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Abstract. Only a few works in trajectory data mining have focused on outlier
detection, and to the best of our knowledge, no works so far have made a deeper
analysis to either understand or to give a meaning to the outliers. In this paper
we present an algorithm to add meaning to trajectory outliers considering three
main possible reasons for a detour: stops outside the standard route, events,
and traffic jams in the standard path. We show with experiments on real data
that the method correctly finds the different types of outliers.

1. Introduction and Motivation
The current advances in mobile technology made mobility traces more present. As a
consequence, there is an increasing need for developing new methods for interpreting
these traces to provide more information to the decision maker.

Mobility traces, well known as trajectories of moving objects, are collected as raw
data, with the position of the object in space and time. Several works have already been
developed for trajectory data analysis. Different types of patterns can be extracted from
mobility data, but only a few attempts have been made to either discover the meaning of
a pattern or the reason of certain behaviors of moving objects. This is specially true for
trajectory outliers. Existing works for trajectory outlier detection as ([Lee et al. 2008],
[Yuan et al. 2011], [Chen et al. 2011] look for trajectories that simply behave differently
from the majority of the trajectories in a dataset, but no further analysis is performed to
discover when the outliers occur or which are the reasons for a different behavior. Trajec-
tory outliers can be interesting to discover suspicious behaviors in a group of people, to
find alternative routes in traffic analysis or to reveal the best or worse paths that connect
regions of interest. The interpretation of outliers can provide more information to the de-
cision maker and help to answer questions like: has a driver deviate from the main group
because he needed to pickup up someone nearby? Was he avoiding a police check? Is this
an alternate route to reach a specific place? Is that a suspicious driver? More information
about an outlier can be useful to answer these questions in different application domains.
However, to discover why and object followed a different route is very complex, since
normally only the raw trajectory data are available and no information is given about the
moving object and his intents.

In this paper we try to go one step further in trajectory outlier detection, aiming
to infer the possible reason why an object made a different movement. More specifically,
we extend the work of Fontes [Fontes et al. 2013], which finds outliers between regions
of interest. Figure 1 shows an example of trajectories moving from region R1 to region
R2, where most of the trajectories follow the same path and two objects deviate from this
path, c1 and c5, which are the outliers.
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In this paper we consider three main aspects which could be the reason of an
outlier: (i) an event on the standard path, (ii) a traffic jam in the standard path, and (iii)
a stop in the outlier. In summary, we make the following contributions to the state of the
art in trajectory outlier detection: try to interpret the reason of an outlier, define different
types of trajectory outliers and propose an algorithm to classify the outliers.

Figure 1. Example of outliers.

The rest of the paper is organized as follows: Section 2 presents the related works,
Section 3 presents the main definitions used as base to the new concepts and algorithm
presented in Section 4. Section 5 presents experiments on real trajectory data. Finally,
Section 6 concludes the paper and suggests directions of future research.

2. Related Works
Only a few works are specifically developed for finding outliers in trajectories [Lee et al. 2008],
[Yuan et al. 2011], and [Chen et al. 2011]. The first two approaches split trajectories in
subtrajectories to find outliers. Outliers are the trajectories with a fraction of partitions
distant from other partitions and must have a certain length. The distance function con-
siders position and direction. In both approaches time is not taken into account and no
standard path must exist for trajectories to be classified as outliers. None of these al-
gorithms consider any semantic information or give more meaning to the outliers, their
concern is more geometrical, while our work focuses on the meaning.

The last work [Chen et al. 2011] is the closest to the work of this paper. It proposes
an algorithm to identify the most popular routes in a trajectory dataset. They build a graph
where the nodes are the starting and ending points of the trajectories and the places where
the trajectories cross each other, and the arrows are the possible paths from one node to
another. For each node the probability is calculated. The standard paths and outliers can
be easily derived from this probability. Its purpose is very similar to the work of Fontes
[Fontes et al. 2013], but no further analysis is performed over the outliers.

The approaches of [Alvares et al. 2011] can also be used to find outliers. The
algorithm proposed by [Alvares et al. 2011] finds trajectories that avoid or deviate from
target objects as surveillance cameras, traffic jams, or other pre-defined static objects.
It verifies for each trajectory if it avoids static objects and if there is a valid path that
crosses the region of the avoided object. This work looks for outliers between trajectories
and static objects, while we deal with outliers among trajectories. Indeed, no further
interpretation is made on the outliers.

