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Abstract. Nowadays, there is a considerable amount of spatiotemporal data 

available on the web. The visualization of these data requires several visual 

resources which helps users to have a correct interpretation of the data set. 

Furthermore, the use of data mining algorithms has proven relevant in helping 

the exploratory analysis of spatiotemporal data. This paper proposes the 

GeoSTAT (GEOgraphic SpatioTemporal Analysis Tool), a system that 

includes spatial and temporal visualization techniques and offers a 

spatiotemporal adaptation of clustering algorithms provided by the Weka data 

mining toolkit. A case study was realized to demonstrate the end-user 

experience and some advantages achieved using the proposed system. 

1. Introduction 

Nowadays, there is a considerable volume of spatiotemporal data available in a variety 

of media types, especially on the Internet. Among so much information, it is necessary 

to provide decision support systems and analytics, which can help decision making 

users to extract relevant knowledge, intuitively and quickly, such as the prediction of 

future events, for instance. 

 Visualization techniques are widely known as being powerful in the decision 

making domain [Johnston 2001], since they take advantage of human capabilities to 

rapidly notice and interpret visual patterns [Andrienko et al. 2003][Kopanakis and 

Theodoulidis 2003]. However, we know that the spatial visualization resources supplied 

by most of the existing geographic information systems are not enough for decision 

support systems [Bédard et al. 2001]. 

 The visualization of spatiotemporal data is a complex task that requires the use 

of appropriate visual resources that allow users to have a correct interpretation of the 

information under analysis. Visualization and analysis of spatiotemporal data are tasks 

that have been gaining prominence in several areas, such as biology, electrical power 

transmission, urban traffic, criminology, and civil construction. This cross domain 

utilization is especially due to the widespread use of devices that capture the geographic 

location, generating large amounts of information concerning the time and space, such 

as the trajectory of mobile objects, fire spots, dengue spots, atmospheric discharges, and 

criminality maps. 

 According to Andrienko et al. [Andrienko et al. 2010b], it is necessary to deal 

with the time in an efficient manner, when performing spatiotemporal visualization. The 

understanding that space and time are inseparable and that there is nothing spatial that is 
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not temporal must permeate the research in spatiotemporal visualization. A reasonable 

solution in visualization and analysis of spatiotemporal data should offer, at least: 

resources for treating both the spatial and temporal dimensions (spatiality and 

temporality); domain independence (generality), freedom for the user to handle the 

visualized data and apply filters (flexibility); connection with several data sources in a 

practical and efficient manner (interoperability); and data mining based on 

spatiotemporal clustering (mining). 

 It is essential to provide to the users resources to handle both the spatial and the 

temporal dimensions in a spatiotemporal data analysis system. The singularities in any 

of these dimensions must not be discarded because they may reveal implicit 

relationships which match the reality of the analyzed data. 

 Furthermore, the use of spatiotemporal data mining algorithms, integrated with 

modern data visualization techniques, improves the usability for the decision maker 

when analyzing large spatiotemporal datasets. 

 Nonetheless, the majority of existing spatiotemporal visualization systems do 

not address appropriately the temporal dimension, as they focus only the spatial 

visualization. Therefore, an important research issue is how to offer temporal 

manipulation resources that, used with the spatial data manipulation resources, can 

improve the experience of end users, who are interested in performing visual analysis on 

spatiotemporal data. 

 This paper proposes a new system, called GeoSTAT - GEOgraphic 

SpatioTemporal Analysis Tool, for visualization and analysis of spatiotemporal data 

which takes into account, the six essential characteristics discussed by Andrienko et al. 

[Andrienko et al. 2010b], as mentioned previously. A case study using the GeoSTAT 

system was proposed to perform a spatiotemporal analysis using data on fire spots and 

failure events in power transmission lines, aiming at finding evidences that support the 

hypothesis that fires occurring close to transmission lines could be the cause of failure 

events in the power system. 

The rest of this paper is organized as follows. Section 2 discusses related work. 

Section 3 focuses on the presentation of the proposed system. Section 4 addresses a case 

study to validate the proposed ideas. Finally, section 5 concludes the paper and presents 

further work to be undertaken. 

