
XII Workshop de Computação Aplicada -WORCAP 2012

Formal Verification of UML-based Software
Luciana Brasil Rebelo dos Santos1, Valdivino Alexandre de Santiago Júnior2,

Nandamudi Lankalapalli Vijaykumar3

1Programa de Doutorado em Computação Aplicada – CAP
Instituto Nacional de Pesquisas Espaciais – INPE

2Coordenação Geral de Ciências Espaciais e Atmosféricas – CEA
Instituto Nacional de Pesquisas Espaciais – INPE

3Laboratório Associado de Computação e Matemática Aplicada – LAC
Instituto Nacional de Pesquisas Espaciais – INPE

{luciana.santos,vijay}@lac.inpe.br {valdivino}@das.inpe.br

Abstract. Formal Verification methods, such as Model Checking, are best
applied in early stages of system design, when costs are low and benefits can be
high, increasing the quality of systems, when they are completed. The Unified
Modeling Language - (UML) is currently accepted as the de facto standard for
modeling (object-oriented) software, and its use is increasing in the aerospace
industry. This work describes how UML diagrams created in the early phases
of software development, such as sequence, activity, state machines (variation
of Harel’s Statecharts) diagrams, can be transformed into a finite-state model to
support Model Checking of UML-based software. The results of this work will
improve SOLIMVA, a methodology initially developed to generate model-based
system and acceptance test cases considering Natural Language requirements
artifacts.

Key words: Formal Verification, Model Checking, UML, SOLIMVA Methodology.

1. Introduction

Critical systems require high reliable software, and it is essential to ensure that
the software has the fewest number of defects when is released for use. Software
Assurance (SA), according to the National Aeronautics and Space Administration
(NASA) [NASA 2009], includes several disciplines, to name a few: Software Quality;
Software Safety; Software Reliability; Software Verification and Validation; and
Software Independent Verification and Validation. Hence, Verification and Validation
(V&V) play a key role of getting quality and has been gaining much importance in the
academia and private sector. V&V activities are usually time-consuming, specially if
complex systems are considered. Techniques are developed to facilitate and make the
efforts easier with these tasks.

Formal methods offer a large potential to obtain an early integration of verification
in the design process, and to provide more effective verification techniques. Besides,
formal verification methods, such as Model Checking, are best applied in early stages
of system design, when costs are low and benefits can be high, increasing the quality
of systems. Adoption of formal methods will be easier when they can be applied

XII Workshop de Computação Aplicada -WORCAP 2012

within standard development processes and when they are based on standard notation
[KNAPP and MERZ 2002].

The Unified Modeling Language - (UML) is currently accepted as the de facto standard
for modeling (object-oriented) software, and its use is increasing in the aerospace industry.
It presents diagrams that represent the static structure of a system, and also defines
diagrams to model the dynamic behavior of systems. In particular, dynamic aspects
of system behavior can be specified by interactions (i.e. sequence diagrams). UML
behavioral state machines (variant of Harel’s Statecharts) and activity diagrams give a
view of the system that is associated with instances of classes. These types of diagrams
represent complementary views of the system, but, at the same time, hide redundant
descriptions of the same aspects of the system. This gives the opportunity for V&V
techniques to ensure the consistency of these descriptions [KNAPP and MERZ 2002].
Nevertheless, V&V of complex software developed according to UML is not trivial due
to complexity of the software itself, and the several different UML models/diagrams that
can be used to model behavior and structure of the software.

Therefore, this work proposes the automated translation of UML diagrams, used to model
the behavior of the system, into finite-state model to support Model Checking of UML-
based software. Considering ”properties” generated from use case diagrams, which
represent the requirements and the ”finite-state model” automatically translated from the
behavioral diagrams (sequence, activity, and state machines), Model Checking can be
used to ensure that the behavior of the system satisfies the requirements, that is, whether
the property holds for all states in the finite-state model.

