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ABSTRACT: 
 
The study of the urban environment has raised great interest among researchers and practitioners involved with the use of remote 
sensing, in face of the challenges for its investigation and the complexity of its targets. Although they have great potential for studies 
of urban environments, the high-resolution images present difficulties for automatic extraction of information because they are 
characterized by high spatial and spectral heterogeneity for the same segment, which greatly complicates segmentation and 
classification processes. Thus, new concepts and analyses have been used for mapping the urban space. Object-based image analysis 
and multiresolution segmentation have been quite efficient in the discrimination of urban targets in high spatial resolution images. 
One technique that can assist the classification process is data mining, which can be used to explore large data sets, identify and 
characterize patterns of interest, and hence, support the precise extraction of useful information. In this context, this paper proposes a 
methodology jointly employing cognitive approaches (semantic net, object-based image analysis) and data mining (genetic 
algorithms and decision trees) for the classification of urban land cover from optical orbital and airborne laser data. To assess the 
efficacy of the methodology and ensure the accuracy of the produced maps, the steps undertaken in this study were subject to quality 
control. The results were presented and discussed, indicating a satisfactory accuracy in the generated mapping products, 
demonstrating the reliability of the methodology for mapping land cover in urban areas. 
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1. INTRODUCTION 

Urban areas are dynamic systems of great complexity, for they 
materialize the results of human action over the natural 
environment. In this sense, it is crucial that maps of these areas 
be elaborated and continuously updated. The information 
extracted out of these products can be used to guide medium- 
and long-term investments planning of a given municipality, 
monitor its increasing demands for technical infrastructure and 
social equipments, besides  supporting the elaboration of public 
policies in compliance with environmental guidelines and 
targeted to provide a sound quality of life to its inhabitants. 
Aerophotogrammetric survey is one of the oldest and most 
traditional sources for the generation of such maps. However, 
this a costly procedure, executed on demand, what renders  
remote sensing a more advantageous source of information, in 
face of its synoptic view, systematic acquisition and 
comparatively lower costs. 
More in-depth and thorough studies of urban areas could only 
be realized after the advent of high spatial resolution images in 
the year 1999, with the successful launching of the first high 
spatial resolution satellite - IKONOS II. Information extraction 
on these images were based either on manual or semi-automatic 
methods. A great number of automatic and semi-automatic 
classification methods has been developed since the release of 
the first images acquired by orbital remote sensing. 
Nevertheless, the automatic and/or semi-automatic classification 
of urban land cover/land use in high spatial resolution images 
poses new challenges. 

Experiments conducted by Pinho (2005) and Araújo (2006) 
demonstrated that both traditional and object-based image 
classification methods result in confusion between classes with 
similar spectral behavior, as for instance, French tiles and clay 
bare soil, asphalt and dark asbestos-cement tiles, as well as trees 
and grass vegetation. Considering that these confusing classes 
present distinct elevation values, this work was committed to 
insert high accuracy elevation data obtained by airborne laser 
scanning in the classification experiments, so as to minimize 
confusion between them. 
It is though worth stating that increasing accuracy is not the 
only goal of an object-based image analysis, but speeding up the 
definition of optimal segmentation parameters and the 
elaboration of a semantic network through automation is as well 
envisaged. For this purpose, genetic algorithms have been used 
to assess the best set of segmentation parameters and a decision 
tree algorithm has been employed to explore the input dataset in 
order to unravel patterns that could be of use in the generation 
of the knowledge model.  
In brief, this paper proposes a methodology jointly employing 
cognitive approaches (semantic net, object-based image 
analysis) and data mining (genetic algorithms and decision 
trees) for the classification of urban land cover from optical 
orbital and airborne laser data. In the remainder of this paper, a 
brief overview on the study area is provided in Section 2. 
Section 3 describes the data acquisition, pre-processing and 
methods adopted in this work, and Section 4 presents the results 
followed by a critical evaluation on the potential and drawbacks 
of the input data and methodological procedures in Section 5. 
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Finally, some conclusive remarks and directions for future work 
are drawn in Section 6. 
 