2. Related Work 

This section focuses on related works concerning the visualization and analysis of 

spatiotemporal data.  

 Ferreira et al. [Ferreira et al. 2011] propose an interactive visualization system 

that supports the visual analysis of spatiotemporal bird distribution models. It is a 

spatiotemporal approach towards the specific domain of birds. It is important to 

highlight that besides being valid for just one specific domain, the solution does not 

provide mechanisms to connect to external databases, being constrained to the database 

developed by the authors. 

 Andrienko et al. [Andrienko et al. 2010a] propose a framework based on the Self 

Organizing Map technique (SOM) [Kohonen 2001], a combination of clustering and 

dimensionality reduction. This technique follows the idea that objects are not just 
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clustered, but also arranged in a space with one or two dimensions, according to their 

similarity as a function of multidimensional attributes. It is possible to conclude that the 

use of this technique deals with both spatial and temporal dimensions, allowing 

coherent analysis of spatiotemporal data. The technique is domain-independent, and 

seems to be useful in any knowledge field, besides bringing the idea of clustering for 

aggregating and reducing the database. However, it is important to notice that this work 

does not provide interoperability between heterogeneous datasets. 

 Roth et al. [Roth et al. 2010] present a web mapping application that supports 

spatiotemporal exploration in the criminology domain. The application offers a 

spatiotemporal browsing resource which animates simultaneously a map and a 

frequency histogram illustrating the temporal distribution. This application enables the 

visualization of the variation of data through time, organized into crime categories. 

Despite this solution supports spatiotemporal data, it is limited to one specific 

application domain and there is no database interoperability. 

 Reda et al. [Reda et al. 2009] developed a visual exploration tool to analyze 

changes in groups in dynamic spatiotemporal social networks. They propose two 

interesting techniques for spatiotemporal visualization. The affiliation timeline displays 

the structure of the community in the population and its evolution in time, and the 

spatiotemporal cube enables the visualization of the movement of communities in a 

spatial environment. However, besides being valid only for the domain of social groups, 

it does not describe how the user should supply the data for visualization and analysis. 

We conclude this solution has some limitations concerning data heterogeneity. 

 Andrienko et al. [Andrienko et al. 2007] address a framework for visual analysis 

of spatiotemporal data representing the trajectory of mobile objects. The framework 

combines database operations with computational processing, data mining and 

interactive visual interfaces. This solution highlights the use of the OPTICS clustering 

algorithm for detection of frequently visited places and database reduction. It is a 

domain-independent solution, though it is constrained to the trajectory of mobile objects 

represented by points in space. Besides, the authors do not make clear the acceptable 

format for the trajectory data. 

 Among the previously mentioned research works, which focus on the 

visualization and analysis of spatiotemporal data, some of them address domain-specific 

solutions, thus being useful for a limited group of users. Furthermore, many of them do 

not provide flexibility concerning the use of heterogeneous datasets, often requiring a 

considerable effort from users to adapt their datasets to the chosen application in order 

to perform the analysis. 

 There are also problems concerning usability, as the user interfaces do not 

provide to end users enough freedom to include or remove feature types that they might 

find relevant to their tasks. 

3. The Geographic Spatiotemporal Analysis Tool 

This section introduces GeoSTAT (Geographic Spatiotemporal Analysis Tool), a new 

web-based system for spatiotemporal visualization and analysis. 

 Through the GeoSTAT system, the user interested in viewing and analyzing a 

spatiotemporal dataset will be able to use several visualization resources that deal with 
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both spatial and temporal dimensions. Besides, clustering-based data mining algorithms, 

adapted for the spatiotemporal domain, were integrated into the system. Besides the 

advantages of being a web application, GeoSTAT was conceived under the generality 

point of view. For this reason, it is a domain-independent system, which can be 

connected to any spatiotemporal data source available over the Web by implementing 

the spatial data sharing services specified and standardized by the OGC (Open 

Geospatial Consortium) [OCG 2011]. 