It is important to mention that such a model will have a unified view of
different perspectives of behavioral modeling of the system obtained by using
various UML diagrams. Besides, this work extends the SOLIMVA methodology
[SANTIAGO JÚNIOR 2011] [SANTIAGO JÚNIOR and VIJAYKUMAR 2012] initially
developed to generate model-based system and acceptance test cases considering Natu-
ral Language requirements artifacts. By including Formal Verification in the SOLIMVA
methodology, it completes a full cycle, addressing not only Testing and Inspection but
also Formal Verification.

This work is organized as follows. Section 2 presents the proposal itself. Section 3 shows
a case study and preliminary results. Final remarks are in Section 4.

2. Proposal for Model Checking UML-based software

In this paper, verification consists of sequence of scenarios to be checked. Basically,
scenarios focus on how the system behaves to implement its functionalities. In this work,
a scenario is considered an instance of a use case, i.e., one of the paths a use case can have.
The core issue of the proposed approach is to provide means for verification based on
UML documentation. The properties are extracted from requirements, which, in turn, are
taken from use cases. The system view used to compose the model is captured from three
different behavioral diagrams of UML. Specifically, the sequence, activity, and behavioral
state machines diagrams are considered.

Sequence diagram belongs to the class of interaction diagrams, which describe how the
objects of a system may interact by exchanging events/messages. Activity diagrams

XII Workshop de Computação Aplicada -WORCAP 2012

model the control and object flows from one activity to another activity. They evaluate
better the conditions by which the instances come to certain decisions. Behavioral state
machine diagrams specify the states an object can be in and describe its reactions to
incoming events. These type of diagrams represent complementary views of system
behavior and are often used in different phases of software specification and design. Based
on the behavioral UML diagrams discussed above, a finite-state model will be generated
to be checked, in order to detect problems in the system being analyzed.

The extension of SOLIMVA methodology to address Formal Verification is illustrated in
the activity diagram of Figure 1. The new activities created to address Formal Verification
of UML-based software are shown in dashed line of Figure 1. It is worth mentioning that
the same activities, with the same features, present in older versions of the SOLIMVA
methodology are also present in the new version, as well as the workflow, that is the
same. The only difference is that it is possible to execute the new activities in parallel
with the older activities. In practical terms, this extension of SOLIMVA proposes that the
activities of testing/inspection and Formal Verification can be performed independently
by different teams and even at different phases of the software development lifecycle.

Define and Input Dictionary

Define Scenarios

Select and Input NL Requirements

Generate Model

Clear Requirements
and Model [manual refinement]

Generate Abstract Test Cases

Generate Executable Test Cases

[more scenarios]

 [else]

Update Dictionary
[dictionary update]

 [else]

Analyze Incompleteness

Improve Specifications

 [incomp detected]

[else]

 [end of scenarios]

Select Use Case

Identify Scenarios

Select Diagrams

Formalize Properties

Generate NuSMV Model

[more scenarios]

 [end of scenarios]

Start Formal Verification

Select Requirements

Simulate Model

 [else]

[model's defects]

Apply Model Checking

Generate Report of
System Defects based on

Counter Examples

Figure 1. SOLIMVA Methodology Extension

The first new activity in the new workflow is Select Use Case. In this step, the user

XII Workshop de Computação Aplicada -WORCAP 2012

selects the use cases which are representative and must be checked. After a use case
is selected, various scenarios can be identified. The user must select the relevant ones.
This is the second activity: Identify Scenarios. Once the scenario is identified, it is time
to begin, in fact, the Formal Verification, which is the third activity. The activity Start
Formal Verification means that at this moment, everything has to be prepared to start
Model Checking, and therefore all the formalizations have to be made, as well as the
system model to be checked must be generated. This can be observed in the next activities,
which can be executed in parallel.