Gupta in [Gupta et al. 2013] presents a survey on the most recent approaches for
outlier detection in temporal and spatio-temporal data.

[Fontes et al. 2013] finds outliers between regions of interest. In a first step the
algorithm extracts the candidates, that are the subtrajectories moving between pairs of
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regions. In a second step the standards and the outliers are discovered. In this paper we
extend the work of [Fontes et al. 2013] to find the specific standard path that the outlier
deviated and propose to give a meaning to the outliers looking for episodes (i.e. events
and traffic jam) in the standard path.

3. Basic Concepts
In this section we introduce some basic concepts about trajectories that will help to un-
derstand our approach. Most of these concepts are based on Fontes [Fontes et al. 2013],
which is the work we extended here. We start the definitions with the very basic concept
of point.

Definition 1 (Point). A point p is a tuple (x, y, t), where x and y are spatial coordinates
and t is the time instant in which the coordinates were collected.

A list of points ordered in time is a trajectory.

Definition 2 (Trajectory). A trajectory T is a list of points hp1, p2, p3, ..., pni, where pi =

(xi, yi, ti) and t1 < t2 < t3 < . . . < tn.

In general, trajectory patterns do not exist in the whole trajectory or during the
complete trajectory life. Trajectory patterns occur in parts of the trajectories, therefore,
we make use of subtrajectories, that is a well known concept in trajectory research.

Definition 3 (Subtrajectory). A subtrajectory S of T is a list of consecutive points
hpk, pk+1, ..., pk+li, where pi 2 T, k � 1, and k + l  n.

In this work we try to understand the reason why an object made a detour in
relation to the path followed by the majority of the trajectories to move between re-
gions of interest. The trajectories that intersect a pair of regions are the candidates
[Fontes et al. 2013], as shown in Figure 1(five candidates).

A candidate is the smallest subtrajectory that moves between two regions. It cor-
responds to the last point of the subtrajectory that intersects the first region and the first
point that intersects the final region, as shown in Figure 2 (left).

Definition 4 (Candidate). Let R1 and R2 be two regions such that R1 \ R2 = ; and T
a trajectory. A candidate from R1 to R2 is the subtrajectory S = hpi, pi+1, ..., pmi of T ,
where (S \ R1) = {pi} and (S \ R2) = {pm}.

A candidate that moves from a region R1 to a region R2 is different from a candi-
date that moves in the opposite direction. In the example of Figure 2 (left) the movement
is from R1 to R2, thus the candidate has the points from pi to pm.

Figure 2. Example of candidate and neighborhood. [Fontes et al. 2013]

According to [Fontes et al. 2013], outliers are discovered among candidates that
move in the same direction. The first characteristic that a candidate should have to be an
outlier is to move apart from other candidates. Therefore, for each point of a candidate
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its neighbors are computed. A candidate is a neighbor of a point if it is close to the point.
If a point has a few candidates in its neighborhood, then at that time the moving object
was following a path different from the majority of the candidates. The maximal distance
(Euclidean distance) for a candidate to be a neighbor of a point is called maxDist.

Definition 5 (Neighborhood). Let p be a point. The neighborhood of a point p wrt to
maxDist is
N(p, maxDist) = {ci|ci is a candidate and 9q 2 ci, dist(p, q)  maxDist}.

Here we consider spatial neighborhood, because we are interested in all candi-
dates that move together in space. In order to find traffic avoiding outliers (as can be seen
in Section 4) we analyze the duration of both synchronized and non-synchronized candi-
dates. Figure 2 (right) shows an example of neighborhood. The neighborhood of point
p are the candidates c1 and c3, since these two candidates have at least one point inside
the radius of size maxDist around p. Point q has no candidates inside its radius of size
maxDist, so its neighborhood is empty. We can conclude that at point p, c2 was moving
with c1 and c3 (same path), but at point q, c2 was moving far from c1 and c3 (different
path).

When each point of a candidate has a number of candidates in its neighborhood
that is higher than a threshold for minimal support, called minSup, then this candidate is
called a standard.

Definition 6 (Standard). Let c = hp1, p2, ..., pni be a candidate, c is a standard candidate
wrt maxDist and minSup if and only if 8pi 2 c,
|N(pi, maxDist)| � minSup, where |X| means the cardinality of X .