3.1.Components 

The interactive user interface of GeoSTAT system is comprised of ten components 

responsible for the functionalities offered by the system. Figure 1 presents this interface 

and enumerates these components: 1) map; 2) spatiotemporal layers (overlap); 3) 

temporal controller; 4) temporal filter; 5) spatial filter; 6) temporal distribution graphic; 

7) data mining results; 8) actions menu; 9) data mining; 10) information about the 

connected data servers. 

 

Figure 1. The main interface and components of GeoSTAT system displaying 
data layers used in case study presented in section 4. 

 The map component uses the Google Maps API to offer a dynamic map. The 

spatiotemporal layers component allows users to add layers and spatiotemporal (or just 

spatial) data published in servers that implement the OGC WMS (Web Map Service) 

and WFS (Web Feature Service) services. These data are plotted on the map, and made 

available through the components that deal with the temporal dimension, such as the 

temporal controller, the temporal filter and the temporal distribution graphic. They are 

also made available for clustering-based data mining through the system. 

 Through the use of the temporal controller, it is possible to change the map 

visualization using a temporal filter. This filter can be defined as either a given instant 

(timestamp), or a more abstract level of temporal resolution, such as months, for 

example. The temporal controller also allows the production of a temporal animation, 
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which lets the user to visualize on the map the eventual changes in the spatial 

distribution of the data as a function of the temporal variation. It also displays a specific 

timestamp and enables the observation on the map of a spatial distribution of data on 

this timestamp.  Still, it may terminate the animation and view the spatial distribution of 

the whole dataset on the map again, regardless of the temporal dimension. 

 Besides the temporal controller, another available temporal visualization 

resource is the temporal distribution graphic. It is responsible for helping the user to 

visualize changes in the spatiotemporal data as a function of time, adding to the map 

resource, which helps the visualization of the distribution as a function of space. 

 The spatial and temporal filter components are responsible for the spatial and 

temporal query and selection, respectively, of the data visualized through the 

spatiotemporal layers. Through the temporal filter, the user may, by means of four filter 

options and observing the temporal resolution used, reduce the spatiotemporal dataset 

for visualization and analysis. The four options available for the temporal filter are: 

from, until, in and between. On the other hand, through the spatial filter, it is possible to 

visualize a topological relationship between two spatial or spatiotemporal layers 

previously added to the system, regardless of the source data source. It is possible to 

perform the following topological relations between two layers: intersects, contains, 

crosses, touches, covers and overlaps. It is also possible to apply negation (not) to each 

one of these relations, in cases where this is relevant for the analysis performed by the 

user. 

 In the component of data mining, it is possible to perform the clustering-based 

data mining in the previously added layers, view the result of a previous data mining 

process and the detailed status of data mining processes under execution. The data 

mining processes run in background, so users do not need to wait for the end of this 

processing, as they may perform other tasks. 

 The component of data mining results is responsible for offering the statements 

necessary for the spatiotemporal visualization and for browsing a layer containing data 

mining results. The user may browse through the timestamps that have the occurrence 

of clusters and view each cluster separately on the map. If the data mining is made with 

two layers, the user will have the option of viewing just the relevant clusters, that is, 

those which have at least one point of each layer, as well as options to view just the 

clusters that group only points of one layer. It is also possible to see all clusters of a 

given timestamp, or even all clusters. 

 Finally, the actions menu component offers shortcuts for the rest of the 

components of the interactive graphic interface of the GeoSTAT system, and the 

connected source data server component is responsible for displaying information about 

the data servers that are connected to a user session of the system. 

3.2.Architecture 

The GeoSTAT system architecture is defined using three layers: visualization, control 

and persistence. 

 The visualization layer is responsible for the user interface, offering components 

for loading, handling and visualizing the data through the temporal and spatial 

dimensions, presented in section 3.1. 
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 The control layer is responsible for the processing of all requests generated and 

sent from the visualization layer, besides being responsible for the communication with 

the persistence layer, therefore being the kernel of the GeoSTAT system. Figure 2 

presents the five existing modules in the control layer. These modules are activated 

according to the nature of the request to be processed by this layer. 

 

Figure 2. Control modules of the GeoSTAT system architecture. 