The activity Select Requirements is where the user should identify the suitable re-
quirements which will be verified in the system model during the Model Checking
process. Once the requirements are selected, it is time to formalize the properties.
Here, the properties are formalized using temporal logic, such as LTL or CTL. Dwyer
[DWYER et al. 1999] proposed a system of property specification patterns for finite-state
verification. They proposed 8 patterns and 5 pattern scopes. Hence, based on a require-
ment, one identifies a pattern and the scope within the pattern that mostly characterize
such requirement. Having decided which is the pattern and scope, they proposed a tem-
plate to generate the properties in LTL, CTL, and Quantified Regular Expressions.

The activities related to model creation, which are Select Diagrams, Generate NuSMV
Model, and Simulate Model, can be executed in parallel with the Select Requirements
and Formalize Properties activities. The first activity related to model creation, Select
Diagrams, is when the respective diagrams that represent the behavior relating to the use
case selected are identified. Eventually, the use case selected does not have a representa-
tion in all the diagrams that this approach is intended to use. For example, a use case can
be associated with a sequence and activity diagram but not with a state machine diagram;
or there exists only the sequence and state machine diagram for that use case but not the
activity. In these cases, the model must be generated from the available diagrams for that
use case.

In the activity Generate NuSMV Model the finite-state model is generated from the
diagrams. Here, the UML diagrams are automatically translated into a finite-state model.
NuSMV is the model checker used in this work. It is open, flexible, and a documented
platform. NuSMV supports both LTL and CTL temporal logic. The model of the sys-
tem is simulated prior to Model Checking (Simulate Model activity) in order to get rid of
modeling defects. If more model defects are identified then the workflow returns to the
Generate NuSMV model activity and restart from this point.

When there is no more remaining defect in the model and all properties are created, Model
Checking can be applied (Apply Model Checking activity). Detected system defects are
then reported (Generate Report of System Defects activity). Having generated the report
for a single scenario, the user starts again selecting the next scenario. This process must
be repeated until there is no more scenario and the process is finalized.

3. Case Study: ATM example
This section presents a case study to illustrate the new activities proposed in the extension
of the SOLIMVA methodology. Consider the automated teller machine (ATM) classical
example. In accordance with our approach, the first activity is Select Use Case. Let’s con-
sider the use case Session Use Case that states [BJORK 2012]: ”A session is started when

XII Workshop de Computação Aplicada -WORCAP 2012

a customer inserts an ATM card into the card reader slot of the machine. The ATM pulls
the card into the machine and reads it. (If the reader cannot read the card due to improper
insertion or a damaged stripe, the card is ejected, an error screen is displayed, and the
session is aborted.) The customer is asked to enter his/her Personal Identification Number
(PIN), and is then allowed to perform one or more transactions. After each transaction,
the customer is asked whether he/she would like to perform another transaction. When
the customer is through performing transactions, the card is ejected from the machine and
the session ends. The customer may abort the session by pressing the Cancel key when
entering a PIN or choosing a transaction type”.

Two possible scenarios for this use case are: ”the customer is allowed to perform transac-
tions”. The other scenario is ”the customer is not allowed to perform transactions”.

Several requirements can be observed in the identified scenarios. Assuming that the
following requirements were chosen to be checked:

1. Requirement: the customer can perform transactions only if he/she has a
valid card and a valid personal identification number (PIN). The requirement
formalized as a property is: the ATM cannot allow the user to request an operation
if either the card or the PIN is not valid. This property can be formalized using
the Absence Pattern and Scope After Q proposed by [DWYER et al. 1999], in
LTL, as follows:

�((¬CardOK||¬PinOK)→ �(¬y))

where CardOK means the card is valid, PinOK means the identifier is valid, and
y means ”transaction performed”.

2. Requirement: The customer can cancel the operation at any time. The property
is formalized as: whenever the client push the cancel button, the card must
be returned to him and all the operation is aborted. This property can be
formalized using the Response Chain Pattern and Globally Scope proposed by
[DWYER et al. 1999], in LTL, as follows:

�(ButtonCancelled→ ♦(CardEjected ∧©♦x))

where ButtonCancelled means the customer pressed the key buttonCancel,
CardEjected means the card is returned to the customer, and x means ”operation
aborted”.

