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ABSTRACT: 

 

Light Detection and Ranging (LiDAR) and its derivative products have become a powerful tool in landslide research, particularly for 

landslide identification and landslide inventory mapping. In contrast to the many studies that use expert-based analysis of LiDAR 

derivatives to identify landslides only few studies, all pixel-based, have attempted to develop computer-aided methods for extracting 

landslides from LiDAR. It has not been tested whether object-oriented analysis (OOA) could be an alternative. Therefore, this study 

investigates the application of OOA using 2 m resolution slope gradient, roughness, curvature, and openness maps calculated from 

single pulse LiDAR data, without the support of any spectral information. More specifically, the focus is on the possible use of these 

derivatives for segmentation and classification of slow-moving landslides in densely vegetated areas, where spectral data do not 

facilitate accurate landslide identification. A semi-quantitative method based on support vector machines (SVM) was developed for a 

test area in the Flemish Ardennes (Belgium). The procedure was then applied without further modification to a validation area in the 

same region. The results show that OOA using LiDAR derivatives allows recognition and characterization of profound morphologic 

properties of deep-seated landslides on soil-covered hillslopes such as those in the Flemish Ardennes, because approximately 70% of 

the landslides of an expert-based inventory were also included in the object-oriented inventory. For mountain areas with bedrock, on 

the other hand, it is expected more difficult to create a transferable model. 
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1. INTRODUCTION 

Traditional methods of identifying landslides and analysing 

their geomorphometry involve expert-based mapping and 

measurement from topographic maps, aerial stereophotos, 

satellite imagery and digital elevation models (DEMs). Since 

the early 2000s, also Light Detection and Ranging (LiDAR) and 

its wide range of derivative products (e.g. shaded-relief, slope, 

surface roughness and contour maps) have become a popular 

and powerful tool, especially for landslide inventory mapping in 

forested areas (e.g. Schulz, 2004; Van Den Eeckhaut et al., 

2007). In contrast to the many studies that use expert-based 

analysis of LiDAR derivatives to identify landslides, only few 

studies have attempted to develop computer-aided methods for 

extracting landslides from single or multiple pulse LiDAR data 

(McKean and Roering, 2004; Glenn et al., 2006; Bull et al., 

2010). All listed studies have been carried out in a pixel-based 

analysis. However, with high resolution topographical data such 

as LiDAR, object-oriented analysis (OOA), also referred to as 

object-based image analysis (OBIA), might provide better 

results. 

 

OOA has gained increased attention for semi-automated 

landslide identification from monotemporal (e.g. Barlow et al., 

2003, Martha et al., 2010, 2011; Stumpf and Kerle, 2011) and 

multitemporal (i.e. change detection; Lu et al., 2011) 

multispectral and panchromatic airborne and satellite imagery. 

Elevation data have been used before in OOA-based landslide 

detection work (e.g. Martha et al., 2010, 2011), but only to 

support the knowledge based removal of false positives and the 

discrimination of different landslide types. 

 

The identification of old vegetated landslides, not detectable 

from passive optical imagery, has not been investigated so far. 

LiDAR derivatives in an OOA have been used for semi-

automated geomorphological mapping (van Asselen and 

Seymonsbergen, 2006; Anders et al., 2011; Drăguţ and Eisank, 

2012). In these studies the identification of individual landslides 

was beyond the scope of the analysis. The objective of this 

study is to test OOA for landslide inventory mapping using 

single pulse LiDAR data for both the segmentation and 

classification steps, without the support of any spectral 

information. We exploit the profound morphologic 

manifestation of old, densely vegetated landslides to semi-

automatically map their extent using only LiDAR derivatives, 

and test the analysis in the Flemish Ardennes (Belgium), a hilly 

region with a rolling topography, affected by more than 200 

landslides (Van Den Eeckhaut et al., 2007) and characterised by 

loose Tertiary deposits with croplands on the plateaus and 

forests and pastures on the hillslopes and in the valleys. OOA of 

LiDAR derivatives for landslide extraction contains several 

interesting challenges. In this study we focus on (1) cognitive 

perception of landslides as geomorphic features, consisting of 

parts with significantly different morphometric characteristics, 

(2) testing scale optimization methods developed for passive 

optical imagery, and (3) selection of morphometric indicators 
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for the identification of different landslide features. We further 

discuss the possibilities and limitations of LiDAR-based 

segmentation and classification of landslides covered by 

vegetation. 

 

 

2. MATERIAL AND METHODS 

2.1 Conceptualisation of landslides 

The ultimate benchmark of OOA is the translation of cognitive 

perception (Lang, 2008) into rule sets. Semi-automated 

classification of landslides represents an attempt to replicate 

subjective landslide recognition (e.g. Martha et al., 2010; 

Stumpf and Kerle, 2011). Figure 1 contains the 

conceptualization of a typical landslide located in its 

characteristic physical environment in the study area (Flemish 

Ardennes, Belgium).  