 The request interpretation module (see Figure 2) is the main module of the 

control layer. It is responsible for receiving and treating every request coming from the 

visualization layer and for establishing contact with the other modules, besides making 

contact with the persistence layer. There are two types of treatment to the requests that 

arrive at the request interpretation module: query or data delivery requests and data 

processing requests, that is, data mining or spatial query requests. The data requests are 

sent directly to the persistence layer, which is responsible for interpreting and 

processing this kind of request. On the other hand, the data processing requests may be 

forwarded to the data mining module or to the spatial query module. 

 The spatial query module (see Figure 2) is responsible for the processing of 

spatial queries between two different layers. The result of the query processing (spatial 

filter) is sent to the visualization layer, for exhibition to the end user. 

 The data mining module integrates several known clustering algorithms. These 

algorithms were obtained from the Weka toolkit [Hall et al. 2009]. Seven algorithms 

were adapted and are available on the GeoSTAT system: COBWEB, DBScan, K-

Means, X-Means, Expectation-Maximization, Farthest-First and OPTICS. Hence, 

GeoSTAT system is capable of performing clustering-based spatiotemporal data mining 

on any spatial or spatiotemporal database. The output returned by the data mining 

module is stored in a spatiotemporal database and made available for query from the 

system, as soon as the processing is complete.The data mining module uses threads for 

concurrent processing. 

 In order to make possible the spatiotemporal integration and adaption of the 

several data mining algorithms used, we developed the data pre-processing and post-

processing modules. These auxiliary modules are responsible for preparing data to be 

used by the algorithm selected by the user and preparing the results obtained through the 

execution of this algorithm for treatment by the visualization layer, respectively. 
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 The persistence layer is responsible for connecting the GeoSTAT system to the 

databases requested by the users through the components of the visualization layer. 

When a data request is received from the control layer, the persistence layer first 

identifies the type of connection that will be established. It can connect either to the 

OGC WMS and WFS services, or to a spatiotemporal database developed to operate 

exclusively with the system. The OGC services are accessed from their web servers. 

 The spatiotemporal database stores information used by the GeoSTAT system to 

connect to the OGC services, as well as the complete results of the data mining 

processes performed by the system and available for visualization. 

4. Case study: Analysis of spatiotemporal correlation between failures in 

power transmission lines and fire spots 

This study consists in the analysis of two sets of spatiotemporal data. Each set is 

comprised of records of an spatiotemporal event. 

4.1. Data 

To carry out this study, we used georeferenced spatiotemporal data about fire spots 

detected in the Northeastern region of Brazil, supplied by the National Institute for 

Space Research
1
 (INPE), through the Weather Forecast and Climatic Studies Center 

(CPTEC), which publishes this kind of information daily, through their Fires 

Monitoring Portal
2
. 

 We obtained a total of 2,361,040 records of fire spots detected in the region, in 

the period between 01-01-2002 and 12-31-2012, that is, in the last ten years. The 

spatiotemporal data were obtained in the ESRI™ Shapefile format, using the WGS84 

geographic reference system, and temporal data according to the GMT. According to 

INPE, their system detects the presence of fire in the vegetation and the mean error in 

the spatial location of the spots is of approximately 400 meters, with standard deviation 

of about 3 kilometers, and with about 80% of the spots detected in a distance of one 

kilometer from the coordinates indicated by the system. In the temporal validity, the 

satellites offer a mean temporal resolution of 3 hours. This is the mean time between the 

pass of two satellites capturing information about the same region. 

 Another spatiotemporal database was used in this study. It is about failure events 

in power transmission lines, recorded by the San Francisco Hydroelectric Company 

(Eletrobrás/Chesf), which operates throughout the Northeastern region of Brazil. Since 

we could not get official data from Eletrobrás/Chesf, due to technical and 

confidentiality matters, we developed an algorithm to generate spatiotemporal failure 

events randomly, obeying the spatial constraint imposed by Eletrobrás/Chesf’s 

transmission line network, and the temporal constraint imposed by the other database 

used in this study. 