To create the model, the sequence, activity and behavioral state machine diagrams must
be selected. Figure 2 shows, respectively, the sequence and behavioral state machine
diagrams for the ATM system. There is no activity diagram for the use case selected, so
only the sequence and behavioral state machine will be used.

3.1. Preliminary Results

Considering the diagrams and the properties to be checked, the finite-state model
visualized in Figure 3 is generated. It is important to note that the finite-state model can
be simpler than the UML diagrams, even though it has been built based on these UML
behavioral diagrams. Only the states and variables that are really important for analyzing
the specified scenario are considered.

Three main variables that characterize the model were identified. The first one is act,
which represents the physical actions that can be performed. It is defined as follows:

XII Workshop de Computação Aplicada -WORCAP 2012

Figure 2. Sequence and Bahavioral State Machine Diagrams for Example ATM
System. FONTE: [BJORK 2012]

act = {noAction, cardInserted, ButtonCancelled, CardEjected},

where noAction means that no actions were taken yet; cardInserted means the customer
has inserted the card into the machine; ButtonCancelled means the customer pressed the
key CancelButton; CardEjected means the card was returned to the customer.

The second variable is rsp, which represents the machine responses. It is defined as
follows:

rsp = {noResponse, CardOK, CardError, PinOK, PinError},

where noResponse means there is no response to give; CardOK means the card is au-
thenticated; CardError means the card authentication has failed; PinOK means the PIN
is authenticated; PinError means the PIN authentication has failed.

The third variable is Status, which represents the status of the system in every moment. It
is defined as follows:

Status = {waitingCard, waitingAuthCard, waitingAuthPin, readyTransac-
tion, TransactionPerformed, TransactionFinished},

where waitingCard means the system is available, waiting the card; waitingAuthCard
means the system is waiting for the card authentication; waitingAuthPin means the system
is waiting for the PIN authentication; readyTransaction means the system is ready to
perform any transaction; TransactionPerformed means a transaction has been performed
by the customer; TransactionFinished means the action was finished. Note that, in this
status, it is possible that the customer has been performed a transaction, but it is also
possible he/she has not been performed any transaction, as the key CancelButton may
have been pressed.

XII Workshop de Computação Aplicada -WORCAP 2012

<noAction,
noResponse,
waitingCard>

<cardInserted,
noResponse,

waitingAuthCard> <CardInserted,
CardOK,

waitingAuthPin>

<CardInserted,
PinOK,

readyTransaction>

<CardEjected,
noResponse,

TransactionFinished>

<CardInserted,
noResponse,

TransactionPerformed>

<ButtonCancelled,
noResponse,

waitingAuthCard>

<ButtonCancelled,
CardOK,

waitingAuthPin>

<ButtonCancelled,
PinOK,

readyTransaction>

<cardInserted,
CardError,

waitingAuthCard>

<CardInserted,
PinError,

waitingAuthPin>

Figure 3. Finite-State Model for Example ATM System

The finite-state model contains eleven states. Each state is characterized by the values
of the variables: the states are labeled according to the variables. In each state there
are the values that the variables take. For instance, in the upper leftmost state: act =
noAction, rsp = noResponse, and Status = waitingCard. A very simple choice is to let
each value of each variable acts as an atomic proposition. Hence, noAction is considered
as an atomic proposition, it can be true or false, as well as all other values of the variables
[SANTIAGO JÚNIOR 2011]. In this sense, the set of atomic propositions, AP, is:

AP = {noAction, cardInserted, ButtonCancelled, CardEjected, noRe-
sponse, CardOK, CardError, PinOK, PinError, waitingCard, waitingAu-
thCard, waitingAuthPin, readyTransaction, TransactionPerformed, Trans-
actionFinished }

Figure 4 shows the NuSMV source code of the model presented in Figure 3. NuSMV
describes the finite-state model as a set of variables and predicates on these variables. In
the illustrated example, there are three enumerative variables, which represent the actions
to be performed, the responses the machine may give, and the status that the system can
assume according to the inputs. The output is the resulting status. Init keyword speci-
fies the initial status, representing that the system is avaiable for use. Next specifies the
possible status the system can assume, according to the actions and responses it receives.