Figure 1 shows an example of standard candidates, where c2, c3 and c4 are always
moving together. So in this example there are three standard candidates considering min-
Sup=2. In the following section we present the new concepts, including a new definition
for outlier and an algorithm to add meaning to the outliers.

4. Adding Meaning to Outliers
The main goal of this paper is to add meaning to the outliers. The reasons for an outlier
are broad, and can be related to several things. In this paper we consider three main cases
that can be the reason of an outlier: (a) stops in the outlier trajectories, where the moving
object had the intent to stop somewhere else out of the standard path, (b) there is an event
in the standard path that could block it or cause traffic jams in the area of the standard
path, (c) a traffic jam in the standard path. We name these three types of outliers as stop
outlier, event outlier and traffic outlier, respectively. Each case is detailed in the following
subsections.

Before going into detail of the three cases of outliers, we define the concept of
standard path, redefine the concept of outlier, and define an outlier segment. These def-
initions are needed because it is necessary to know which standards move in the same
path that the outlier deviated. Two standards can be directly connected or reachable from
another standard.

Definition 7 (Directly Connected). A standard d is directly connected to a standard e wrt
maxDist if 8pi 2 d, e 2 N(pi, maxDist).
Definition 8 (Reachable). A standard d is reachable from a standard e wrt maxDist if
there is a chain of standards d1, d2, ..., dn where d1 = e, dn = d such that di+1 is directly
connected from di.
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When two or more standards are reachable from any other standard we can define
a standard path.

Definition 9 (Standard Path). Let D be a set of standards moving from region R1 to region
R2. A standard path H wrt maxDist is a non-empty subset of D satisfying the following
conditions:

• 8d, e 2 D: if d 2 H and e is reachable from d wrt maxDist, then e 2 H .
• 8d, e 2 H: d is reachable from e wrt maxDist.

In this work we do not consider an outlier when only a few points of a trajectory
deviated the standard path. Therefore, we define the concept of outlier such that it should
have a minimal deviation length, called minLenght.

Definition 10 (Outlier). Let R1 and R2 be two regions and C the set of candidates from
R1 to R2. A candidate o 2 C is an outlier wrt maxDist, minSup and minLenght if
9c 2 C . c is a standard ^ 9s .s is a subtrajectory of o, s = hpi, pi+1, . . . , pni. 8pk 2
s, |N(Pk, maxDist)| < minSup ^

Pn�1
j=i dist(pj, pj+1) > minLenght.

Figure 1 shows an example of outlier, considering minSup = 60%. In this exam-
ple there are 5 candidates that move from R1 to R2, where c1 and c5 are the outliers and
c2, c3 and c4 are the standard path from R1 to R2.

In order to interpret the meaning of an outlier, we want to analyze only the part of
the outlier trajectory that made the detour. Figure 3 (left) shows an outlier example where
the subtrajectories from p1 to p7 and from q1 to q14 will be analyzed. These subtrajectories
are called outlier segments.

Definition 11 (Outlier Segment). Let o be an outlier. Let s = hpi, pi+1, ..., pni be a
subtrajectory of o. s is an outlier segment wrt maxDist, minSup, and minLenght if
8pk 2 s, | N(pk, maxDist) | < minSup and | N(pi�1, maxDist) | � minSup and
| N(pn+1, maxDist) | � minSup and

Pn�1
j=i dist(pj, pj+1) > minLenght.

Figure 3. Example of outlier segments and standard segments.

In the example of Figure 3 (left), if minLenght is defined as 10%, both ✓1 and ✓2

are outlier segments. If minLenght, for instance, is defined as 30%, only ✓2 is an outlier
segment.

Having defined the outlier segments we try to interpret them looking for stops,
traffic jams and events around these segments, as detailed in the following subsections.

4.1. Stop Outliers
A stop outlier occurs when the moving object made a stop for some time during the
deviation. She/he had an appointment, a meeting, or something to do somewhere else that
was not in the standard path. This is an intentional detour with a reason. Very common
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examples can be go shopping after work, pick up the children at school, go to a happy
hour with friends, pass by a bakery, visit a friend or relative, or having a work meeting.
When these objectives are out of the standard path, they can be the reasons for the outliers.