 We generated a total of 131,834 failure records in Eletrobrás/Chesf’s 

transmission lines, in the period between 01-01-2002 and 12-31-2012, that is, also in the 

last 10 years. These records were stored in a spatiotemporal database, also in the 

WGS84 geographic reference system, and with temporal information according to the 

                                                 
1
INPE –Brazilian National Institute for Space Research. More information at  http://www.inpe.br/ 

2
INPE/CPTEC –Fires Monitoring Portal. Available at http://www. inpe.br/queimadas/ 
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GMT.  Aiming at helping in the visual analysis of the transmission line failure events, 

we also used a set of spatial data containing Eletrobrás/Chesf’s transmission line 

network. 

 Both datasets used in this study share the same spatial geometry (POINT) and 

also the same temporal resolution (timestamp). In order to use the data in GeoSTAT 

system, we needed to install Geoserver web map server and create layers for each 

dataset. 

 To conduct this study, the GeoSTAT system user will be called analyst, a 

specialist user in the approached domain, looking for relevant information implicit in a 

large volume of spatiotemporal data. 

4.3. Experiment 

Figure 1 shows the GeoSTAT system interface with the three spatiotemporal layers 

loaded into the system from the data connection with Geoserver. What is seen is the 

result of about two million and a half points plotted in the map, enough to fill the whole 

Northeastern region. 

 The temporal distribution graphics, generated and shown automatically when a 

spatiotemporal layer is loaded and selected in the GeoSTAT system, allows the analyst 

to verify the behavior of the whole volume of data. By observing the graphic 

corresponding to the fire spots layer (showed in Figure 1), we notice that there is an 

annual repetition of the distribution of the number of spots detected, where the 

maximums concentrate in the first and in the last months of each year. This is the period 

when the Northeastern region registers the highest temperatures, which contributes to 

the occurrence of new fire spots. Through this graphic, we can also observe that the 

maximum number of spots detected in one day, in the 10-year period, was of 6,418 

spots. This number was reached in 11-07-2005. 

 By observing the graphic corresponding to the transmission line failures layer, 

we notice a temporal behavior that is practically continuous. Once the data was 

randomly generated through an algorithm, the temporal distribution of the occurrences 

was uniform, registering the maximum of three occurrences in one single day. 

 For a better visualization of the power line failures and of the detected fire spots, 

it might use a more generic temporal resolution than timestamp, such as “Date and 

Time”, for example, joining all the records occurring between “10-15-2011 15:00:00” 

and “10-15-2011 15:59:59” in one single view, for example. This strategy allows 

several simultaneous visualizations, time-time, of failures and fire spots within 10 years 

of data. However, the cost would be too high for the analyst to view image by image, 

time by time, manually, to find interesting behaviors. The use of the clustering 

technique emerges as a good option to reduce the cost to the analyst, by making the 

spatiotemporal clustering of the events. 

 With the layers “FAILURES” and “SPOTS” added to the GeoSTAT system, we 

activate the spatiotemporal clustering option offered by the system to perform the data 

mining with both layers. This option enables the analyst to view the spatiotemporal 

clusters of each separate event and the relevant clusters, that is, the spatiotemporal 

clusters containing records of both events. 
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 In order to execute the data mining, besides the three input layers, the user had 

to inform the following required parameters: “Date + 3-3 hours” for temporal 

resolution, and DBScan as the data mining algorithm, with MinPoints = 2 and Epsilon = 

0.013472. 

 The choice of the value 0.013472 for the Epsilon parameter of DBScan is due 

fact that one second (angular measurement unit) is approximately equal to 30.9 meters. 

Since about 80% of the fire spots detected by INPE occur within one kilometer from the 

indicated coordinates, and the mean error in the spatial location of the records is of 400 

meters, we thought reasonable that the radius of a generated cluster ranged from 1 to 1.5 

kilometers. Since 48.5 seconds is approximately equal to 1,498.65 meters (1.5 

kilometers) and one decimal degree has 60 minutes and 60 seconds, then we conclude 

that 1,498.65 meters is approximately equal to 0.013472 meters. 

4.4.Results and Conclusions 

The data mining process of this case study lasted 7 hours, 37 minutes and 5 seconds. It 

was executed in a web application server, running Microsoft™ Windows 7 Professional 

(64-bit) operating system, with Intel™ Core i7 processor and 16 GB of RAM. 