 

2. STUDY AREA 

The selected study area concerns a central sector of Uberlandia 
city, located in the southeastern State of Minas Gerais, Brazil 
(Fig. 1a and 1b). The city is located 550 km away from Belo 
Horizonte, the state capital, and has the following coordinates 
18º 55’ 07” S and 48º 16’ 38” W. Uberlandia city presents a 
cluster of high-rise buildings in its central neighborhoods, 
within which the study area is contained (Fig. 1c and 1d). The 
municipality had a population of 608,369 inhabitants in 2007. 
The city itself is located on a mildly undulated terrain, with a 
mean altitude of 1,000 m above sea level and it presents a hot 
and tropical climate, with a mean annual rainfall of 1,500 mm 
and an average temperature of 22 ºC. 
The occupation patterns of the central neighborhoods in 
Uberlandia are very diverse, comprising green areas, one- and 
two-storey buildings as well as high-rise residential and 
business buildings. The urban land cover materials found in the 
area are manifold and can be approximately categorized in: 
trees, grass, light bare soil, dark bare soil, light French tiles, 
dark French tiles, metallic roofs, light concrete decks, light 
asbestos cement tiles, medium to dark concrete decks or  
asbestos cement tiles, swimming-pool, and asphalt.  
 
 

3. METHODS  

3.1 Data Acquisition and Pre-processing 

The data used comprised: i) five IKONOS II images, of which 
four correspond to multispectral bands (B, G, R, NIR) with 4,0 
m of spatial resolution, and one is panchromatic, with 1,0 m 
resolution, all of them acquired on June 27, 2008, with 11 bits 
of radiometric resolution and a viewing angle of 8.2º; ii)  a 
digital surface model (DSM) and a digital terrain model (DTM) 
obtained by a laser scanning air survey with the ALTM 2025, 
with a raw elevation accuracy of 0.15 m; iii) a digital height 
model (DHM), generated from the subtraction between the 
DSM and DTM;  iv) a vector file in shape format, containing 
the streets network of Uberlandia city, given by its Municipal  
Government;  and v) 55 GPS points collected in rapid static 
mode with GPS Hipper. 
Initially,  the  four  IKONOS  II  multispectral   bands   were   pan- 
 

sharpened with the respective panchromatic band using the HIS 
method with the cubic convolution interpolator. Among several 
pan-sharpening methods which have been evaluated, the HIS 
proved to yield the best results. After this procedure, the image 
was subject to an orthorectifying process, based on GPS points 
collected in the field and evenly distributed over the study area. 
In total, 55 GPS points were collected, with an approximate 
planimetric (horizontal) accuracy of 0.030 m, and an elevation 
(vertical) accuracy of nearly 0,021 m. All of the points were 
processed using the UTM projection, South Zone 22, Datum 
WGS 84, based on the MGUB and UBER stations from the  
Brazilian Network for Ongoing Monitoring. 
After the acquisition and processing of field data, the image was 
orthorectified in absolute mode, using such GPS points, the 
sensor attitude and ephemeris data (rendered available in the 
image metadata files), and the elevation data derived from the 
laser scanning air survey accomplished with ALTM 2025. 
Fig. 2a shows the spatial distribution of 25 tie points (extracted 
ouf of the 55 points collected in the field) used for 
orthorectifying the IKONOS II image. The great majority of 
selected points are placed over the central portion of the scene, 
precisely where the study area is located, so as to assure a better 
geometric fit in this region. 
Before executing the orthorectification, the elevation values 
obtained with the GPS points, which actually correspond to 
geometric heights (related to the reference ellipsoid) had to be 
converted in orthometric heights, which are those related to the 
Earth´s geoid (or the mean sea level). 
The coordinates obtained after the field data processing were 
exported to a software named MAPGEO, which uses the 
planimetric (horizontal) coordinates to extract the value of the 
undulation of the geoid (difference between the reference 
ellipsoid and the Earth´s geoid) in the surveyed points.  
After this procedure, the image was finally orthorectified using 
the Rational Function Model (RFM), the LiDAR-derived DTM, 
and the GPS points. The orthoimage was generated using the 
bilinear interpolator and was referenced in the UTM projection, 
Datum WGS 84.  
The orthoimage represents a product corrected in relation to 
distortions caused by the sensor tilt, Earth curvature and ground 
relief, and hence, it has been actually used in the urban land 
cover classification. The orthorectified image was further 
subject to statistical validation procedures, based on the 
selection of a different set of GPS points positioned in easily 
identifiable locations in the scene. None of such points has been 
previously used for orthorectifying the image, so as to avoid 
trend errors in the validation process. 

