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Abstract. Top-down land change models use computer simulation to allocate 
demands for change over the spatial region under study. This paper presents a 
metric to estimate the goodness of fit of land change models. It focuses only on 
changed areas, preventing inflated goodness of fit values due to large 
fractions of the landscape remaining unchanged. We use the proposed metric 
to evaluate land change models for Amazonia. Despite large quality 
differences between them, all models have problems to predict new frontiers 
and expansion areas. The best model considered in this paper only performs 
slightly better than a simple model that predicts a cell’s deforestation based 
on the deforestation in neighboring cells. 

1 Introduction 

Changes in land use and land cover have increased worldwide substantially in the 
second half of the 20th century, mostly as part of the economic growth of emerging 
nations such as China, India, Brazil and Indonesia. Land cover is the biophysical state 
of the earth's surface; land use is the purpose for which humans use the land [1]. Forest 
and cropland are examples of land cover and agricultural and pasture is an example of 
land use. We use the term “land change” to refer to land use and land cover change. 
Land changes result from people acting on ecosystems, based on demographic, social, 
and economic factors. Planners and policy makers need models that represent how 
humans change the land [2]. Despite the challenges involved in building them, these 
models have an important role, as they serve as tools to understand human-environment 
interactions and to help public policy making. 
 Many papers on land change models make strong policy recommendations 
based on their results [3, 4]. Thus, measuring the quality of land change models is 
important to assess the likelihood of the scenarios expressed by the models. The 
problem is of course that these models project future changes and therefore testing them 
is unattainable at the moment when the model is conceived. What can be done is an ex-
post analysis: looking at the past from the future. Some years later, we can compare the 
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model projections with the reality. To do this comparison properly, we need a metric 
that expresses differences between the model projections and the facts.   
 This paper evaluates the results of several models of deforestation in the 
Brazilian Amazon in an ex-post analysis. We propose a goodness of fit metric extending 
the works of [5] and [6]. The metric uses a multi-resolution approach to account for the 
scale-dependency of spatial patterns. Using this approach, we aim at better 
understanding the strong points and the flaws of the different models and their 
underlying conjectures. To do this, we also compared the models to a simple model 
based on the previous year’s deforestation as the only explaining variable. 

2 Review of current goodness of fit metrics for spatial models 

There are two complementary views on the literature on the issue of measuring the 
goodness of fit of land change models. One of them is the multiple resolution approach 
proposed by Costanza [5] to evaluate land change models [7, 8]. In his paper, Costanza 
proposes a method to compute the goodness of fit for categorical data. Arguing that 
simple cell-by-cell comparison is misleading because allocation of change can occur at 
neighboring cells, he proposes comparing the two maps at several resolutions, using 
moving windows. He starts with a window whose size is a single cell. For each window 
position, he computes a goodness of fit metric. After moving the window over the 
whole map, he gets the average of this metric and uses it as the goodness of fit measure 
at the window’s resolution. Then, he doubles the window size and evaluates the metric 
again. The result is a set of metrics, one for each window resolution. 

 A second view in the literature argues for taking persistence into account when 
computing model goodness of fit. In land change modeling, the primary interest is 
finding out whether the cells representing land change were correctly placed. As Pontius 
et al. [6] point out, in most land change models a lot of areas remain the same from one 
time step to another. Usually, the changes are a small proportion of the total area. Thus, 
to properly assess goodness of fit in land change models, we have to account for 
persistence and should only consider the areas where change occurred.  To compare 
different models, Pontius et al. [9] propose the metric “figure of merit” to compute the 
ratio of the area that was correctly predicted as change and all the areas that were 
observed or modeled as change: 

 

!" = ! !ℎ!"#$!"##$!%
!ℎ!"#$!"##$!% + !ℎ!"#$!"# + !ℎ!"#$!"# + !ℎ!"#$!"#$%&'(

 

Where 
Changecorrect = Area that is change in both the model result and the reference 
map 
Changeref = Area that is change in the reference map, but not change in the 
model result 
Changemod = Area that is change in the model result, but not change in the 
reference map 
Changewrongcat = Area that is change in both the model result and the reference 
map, but was predicted a wrong category of change. 
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 In our work, we combine Costanza’s multi resolution metric [5] with Pontius et 
al. [9] “figure of merit”. We extend Costanza’s metric for cell spaces where the cells 
have numerical values, as described in the next section. Constanza’s metric accounts for 
misallocation of cells with change and the Pontius extension avoids inflated large 
goodness of fit value due to large amounts of unchanged area.  

3 A metric for goodness of fit in land change models 

Top-down land change models usually have three sub-models: demand, potential, and 
allocation [7, 10, 11]. The demand depends on the underlying causes of change and 
represents how much change will happen. Usually, it is calculated externally by tools 
that consider economic, demographic and social trends. The demand is then spatially 
allocated based on the potential for change of each cell. For example, increase in global 
food consumption results in greater demand for agricultural areas.  
 Each place has a potential for transition between land cover classes. This 
potential depends on the relative importance of driving forces of change in that place. 
The potential represents the proximate causes, which are the factors directly linked to 
the locations. It combines data from different sources, such as distance to roads, soil 
quality, and protected areas to estimate the possibility of change from one given land 
cover to another. The result identifies the areas more likely to change. Finally, the 
allocation combines the demand and the potential to simulate where land change will 
take place. Given the demand is usually external to the model, modelers need to 
estimate the transition potential well so their simulations get closer to reality.  