To discover if an outlier has a stop we need to look for stops not in the complete
outlier trajectory, but only in the subtrajectory that corresponds to the outlier (deviation),
i.e., the outlier segment. We consider as a stop a subtrajectory that had speed close to zero
for a minimal amount of time (minTime). We consider a maxSpeed threshold and not the
value zero because, in reality, due to GPS imprecision, it is not common to have points
with exact the same coordinates when the object has stopped.

Definition 12 (Stop). Let ✓ be an outlier segment. A subtrajectory s ✓ ✓, s = hp1, p2, ..., pni
is a stop of ✓ wrt minTime and maxSpeed if tn � t1 � minTime and

P
dist(p

i

,p
i+1)

t
n

�t1


maxSpeed

Definition 13 (Stop Outlier). An outlier segment ✓ is a stop outlier iff it made a stop.

In the following section we detail the event outliers.

4.2. Event Outliers
The stop outlier is the most simple case of an outlier. The second case is more complex.
An event avoiding outlier is a detour from the standard path because an event is going on
close to the standard path. The complexity starts because there might be more than one
standard path connecting two regions in the same direction, as shown in Figure 4 (left),
or two standard paths may start together and split later, as shown in Figure 4 (right).

Figure 4. Examples of standard paths from R1 to R2.

An outlier is an event outlier when the standard path has an event nearby, i.e., in
the area where the outlier avoided the standard path. However, to discover if the standard
path has an event nearby is not a trivial task. We cannot simply look if there is an event
at any part of the standard path. For an outlier to avoid an event in the standard path it is
necessary to analyze only the part of the standard path that was deviated by the outlier.
Therefore, we first need to discover which standard path an outlier segment has avoided.
Then we need to find the corresponding segments of the standard path that the outlier
deviated, since the event should be around these segments.

As there might be more than one standard path connecting the regions, we look
for the standard path closest to the outlier, in order to analyze this area. Figure3 (right)
shows two examples where the outlier segments ✓1 and ✓2 deviated from a different set
of standard segments in the same standard path. The segments in a standard path that the
outlier deviated are called standard segments.

Definition 14 (Standard Segment). Let o be an outlier, ✓ = hp1, p2, . . . , pni an outlier
segment of o, p0 the point of o immediately before p1, pn+1 the point of o immediately
after pn and d a standard in the same path as p0 and pn+1. A subtrajectory s = hpk, . . . , pli
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of d is a standard segment of ✓ if and only if s ⇢ d and pk = closest(p0, d) ^ |s| <
|d| ^ pl = closest(pn+1, d), where closest(p, c) is a function that returns the closest point
of a candidate c from a point p. If p0 does not exist then pk is the first point of d. If pn+1

does not exist then pl is the last point of d.

An event is represented by its region of effect and the times in which the effect
starts and ends. The effect of an event is its influence on the movement around.

Definition 15 (Event). An event e is a triple hR, t0, tfi, where R is a region, and t0 and
tf are the starting and ending time, respectively.

In an event outlier, the outlier segment should not intersect the event, that must
happen at the same time of the deviation, but the event should intersect the standard
segment (Figure 5 (right) shows an example). Moreover, there must be a standard segment
that is synchronized with the outlier to be sure that the standard path was free during the
deviation. All standard segments that are close to the outlier in the time that the outlier
started, are called synchronized standard segments. Figure 5 (left) shows an example of
three synchronized standard segments with respect to outlier ✓2 and one non synchronized.

Definition 16 (Synchronized Standard Segment). Let D be the set of standard segments of
outlier segment ✓ moving in the same standard path. A subtrajectory s is a synchronized
standard segment with respect to ✓ when s 2 D and abs(s.t � ✓.t)  timeTol, where s.t
and ✓.t represent the time of the first point of s and ✓, respectively.

When there is at least one standard segment that intersects an event but the outlier
segment does not, and there is an overlap between the outlier segment and the event times,
then the outlier segment is called event avoiding outlier.

Figure 5. Example of traffic avoiding outlier and event avoiding outier.

Definition 17 (Event Avoiding Outlier). Let e be an event, Re its region, te0 its start time
and te

f

its end time. Let d be a standard segment of an outlier segment ✓, t✓0 its start time
and t✓

f

its end time. The outlier segment ✓ is an event avoiding outlier if and only if it is
not a stop outlier and Re \ d 6= ; ^ Re \ ✓ = ; ^ (te0 < t✓0 < te

f

).

In the following section we explain a traffic avoiding outlier.