 

 
 

Figure 1  Conceptualization of a typical landslide in the soil 

covered and hilly study area in Belgium. Landslide features (1-

5) are defined according to Cruden and Varnes (1996) 

 

 

A landslide contains several features with significantly different 

morphologic signatures (Figure 1). The main scarp (1) tends to 

be the easiest feature to recognize. It is semi-circular (long and 

narrow) with a steep slope and convex planform, and its 

polygon has a main direction perpendicular to the flow 

direction. The fresher the landslide, the more clear also the 

flanks (2, 3) will be. Landslide flanks form the border between 

the depletion area where debris has been removed (4) and the 

original topography, hence they can be distinguished by a 

distinct change in elevation. As displaced material moves 

downslope, flanks are most often more or less perpendicular to 

the main scarp. The displaced material in the depletion and 

accumulation (5) areas is characterized by a high surface 

roughness.  

 

Having observed different landslide parts, cognitive visual 

analysis readily allows them to be conceptually merged into one 

landslide, even if not all features are clearly present, because 

they are for example altered by human activities (e.g. buildings, 

roads). The human brain is further able to distinguish possible 

false positives (Figure 1), such as earth banks along roads, crop 

fields (b) and rivers or anthropogenically disrupted terrain (d), 

which can be similar to main scarps and displaced terrain, 

respectively. 

 

In OOA, the ultimate objective now is to find a classification 

rule set using this geomorphic fingerprint of the landslide parts. 

In this study, the segmentation and classification procedures 

were calibrated with small samples selected in a 10 km2 test 

area in the Flemish Ardennes (see section 3.1; Figure 2). They 

were then applied to the 50 km2 area surrounding the test area. 

For the test and validation area, the existing landslide inventory 

map obtained through visual inspection of LiDAR derivative 

maps and field surveys (Van Den Eeckhaut et al., 2007) 

contains 10 and 28 deep-seated slides, and 4 and 6 possible 

slides (less clear geomorphic manifestation), respectively. 

Small, shallow landslides are not taken into account in this 

study. 

 

 
 

Figure 2 Excerpt of the 10 km2 test area in the Flemish 

Ardennes showing the landslide inventory produced by experts 

(Van Den Eeckhaut et al., 2007) overlaying the diffuse 

analytical shaded relief map (©AGIV, 2005) 
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2.2 LiDAR data and derivatives 

The LiDAR data of the Flemish Ardennes were collected in 

2001 and 2002 (AGIV, 2005). An Azimuth Aeroscan small 

footprint (30 cm) multi-return LiDAR system with a pulse rate 

of 15 kHz and vertical accuracy (RMSE) of 4 cm was used. 

Laser pulses were sent at equal intervals within 600 m wide 

swaths with average pulse density of 1 per 4 m². Terrascan 

software was used by the vendor for the production of the bare 

earth DTM, and a manual check followed. The data have a point 

density of at least 1 per 20 m², a horizontal accuracy below 15 

cm and an average vertical accuracy that depends on vegetation 

height, decreasing from 7 cm for freshly cut lawn to 20 cm for 

pastures and forests (GIS-Vlaanderen, 2003). From the LiDAR 

point data, available in .txt format, a Triangulated Irregular 

Network (TIN) was derived which was then converted to a 

Digital Terrain Model (DTM) with a 2 m resolution. This is the 

advised cell size when using the relation between resolution and 

distance between the sampled points, and follows the Nyquist 

frequency concept that the resolution should be at most half the 

average spacing between the closest point pairs (see Hengl, 

2006), which is 4 to 5 m for the available LiDAR data. The 

LiDAR derivatives evaluated in this study are listed in Table 1. 

 

2.3 Translation of landslide concept to OOA 

For translation of the landslide concept in eCognitionTM, the 

most distinct landslide characteristics, the ‘main scarps’, were 

extracted first, followed by the ‘landslide affected area or 

landslide body’ and the ‘flanks’. Thresholding or image 

binarization (Otsu, 1979; i.e. contrast split segmentation in 

eCognitionTM) of the slope map provided segmentation level 1 

and was carried out to separate ‘steep’ from ‘unclassified’ 

terrain. The ‘unclassified’ terrain was subsequently split with 

multiresolution segmentation of the slope, roughness and 

openness maps, and the thematic layer with the rivers (Table 1). 