 The statistical results for the classification of the records after the execution of 

the algorithm showed that only 32,275 records, 1.29 of the whole dataset, were 

considered relevant by the GeoSTAT system. This means that only these records are 

contained in relevant spatiotemporal clusters, those which contain records of both 

studied events. Approximately 86.03% of the records were associated to a 

spatiotemporal cluster. The rest of the records, 13.97% of the total, were considered 

outliers because they do not belong to any spatiotemporal cluster, representing only 

isolated occurrences in space-time. 

 From the 318,901 spatiotemporal clusters generated, just 1,376 (0.43%) were 

considered relevant under the viewpoint of the measurement parameters used in the 

execution of the data mining algorithm. Each irrelevant cluster grouped, on average, 

6,623 records, while each relevant cluster grouped, on average, just 23 records. 

 Figure 3 presents a screenshot captured from the GeoSTAT system showing in 

the map all the relevant spatiotemporal clusters generated for the 10-year period of the 

dataset. The first information that may be noticed by the analyst in this visualization is 

that the region which concentrated more clusters was the region located in the Southeast 

of the state of Ceará, more precisely in the border with the states of Paraíba and Rio 

Grande do Norte, highlighted in the picture. The metropolitan regions of Maceió-AL 

and of Recife-PE, as well as the region of the city of Sobral-CE, are also regions with 

many clusters. 

The generated spatiotemporal clusters can be browsed with the components for 

temporal selection and, from this definition, with the individual selection of each cluster 

corresponding to the previously selected timestamp. The analyst may choose the 

visualization of relevant clusters only, or the visualization of all clusters. The analyst 

may also visualize each individual cluster, or visualize all the clusters, regardless of the 

temporal dimension. 
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Figure 3. GeoSTAT system showing all the relevant clusters. 

 For the analyst, interested in confirming the hypothesis that some fire spots are 

the cause of failures in power transmission lines, Figure 4 exemplifies a case where the 

hypothesis is confirmed. A failure occurring in the line “FORTALEZA II - CAUIPE” at 

03:14 p.m. in 11-03-2004 had its cause pointed as “FIRE” and, besides, due to the data 

mining performed together with data from records of fire spots detected in that region at 

the same period as the failure, pointed out a spatiotemporal clustering between this 

failure and two fire spots: one detected at 04:08 p.m., with approximate distance of 1 

kilometer from the failure, in East direction; and another one, detected at 04:01 p.m., 

with approximate distance of 1.5 kilometers from the failure, in the North direction. If 

we consider the spatial precision errors and the temporal resolution of these data, the 

analyst could point these two fire spots as the actual causes of the failure. 

 The results achieved with the use of the GeoSTAT system were satisfactory for 

the application domain explored in this study. The visualization resources explored 

allowed the discovery of interesting implicit information, from two large volumes of 

data. 

 It is important to observe that the statistical data mining results pointed to an 

index of relevant clusters under what most specialists in this kind of event would 

expect. This is due, mainly, to the use of simulated records of power transmission line 

failures. The use of real data, captured and structured by Eletrobrás/Chesf will certainly 

produce better results, as the presence of more relevant clusters. 

 Besides using real data, the specialists have, through the GeoSTAT system, 

several spatiotemporal clustering algorithms available. Their results may be compared 

and analyzed to find new relevant information.  
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Figure 4. GeoSTAT system displaying, in detail, the spatiotemporal cluster no. 
97, with temporal mark “11-03-2004 03:00 p.m. to 05:59 p.m.”. 

5. Conclusion and Future Work 

In this paper, we proposed a system for visualization and analysis of spatiotemporal 

data. This system managed to address the six features needed by a solution for 

spatiotemporal visualization and analysis: resources for the spatial dimension, resources 

for the temporal dimension, domain independence, flexibility, interoperability and data 

mining based on spatiotemporal clustering. It is a solution that prioritizes the end user, 

offering a set of functionalities that allow the execution of a job, in a practical and 

efficient manner. 

 Finally, we conclude that the proposed system met its objectives, proving to be 

satisfactory and efficient. We also conclude that many improvement issues can be 

addressed in future studies, which certainly will contribute to a more robust system. One 

point is the inclusion of another data mining technique such as spatiotemporal 

association rules. 
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