4.3. Traffic Avoiding Outlier
The last possibility treated so far is that an outlier may be deviating from a traffic jam
in the standard path. Normally, traffic jams at the main paths or roads in a city are well
known by most people, mainly at rush hours. However, some objects may follow the
standard path anyway, while others that know alternative routes leading to the destination
may prefer them. Therefore, in this section we look for slow traffic in the standard path
at the time of the outlier. Here we assume that the outlier has no stop in its subtrajectory
and there is no event around the standard path.
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To measure the time on the standard path at the same moment that the outlier
deviated from it we need to look only at the synchronized standard segments. Fig-
ure 5 (left) shows an example of outlier (✓2) and the respective synchronized and non-
synchronized standard segments. For each outlier segment, the average speed of all syn-
chronized standard segments in the same standard path are compared to the speed of the
non-synchronized standard segments in the same path. This way it is possible to know
if at the moment of the deviation the traffic was slower than normal traffic (fastest seg-
ments). We consider that there is a traffic jam when the average speed of the synchronized
standard segments is less than half of the average speed of the non-synchronized standard
segments. If this is the case, then we define the outlier as a traffic avoiding outlier.

Definition 18 (Traffic Avoiding Outlier). Let ✓ be an outlier segment, M a set of synchro-
nized standard segments with ✓ and N a set of non-synchronized standard segments of ✓.
✓ is a traffic avoiding outlier if and only if it is neither a stop outlier nor an event avoiding
outlier and avgSpeed(M)/avgSpeed(N)  0.5.

A trajectory can have many outlier segments, and each one is interpreted indepen-
dently. This means that a trajectory that has 3 outlier segments may have, for instance, 3
types of outliers. After defining the three types of semantic outliers we can finally present
an algorithm to automatically interpret the outliers.

4.4. Algorithm
In this section we present an algorithm to interpret the outliers. Algorithm 1 shows the
pseudo-code of the main algorithm. The input of the algorithm are thresholds detailed
in the definitions. The output is a set of classified outliers. The first step is to find the
outlier segments and the standard segments (lines 16 and 17), according to Definition 11
and Definition 14, respectively.

Algorithm 1. Main algorithm pseudocode
1 IN P U T :
2 C / / s e t o f c a n d i d a t e s be tween 2 r e g i o n s
3 E / / s e t o f E v e n t s
4 maxDist / / f o r ne ighborhood
5 minLenght / / f o r t h e o u t l i e r s e g m e n t s
6 minSup / / f o r a s t a n d a r d pa th
7 minTime / / f o r a s t o p
8 timeTol / / f o r s y n c h r o n i z e d s t a n d a r d s e g m e n t s
9

10 OUTPUT :
11 SO / / s e t o f s t o p o u t l i e r s
12 EAO / / s e t o f e v e n t a v o i d i n g o u t l i e r s
13 TAO / / s e t o f t r a f f i c a v o i d i n g o u t l i e r s
14
15 METHOD :
16 OutSegs = findOutlierSegments (C , maxDist , minSup ) ;
17 StandardSegs = findStandardSegments (C ,OutSegs ,maxDist ,minSup ) ;
18 SO = findStopOutlier (OutSegs ,mintime ) ;
19 EAO = findEventAvoidingOutlier (OutSegs ,StandardSegs , E , SO ) ;
20 TAO = findTrafficAvoidingOutlier (OutSegs ,StandardSeg , SO ,EAO ,timeTol ) ;
21 RETURN SO , EAO , TAO

The function findStopOutlier() (line 18) computes the stop outliers checking if
each outlier segment has a stop for at least minTime, according to Definition 12 (Stop).
If the outlier segment has a stop, it is a stop outlier. The maxSpeed threshold used in
Definition 12 is computed as 5% of the average speed of the candidate.

The functions findEventAvoidingOutlier() (line 19) and findTrafficAvoidingOutier()
(line 20) are detailed in algorithm 2 and algorithm 3, respectively. In order to find event
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avoiding outliers, the first step of algorithm 2 is to find all the outlier segments without
stops (line 11). Then, for each outlier segment, the algorithm gets its standard segments
(line 13) according to Definition 14 and checks the intersection with the set of events (line
14). If there is an event which intersects any of these standard segments without intersect-
ing the outlier segment and at least part of the event happens during the detour, then it is
added to the event avoiding outlier list (line 16).