 

 
Figure 1: general view of top-down land change models.  

Source: Adapted from [12]. 

 We propose a metric for evaluating goodness of fit in land change models that 
focuses on change and accounts for persistence. The metric takes Costanza’s multiple 
resolution approach and restricts it to the areas of actual or projected change. This 
approach is consistent with the figure of merit metric proposed by Pontius, as discussed 
in section 2. Since our goal is to evaluate the potential and allocation procedures and not 
the correctness of the demand, the demand for change to be allocated in both cell spaces 
has to be the same.  
 We developed a metric for the case where one land cover transition is possible, 
e.g., from forest to deforested area. The metric can be extended to the case of multiple 
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land cover classes. For a single land cover transition, the metric is computed by the 
following equation: 

!! = 1−
!! !!"#$ − !!"#$!!

!!!
!!
!!! !! !

!!
!!!

2 !!"#$!"#
!!!

 

Fw = Goodness of fit at resolution w. 

tw = Number of sampling windows at resolution w. 
w = Resolution (a sampling window has w2 cells). 

arefi = Percent of change in land cover in cell i in the reference cell space. 
amodj = Change in land use/land cover in cell j in the model cell space. 

i, j = Cells inside a sampling window. 
u = Cells inside the cell space. 

s = A sampling window. 
num = Number of cells in the cell space (tw * w2) 

 For each window size, we get a goodness of fit metric by moving the window 
over the whole cell space and finding out the average value of the fit. The cell space is 
repeatedly traversed using sampling windows of increasing size (r). For each sampling 
window, we get the difference between quantity of change in the reference cell and 
quantity of change in the model cell space. We divide this difference by 2 to avoid 
double counting, since an increase in one location leads to a decrease by the same 
amount in another location. The error term is then summed over all windows and 
divided by the total change in the whole map. Subtracting it from one provides the 
goodness of fit. 
 The metric is appropriate to compare two cell spaces with the same spatial 
resolution and extent where the amount of change is the same in both. Using it, we find 
the degree of agreement between the cell spaces. The result is independent of the total 
area of the examined map. Therefore, including more (unchanged) cells (e.g. the cells 
outside the study area in a square map) in the computation does not alter the result. 

4 Goodness of fit of Brazilian Amazon deforestation models 

We applied the proposed goodness of fit metric to evaluated two models that try to 
predict deforestation in the Brazilian Amazon: The SimAmazonia model, developed by 
Soares-Filho et al. [3], and the model developed by Laurance et al. [4].  

 We evaluated model projections for the year 2011, taking the PRODES data 
provided by INPE (Brazilian National Space Research Institute) as the reference for 
observed deforestation. PRODES uses wall-to-wall mapping to get yearly data on the 
location and extent of the deforestation by clear cuts in the Brazilian Legal Amazon, an 
area of 5 million km2. It uses remote sensing data with 20 to 30 meter resolution and 
produces deforestation maps in the 1:250.000 scale. Since 2003, INPE makes PRODES 
data freely available in the internet. The scientific community takes PRODES to be the 
standard reference for ground truth in Amazonia deforestation [13, 14].  
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 SimAmazonia projects the deforestation in Amazonia in 2050, based on data 
from 2001. We estimated its results for 2011 using data provided by its authors. It has 
different submodels for 47 subregions of Amazonia, with modules considering 
socioeconomic factors and spatial factors (e.g. infrastructure projects). For our 
assessment, we took the Business-as-usual scenario (BAU) and the Governance 
scenario (GOV). Their main difference between BAU and GOV scenarios is the greater 
extent of government intervention in the latter case. The GOV scenario has more 
protected areas whose effectiveness is guaranteed.  
 The model by Laurance et al. projects deforestation in the Brazilian Amazonia in 
2020 based on the data for 2000. It assumes a heavy impact of infrastructure projects 
that would lead to deforestation in Amazonia of 28% (optimistic scenario) or 42% (non-
optimistic scenario) in 2020. The non-optimistic scenario assumes larger degraded areas 
close to roads and rivers and more deforestation in conservation areas. We could not get 
access to the original data, despite requests to the authors. Thus, we used input data and 
estimation methods as similar as possible to the author’s description to simulate both 
scenarios for 2011. 
 We also used a neighborhood model as an example of the simplest possible land 
change model for Amazonia. The model has a single assumption: the potential for 
change in one year is the average deforestation of the neighboring cells for the previous 
year. 
 The demand for deforestation in all models is the actual total deforestation given 
by PRODES. The first two models originally projected higher demand compared to the 
PRODES estimates. We reimplemented such models in order to take into account the 
differences in the demand. The three models were implemented using TerraME toolkit 
[15]. Results for the goodness of fit at the highest resolution are shown in Figure 2. 
Both SimAmazonia models and the neighborhood model have goodness of fit values 
above 50%, which means that less than half of the demand was allocated in wrong 
places.  
 

