p.
Guttman, A. 1984. R-Trees: A Dynamic Index Structure for Spatial Searching. ACM SIGMOD Record, 14, 2,

47-57
O'Neil, P., Graefe, G. 1995. Multi-Table Joins Through Bitmapped Join Indices. ACM SIGMOD Record, 24, 3,

8-11
Papadias, D., Kalnis, P., Zhang, J., Tao, Y. 2001. Efficient OLAP Operations in Spatial Data Warehouses. In

SSTD, 443-459
Pauly, A., Schneider, M. 2010. VASA: An algebra for vague spatial data in databases. Inf. Syst., 35, 1, 111-138
Petry, F., Ladner, R., Somodevilla, M. 2007. Indexing Implementation for Vague Spatial Regions with R-trees

and Grid Files. In: A. Morris, S. Kokhan, Geographic Uncertainty in Environmental Security, 187-199
Siqueira, T. L. L., Ciferri, C. D. A., Times, V. C., Ciferri, R. R. 2012a. The SB-index and the HSB-Index:

efficient indices for spatial data warehouses. Geoinformatica, 16, 1, 165-205
Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C., Ciferri, R. 2012b. Towards Vague Geographic Data Warehouses.

In GIScience, 173-186
Silva, D.C.P., Posadas A., Jorge, L.A.C., Inamasu, R.Y. Paiva, M.S.V. 2011. Geração de mapas de incidência de

greening utilizando técnicas Wavelets-Multifractais. In: R.Y. Inamasu et al. (Eds), Agricultura de Precisão:
um novo olhar, EMBRAPA Instrumentação, 82-86 (Portuguese).

Tao, Y., Cheng, R., Xiao, X., Ngai, W., Kao, B., Prabhakar, S. 2005. Indexing multi-dimensional uncertain data
with arbitrary probability density functions. In VLDB, 922-933

Zinn, D., Bosch, J., Gertz, M. 2007. Modeling and Querying Vague Spatial Objects Using Shapelets. In VLDB,
567-578

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

169