Algorithm 2. findEventAvoidingOutlier pseudocode
1 IN P U T :
2 OutSegs / / s e t o f o u t l i e r s e g m e n t s
3 StandardSegs / / s e t o f s t a n d a r d s e g m e n t s
4 E / / s e t o f e v e n t s
5 SO / / s e t o f s t o p o u t l i e r s
6
7 OUTPUT :
8 EAO / / s e t o f e v e n t a v o i d i n g o u t l i e r s
9

10 METHOD :
11 O = OutSegs � SO ;
12 FOR EACH (o in O )
13 S = StandardSegs .getStandardSegments (o ) ;
14 e = getIntersection (S , E ) ;
15 I F (e != NULL && !hasIntersection (o , e ) && timeOverlaps (o , e ) )
16 EAO .add (o ) ;
17 E N D I F
18 ENDFOR
19 RETURN EAO ;

The function findTrafficAvoidingOutlier() is shown in algorithm 3. The first step is
to remove from the set of outlier segments the ones that are stop outliers and event outliers
(line 12). Then, the algorithm computes the standard segments that are synchronized
(according to Definition 16) and the ones not synchronized (lines 14 and 15). For the
non-synchronized the algorithm considers 5% of the fastest standard segments. This way
we obtain the speed of the path when there is no traffic. Then the algorithm is able to
compare the average speed of both synchronized and non synchronized segments, and
infer if there was a traffic jam at that moment (line 16). When the average time of the
synchronized standard segments is half of the average of the set of non-synchronized
ones, we say that there was a traffic jam at that moment in the standard path, thus the
outlier is classified as a traffic avoiding outlier.

Algorithm 3. findTrafficAvoidingOutlier pseudocode
1
2 IN P U T :
3 OutSegs / / s e t o f O u t l i e r Segments
4 StandardSegs / / s e t o f S t a n d a r d Segments
5 SO / / s e t o f s t o p o u t l i e r s
6 EAO / / s e t o f e v e n t a v o i d i n g o u t l i e r s
7
8 OUTPUT :
9 TAO / / s e t o f t r a f f i c a v o i d i n g o u t l i e r s

10
11 METHOD :
12 O = OutSegs � SO � EAO ;
13 FOR EACH (o in O )
14 sync = StandardSegs .getSyncStandardSegments (o ) ;
15 notSync = StandardSegs .getNotSyncStandardSegments (o ) ;
16 I F (avgtime (sync .time ) < avgtime (notSync .time ) / 2 )
17 TAO .add (o ) ;
18 E N D I F
19 ENDFOR
20 RETURN TAO ;
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5. Experimental Results

In this section we present the results of preliminary experiments on the taxi trajectory
dataset collected in San Francisco, California, in May and June 2008 [Crawdad 2013].
This dataset is interesting for analyzing outliers because taxi drivers, in general, know
several paths to reach the same place. Therefore, we want to find the alternative routes
(outliers) in relation to the standard path and to discover if the alternative route was made
to avoid an event in the standard path, to avoid low traffic in the standard path or if the
taxi driver had a stop in the detour.

This dataset contains trajectories of taxi drivers during one month, with over 11
million points. One trajectory corresponds to the movement of one taxi driver during
several days (with a trajectory identifier for each driver, and not each trajectory), having
very long trajectories with sampling rate around 1 minute. Even with such a large time
interval between every two points the method was able to find semantic outliers. In order
to analyze the behavior of the driver between regions of interest we split the trajectories
using the occupation attribute (which states if the taxi has passengers or not), so instead
of having only one trajectory of a driver, we have several trajectories of the same object.

When analyzing trajectory patterns we should consider the time periods, since the
movement patterns can be different during the day and night, and during weekdays and
weekends. In this experiment we separated trajectories of weekdays and weekends, and
because of space limitations, we analyzed only the trajectories from Monday to Friday.
After this preprocessing step a set of 537.098 trajectories with 6.314.120 points was ob-
tained.

We selected as regions of interest the Airport of San Francisco and a downtown
area where most hotels are located, because there is a high taxi flow between these regions.
To find the standard path and the outliers we considered 120 meters as maxDist, 5%
as minSup (number of candidates in the neighborhood for discovering a standard path
between the regions) to find the standard path, and minLenght as 10%, i.e., at least 10%
of a candidate should be moving far from the standard path in order to be considered an
outlier. Figure 6 (left) shows the standard path from the Airport to the central area.