4. Final Remarks

This work presented an extension of the SOLIMVA methodology, which aims to auto-
matically translate UML diagrams into finite-state model to support Model Checking of
UML-based software. The workflow basically consists of identifying scenarios, which
are instances of a use case. Then, selecting requirements (and further the properties)
and identifying the behavior diagrams relating to the scenario chosen are the next ac-
tivites that must be performed. The properties are formalized using LTL or CTL and the
finite-state model is generated based on the sequence, activity, and behavioral state ma-
chine diagrams. In this step, Model Checking is applied and a report of system defects is
generated.

XII Workshop de Computação Aplicada -WORCAP 2012

MODULE main
VAR
 act: {noAction, cardInserted, ButtonCancelled, CardEjected};
 rsp: {noResponse, CardOK, CardError, PinOK, PinError};
 Status: {waitingCard, waitingAuthCard, waitingAuthPin,

readyTransaction, TransactionPerformed,
TransactionFinished};

ASSIGN
 init(Status) := waitingCard;
 next(Status) := case
 Status = waitingCard & rsp = noResponse & act = CardInserted : waitingAuthCard;
 Status = waitingAuthCard & rsp = CardOK & act = CardInserted : waitingAuthPin;
 Status = waitingAuthPin & rsp = PinOK & act = CardInserted : readyTransaction;
 Status = waitingAuthPin & rsp = PinOK & act = CardInserted : readyTransaction;
 Status = readyTransaction & rsp = noResponse & act = CardInserted :

TransactionPerformed;
 Status = TransactionPerformed & rsp = noResponse & act = CardEjected :

TransactionFinished;
 Status = TransactionFinished & rsp = noResponse & act = noAction : waitingCard;

 act = ButtonCancelled : TransactionFinished;
 rsp = CardError : TransactionFinished;
 rsp = PinError : TransactionFinished;

 TRUE : Status;
 esac;

Figure 4. ATM System represented as NuSMV Model

The preliminary results presented in this initial study showed that it is viable to achieve the
finite-state model and its NuSMV source code, based on the behavioral UML diagrams,
as well as the properties, extracted from the requirements presented in the use cases. This
first study was accomplished manually. The future directions are the development of the
supporting tool for automating the translation of UML diagrams into finite-state model.

References
BJORK, R. C. (2012). A complete example of object-oriented analysis, design, and pro-

gramming applied to a moderate size problem: the simulation of an automated teller
machine.

NASA (2009). Nasa software assurance: Software assurance definitions.

SANTIAGO JÚNIOR, V. A. (2011). SOLIMVA: A methodology for generating model-
based test cases from natural language requirements and detecting incompleteness
in software specifications. Thesis (phd in applied computing), Instituto Nacional
de Pesquisas Espaciais (INPE), São José dos Campos, SP, Brazil. (sid.inpe.br/mtc-
m19/2011/11.07.23.30-TDI).

SANTIAGO JÚNIOR, V. A. and VIJAYKUMAR, N. L. (2012). Generating model-based
test cases from natural language requirements for space application software. Software
Quality Control, 20(1):77–143.

DWYER, M., AVRUNIN, G., and CORBETT, J. (1999). Patterns in property specifica-
tions for finite-state verification. In Software Engineering, 1999. Proceedings of the
1999 International Conference on, pages 411–420. IEEE.

KNAPP, A. and MERZ, S. (2002). Model checking and code generation for uml state
machines and collaborations. In Proceedings of 5th Workshop on Tools for System
Design and Verification, Technical Report, volume 11, pages 59–64.