 
Figure 2: Bar chart of the goodness of fit at the finest resolution (pixel-wise comparison of reference and 
model result cell space). Laurance O and NO stand for the optimistic and the non-optimistic scenario. 
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 Figure 3 shows the goodness of fit plotted against sampling window size. We 
see the differences between the model performances persist over many resolutions. The 
goodness of fit values increase slowly with increasing window size (note the 
logarithmic scale of the x axis). The steeper the increase of the fit curve, the more near-
distance errors exist in the data. Near-distance errors occur when the mechanism 
allocates the change in a wrong location, but spatially close to the correct one. Thus, by 
increasing the window size, this misallocation gets smoothed out. 

 
Figure 3: The goodness of fit of the different models plotted against sampling window size (logarithmic 
scale). The largest window is 256 by 256 cells. As it covers the whole cell space, which is 134 by 104 
cells large, the goodness of fit is inevitably 100%. 

 The models allocate a lot of change in wrong regions. Both SimAmazonia 
models have a similar performance. Using a normalized demand, the allocation 
procedure is more realistic in the BAU scenario. The Laurance scenarios project most of 
the change in the wrong places. Even with sampling windows of size of 32 by 32 cells 
(800 by 800km), the Laurance models have a fit of only approximately 50%. The 
neighborhood model performs almost as well as the SimAmazonia models and much 
better than the Laurance models.  

5 Discussion  

The results presented in the previous section show that even the best model considered 
in our study allocates only about 60% of the change correctly. To understand the 
possible causes of allocation errors, we use the results of the neighborhood model. This 
model has a simple and restricted allocation procedure, which places all changes close 
to already deforested areas. We should expect that such a model reproduces the local 
extensions of existing areas correctly, but fails to account for new deforestation 
frontiers. Since the SimAmazonia models and the neighborhood model have a similar 
goodness of fit, we take that SimAmazonia models are not able to find out where the 
new frontiers of Amazonia are. 
 To explore further the factors that lead to modeling errors, we compare cell 
spaces of the deforestation as predicted by the models with the PRODES dataset in 
Figure 4. Because of their over-reliance on road infrastructure as the main factor for 
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deforestation, the Laurance models allocate much change in the wrong places. Laurance 
et al. consider the impact of roads in the more remote areas to be the same as those 
closer to the markets of Belém (a in Figure 4), Cuiabá (b) and the Brazilian Southeast. 
Therefore, public policies that would use these models for planning would be limited to 
avoiding road building. As the PRODES results show, some roads are much more 
relevant as drivers of deforestation than others. Capturing the relative importance of 
roads is thus important for models that could guide public policy making. Laurance et 
al. also underestimate the effectiveness of protected areas. Recent studies show that 
protected areas in Amazonia have very low deforestation and thus are an important part 
of forest protection policies [16]. 

 
Figure 4: Maps of the area that was deforested in the years 2003-2011, according to PRODES data 
(lower left) and the model scenarios. The darker the cell’s color, the higher the percentage of area 
deforested in that cell (values range from 0% to 60%). The letters a-f are explained in the text. 

 SimAmazonia captures most of the change close to existing deforested areas, but 
has a limited ability to predict how the frontier expands. It misses most of the 
deforestation around the Cuiabá-Santarém road (c) and predicted change close to 
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Manaus (d), in Roraima (e) and in the North of Pará (f) that did not happen. To fully 
understand the performance of the SimAmazonia model, a detailed analysis of its 
assumptions would be required, which is out of the scope of this paper. Our conjecture 
is that it is an effect of the 47 subregions used in the model. Breaking Amazonia into 
subregions is a sensible idea, since there are substantial differences inside the area. 
However, finding enough data to properly describe the factors that drive deforestation in 
each subregion is hard. Agricultural census data is available only at the municipality 
level. However, in Amazonia, municipalities have huge areas that make spatial 
allocation of driving factors extremely difficult. We presume that a better allocation of 
subregions in Amazonia could allow SimAmazonia to improve its goodness of fit.  

6 Conclusion 

This paper presents a metric to measure the quality of the transition potential and 
allocation methods of land change models. It uses a multi resolution method since 
spatial processes are scale-dependent. A model could have a low goodness of fit at 
detailed resolution, but could capture the general spatial pattern better than other 
models. The proposed metric focuses on changed areas and discards areas with no 
change. Thus, it prevents inflated goodness of fit values due to large fractions of the 
landscape remaining unchanged, as it often is the case in land change models. 
 We used the metric to compare several models that project deforestation in the 
Brazilian Amazon. Despite large quality differences between them, all the models have 
problems in predicting new frontiers and expansion areas. Because of this, the best 
model considered in this paper only performs slightly better than a simple model that 
predicts a cell’s deforestation based on the deforestation in neighboring cells. We hope 
our results can motivate a new generation of deforestation models that better capture the 
socioeconomic factors underlying the decisions of the actors that carry out the 
deforestation. 
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