Although the scale factor, a unitless criterion controlling the 

maximum allowed heterogeneity in a segment with a lower 

scale factor yielding a higher number of segments, has an 

important influence on the segmentation results, it might be 

expected that optimal scale factors will be less clear when using 

LiDAR derivatives instead of passive optical images for 

landslide identification, because landslides consist of features 

with different dimensions and signatures. To find optimal scale 

factors, we used the Plateau Objective Function (POF; Martha 

et al., 2011) and compared the optimal scales with those 

obtained with the Estimation of Scale Parameter tool (ESP; 

Drăguţ et al., 2010). Analysis of the POF and ESP of the slope, 

roughness and openness maps showed that for all three maps 

scale factors of 33-35 (segmentation level 2) and 13 

(segmentation level 3) were optimal for segmentation.  

 

For the classification of the segments we adopted support vector 

machines (SVM), a supervised learning approach for two-group 

classification problems (Cortes and Vapnic, 1995), increasingly 

used in conjunction with OOA (Blaschke, 2010). In the 

segmentation layer selected as most appropriate for a certain 

object class we sampled up to 12 objects for each class in the 10 

km2 test area. These were used to train the models, while the 

other objects were considered testing samples. More 

specifically, we selected samples of:  

(a) ‘main scarps’ and ‘earth banks’ (i.e. possible false main 

scarps) from the ‘steep’ segments of segmentation level 1 

(obtained from the thresholding);  

(b) ‘large crop fields’ with a low surface roughness from 

segmentation level 2 (multiresolution segmentation with 

scale factor 35); and  

(c) ‘landslide body (sub)segments’ and ‘small segments not 

affected by landslides’ from segmentation level 3 

(multiresolution segmentation with scale factor 13).  

Object features included in the SVM were mean segment values 

(slope, plan curvature, openness and roughness), standard 

deviation of segment values (slope and plan curvature), and 

segment width. The latter was only used for classification of the 

‘main scarps’ and ‘earth banks’. We refer to Van Den Eeckhaut 

et al. (subm.) for more detailed information. 

 

Image layer  

(2 m resolution) 

Description (software tool) 

DTM (m) (ArcGISTM) 

Slope gradient (%) (Spatial analyst toolbox in ArcGISTM) 

Plan curvature () (Spatial analyst toolbox in ArcGIS
TM

) 

Roughness (m) Square root of the average squared 

difference in elevation values from a 

centre cell and the eight neighbor 

cells (Riley et al., 1999) (ILWISTM) 

Sky-view factor [0 – 1] Diffuse analytical shaded relief map, 

represents for each observation point 

the part of the visible sky above the 

point as seen from a two-dimensional 

representation (e.g. a point on a 

plateau is brighter (resulting in higher 

value) than a point at the bottom of a 

steep valley because a larger part of 

the sky can be seen from the plateau 

than from the valley; Zakšek et al., 

2011) (SVM v1.11)  

Openness 

Dif_DTM_DTMki (m)  

with i=15, 25, 50, 75 

Difference between original DTM 

and DTMki with DTMki: map where 

each grid cell represents the mean 

elevation value of a moving window 

with kernel size ki with i=15, 25, 50, 

75 (best result was obtained with 

i=50) (ArcGISTM) 

Multiple flow direction 

[0 - 2π] 

Direction of the steepest downward 

slope on the eight triangular facets 

formed in a 3 x 3 grid cell window 

centred on the grid cell of interest 

(Tarboton, 1997) (TauDEM toolbox 

in ArcGIS
TM

) 

Thematic layer  

(vector map) 

Description (software tool) 

River (Hydrology toolbox in ArcGISTM) 

 

Table 1.  LiDAR derivatives used in the study. For a description 

of the layers derived from standard tools in ArcGISTM we refer 

to ArcGIS Desktop Help 

 

For the extraction of ‘landslide flanks’ and the growing of the 

main scarps in segment level 3 we used features of circular 

variables, such as main direction and mean flow direction. As 

each individual main scarp has a specific slope orientation, 

landslides were treated individually in a loop. First, we selected 

the largest main scarp segment and created a zone or region 

around it. This zone was square-shaped with twice the 

landslide’s main scarp length as length and width. Then 

landslide flanks were drawn from both outer ends of the main 
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scarp in a direction opposite to the main scarp’s main direction. 

Once both flanks were obtained the linking of the main scarp 

and its affected area into one landslide started from the main 

scarp and evolved in a downslope direction by adding landslide 

body segments enclosed by the main scarp and flanks. When 

this process was finished the second largest main scarp was 

selected, and the flank extraction and growing steps were 

repeated. In this way the loop continued until all main scarps 

were processed.  

 

 

3. RESULTS 

3.1 OOA-based landslide inventory  

For the 10 km2 calibration area, the inventory map obtained 

using the procedure described above is shown in Figure 3. 

Visual comparison with the expert-based inventory (Figure 2) 

suggests a good agreement between the maps. A more detailed 

accuracy assessment is carried out in the next section.  