In order to evaluate the method proposed in this paper, which is to give a meaning
to the outliers, we simulated an event at Bayshore Freeway (US 101) with start time
17:30 and end time at 21:30. For discovering stop outliers we considered 15 minutes
(minTime) as the minimal time for an outlier to be a stop outlier and 15 minutes as
timeTol for synchronized trajectories.

The method discovered 73 stop outliers (for minTime 15 minutes), 6 traffic
avoiding outliers and one event avoiding outlier. Because of space limitations we show
one example of each type of outlier. Figure 6 (right) shows an event avoiding outlier,
where the method correctly detected the outlier which deviated the standard path with an
event. The outlier segment is represented in the figure by the triangles, the event by a
circle in the standard path, and the standard segments are represented in black.

Figure 7 (left) shows a stop outlier, where the stop in the outlier segment had a
duration of 44:13 minutes. The stop in the outlier segment is zoomed in the figure. Fig-
ure 7 (right) shows an example of traffic avoiding outlier, highlighting the outlier segment
(triangles) and the corresponding standard segments (black). In this case, the average
time of the synchronized standard segments was 7:05 minutes while the average duration
of the non-synchronized segments was 3:40 minutes, characterizing a small traffic jam in
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the standard path at the moment of the outlier. Most detected traffic jams were near the
downtown area, and not in the main road from the airport. Therefore, for this execution
we reduced the parameter minLenght in order to detect short detours as the one shown
in Figure 7 (right).

Figure 6. (left) Standard path from Airport to Central area and (right) event outlier.

Figure 7. (left) Stop outlier and (right)Traffic avoiding outlier
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6. Conclusion and Future Works
Several algorithms have been proposed for trajectory data mining, but only a few consider
trajectory outlier detection. Existing approaches for trajectory outliers do not make deeper
analysis of the discovered patterns to give more meaning or semantics. In this paper
we look for outliers among trajectories that move between the same regions and try to
interpret them.

For all outliers the proposed method finds and interprets each outlier segment,
which is the part of the outlier that corresponds to the detour itself. So far the interpre-
tation is separated in three cases which represent some possibilities of deviations: stop
outliers, event avoiding outliers, and traffic avoiding outliers.

Future work includes outlier classification according to the type of detour made
for each segment, and to give weights for each outlier, depending on the types of its
segments. Indeed, more experiments have to be performed to better evaluate the method
and the parameters need to be better studied and reduced.

7. Acknowledgments
This work has been partially supported by EU project FP7-PEOPLE SEEK (N. 295179
http://www.seek-project.eu) and the Brazilian agencies CAPES and CNPq. Authors would
like to thank also for the partial support from CNR-CNPQ Joint project 2012, DataSIM
FP7-ICT-270833, and UFSC.

References
Alvares, L. O., Loy, A. M., Renso, C., and Bogorny, V. (2011). An algorithm to identify

avoidance behavior in moving object trajectories. J. Braz. Comp. Soc., 17(3):193–203.

Chen, Z., Shen, H. T., and Zhou, X. (2011). Discovering popular routes from trajecto-
ries. In Data Engineering (ICDE), 2011 IEEE 27th International Conference on, pages
900–911. IEEE.

Crawdad (2013). Crawdad a community resource for archiving wireless data at dart-
mouth. http://crawdad.cs.dartmouth.edu/meta.php?name=epfl/
mobility. Accessed: 2013-05-10.

Fontes, V. C., de Alencar, L. A., Renso, C., and Bogorny, V. (2013). Discovering trajec-
tory outliers between regions of interest. In GeoInfo.

Gupta, M., Gao, J., Aggarwal, C. C., and Han, J. (2013). Outlier detection for temporal
data: A survey. TKDE, 25.

Lee, J.-G., Han, J., and Li, X. (2008). Trajectory outlier detection: A partition-and-detect
framework. In Alonso, G., Blakeley, J. A., and Chen, A. L. P., editors, ICDE, pages
140–149. IEEE.

Yuan, G., Xia, S., Zhang, L., Zhou, Y., and Ji, C. (2011). Trajectory outlier detection
algorithm based on structural features. Journal of Computational Information Systems,
7(11):4137–4144.

Proceedings of XIV GEOINFO, November 24-27, 2013, Campos do Jordão, Brazil.

126