 

 
 

Figure 3 Excerpt of the 10 km2 test area in the Flemish 

Ardennes showing the landslide inventory obtained with OOA 

overlaying the diffuse analytical shaded relief map (©AGIV, 

2005) 

 

3.2 Accuracy assessment 

Accuracy assessment consisted of a comparison of the landslide 

inventory obtained with OOA with the expert-based inventory 

(Figure 2 and 3). No difference in accuracy was found for the 

test and validation area. This is probably due to the fact  that 

also within the test area only a limited sample of ‘main scarps’, 

‘landslide body segments’, ‘earth banks’ and ‘crop fields’ were 

used for defining the appropriate morphometric features and 

their classification rules. The OOA-based inventory contains 

90% of the 38 main scarps of clear deep-seated slides. For 71% 

of the landslides mapped by experts also more than 50% of the 

landslide body was correctly identified. These results are 

comparable to the results obtained by Martha et al. (2010) for 

object-based landslide identification from passive optical 

imagery in India.  

 

Figure 4 shows two large complex slides (not included in the 

test area shown in Figure 3) that were not completely identified 

with OOA. The surface morphology of their affected area is too 

subdued and affected by anthropogenic interventions, such as 

construction of houses and roads in the lower deforested part of 

the landslides.  

 

False negatives or unidentified landslides are landslides for 

which the main scarp was not correctly identified. In most cases 

the main scarps were initially identified as scarp candidates 

though later omitted because of a plan convex morphology.  

 

The OOA landslide inventory contains about 18 false positives, 

i.e. zones incorrectly classified as main scarps and landslide 

bodies. These are zones where SVM incorrectly classified either 

steep valley heads or earth banks as main scarps, and where 

subsequent growing resulted in delineation of a landslide body. 

This number of false positives might seem high at first, but this 

is not really true in our opinion because in the steep valley 

heads falsely classified as landslides (e.g. rectangle in Figure 4) 

the occurrence of small, shallow slides might not be excluded.  

 

 
 

Figure 4: Excerpt of the 50 km2 validation area showing two 

landslides identified by experts but only partly identified with 

OOA, because the surface morphology of the landslides is too 

subdued and affected by construction of houses and roads. The 

rectangle shows a valley head incorrectly classified as landslide. 

The inventory maps are overlaying the diffuse analytical shaded 

relief map (©AGIV, 2005) 
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4. DISCUSSION AND CONCLUSIONS 

 

We developed a semantic model for object-based classification 

of densely vegetated landslides. LiDAR derivatives such as 

slope gradient, roughness, openness and curvature were tested 

as an alternative to passive optical images used for 

identification and mapping of fresh landslides. Using LiDAR 

derivatives in an OOA we obtained similar accuracy results (i.e. 

approximately 71%) compared to previous studies using OOA 

and passive optical remote sensing data (e.g. Martha et al., 

2010). A few landslides identified by experts were not 

identified with OOA because they had a less profound or plan 

convex main scarp. Some plan concave road banks or river 

valley heads, on the other hand, were incorrectly classified as 

landslides.  

 

In soil-covered areas such as Flanders landslides are generally 

characterized by a much higher surface roughness compared to 

the surrounding landslide-free areas, and therefore good first 

results were obtained with slope gradient, surface roughness 

and openness maps. The downslope parts of old landslides, like 

those studied here, often have a poor geomorphometric 

signature. However, this problem has been reported for expert-

based landslide inventory mapping to (e.g. Schulz, 2004). In 

more mountainous areas, however, it is expected to be more 

difficult to distinguish landslides from non-landslide areas, 

because stable bedrock outcrops around landslides also have 

high topographic roughness (Van Den Eeckhaut et al., in press). 

Additionally, the number of false positive main scarps is higher 

due to the presence of steep cliffs, and transferability of a rule 

set calibrated for one or two landslides to other landslides is 

more problematic. 

 

In OOA, several differences between the use of passive optical 

remote sensing data and active optical remote sensing data such 

as LiDAR were observed. The most important one is that when 

using passive optical remote sensing data, fresh landslides 

generally consist of one or a few segments only. However, 

landslides are geomorphologically complex and consist of 

different parts with different geomorphological characteristics. 

Hence, they are not represented by one single segment when 

obtained from LiDAR derivatives and the aggregation from 

different segments into one final landslide segment is difficult.  

 

This study is the first to analyse different LiDAR derivatives 

and methods for segmentation of the landslide features. Given 

the good results obtained so far, it is worthwhile to explore the 

possibilities of OOA with LiDAR data further. Future research 

will focus on improving the flank delineation and on more 

objective selection of LiDAR derivatives to be used for 

segmentation and classification.  
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