 

 

 

 

 

Figure 1. Study area: a. Brazil b. Minas Gerais State and Uberlandia Municipality (in red) c. Study area (central sector 
of Uberlandia city) in true color composition of IKONOS II images (1B_2G_3R) d. Aerial view of study area 

a 

b 
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Minas Gerais State  
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Figure 2. IKONOS II image orthorectification: a. The entire scene comprising the study area, with tie points (blue dots) used for 
orthorectifying the image, with their respective ID number in black b. Zoom in the scene, showing the study area boundaries (light 

blue line) and the validation points (green dots) with their respective ID number in red 
 

Fig. 2b illustrates the spatial distribution of points used for 
validating the orthoimage. According to a method proposed by 
Galo and Camargo (1994), the validation tests are based on a 
10% level of significance and they comprise both trend and 
precision analyses. The trend analysis is based on a t-Student 
distribution and refers to an analysis of discrepancies between 
the observed coordinates in the cartographic product and the 
reference coordinates, calculated for each sample point. The 
precision analysis, on its turn, concerns the comparison of the 
standard deviation related to the discrepancies with the expected 
standard deviation for the desired class by means of a hypothesis 
test. 
The LiDAR DSM data were processed with the module 
TerraScan of TerraSolid software through Axelsson's 
progressive TIN densification algorithm, which extracts points 
directly located on the terrain surface by constructing an 
iterative TIN. This network was then converted in a regular grid 
representing the study area DTM. 
The same statistical tests applied for validating the orthoimage 
were as well applied in the validation of the LiDAR-derived 
DSM and DTM. According to USGS guidelines, the minimum 
amount of checking points for calculating the root mean square 
error (RMSE) of a DEM (DTM or DSM) is 28,  out of which 20 
must be located in the central part of it  and 8 in its borders.   
 
 

Out of the 55 GPS points collected in rapid static mode in the 
field, 42 of them were actually used for assessing the DSM and 
DTM accuracies, since they were located in easily identifiable 
places, well distributed over the scene and lying within the 
study area boundaries (Fig. 3a. and 3b). The subtraction 
between the DSM and DTM generated the digital height model 
(DHM) (Fig. 3c), which has been effectively used for the 
classification purposes reported in this paper.  

 
 

3.2 Definition of Segmentation Parameters Using Genetic 
Algorithms 

The segmentation parameters for the object-based land cover 
classification were defined in a plug-in named Segmentation 
Parameters Turner (SPT), developed by the Lab for Computer 
Vision of the Pontifical Catholic University of Rio de Janeiro 
(PUC-Rio), Brazil. SPT uses a genetic algorithm to identify 
optimal values, within a given search space, for all 
segmentation parameters required by the OBIA platform 
Definiens Developer, i.e. scale factor, weights for each input 
band, color and shape parameters as well as compactness and 
smoothness parameters. The most satisfactory value is 
determined      by    an    objective-function       which    assesses    the 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Figure 3. a. Digital surface model (DSM) of the study area with validation points (red dots) b. Digital terrain model (DTM) of the 
study area with validation points (red dots) c. Digital height model (DHM) of the study area

a   b 

a b c 
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degree of agreement between the segmentation results and the 
reference samples, consisting of segments manually delimited by 
the interpreter (Fig. 4a.). In mathematical terms, given a set of 
reference segments S, a disparity function F, and a vector of 
parameters P, the genetic algorithm (GA) aims at finding the 
optimal set of segmentation parameters Popt defined by Equation 
1 (Fredrich and Feitosa, 2008): 
 

Popt = argP min ([F(S,P)]) .                        (1) 
 
The user has to define the GA internal parameters, like number 
of experiments, population size, number of generations, initial 
and final gap (Fig. 4a). Nevertheless, SPT has as its default 
parameters values that have proved to generate the best results. 
Data are expected to converge after a certain amount of 
generations (Fig. 4 b), producing a segmentation at the end (Fig. 
4c). Several disparity functions have been implemented in SPT. 
In this particular work, the Larger Segments Booster - LSB 
function has been used. LSB favours results that closely match 
the reference samples with the minimum possible number of 
segments.  Let Si be a set of pixels belonging to i-th segment of 
S, SO(P) the set of segments produced by the segmentation that 
contains pixels of S, and SO(P)i the set of SO(P) which members 
own at least 50% of theirs pixels in Si. It is worth stating that:  
- the number of pixels in SO(P)i that do not belong to Si are 
considered fpi (false positive or omission errors); 
- the number of pixels in SO(P)i that also belongs to Si are 
considered vpi (trye positive); 
- the number of pixels in Si that do not belong to SO(P)i are 
considered fni (false negative or comission errors); 
- the number of pixels in the boundaries of SO(P)i contained 
within Si - or internal boundaries of references - as bi; and 
- the number of empty SO(P)i as NS. 
The LSB function is given by Equation 2: 
 

F (S,P) =   1/n   NS   +   �        fpi + fni + bi    .                   (2) 
                                          SO(P)

i
 �0           # Si 

 

 
3.3 Data Mining for Automating the Elaboration of the 
Semantic Network 

The semantic network in this object-based urban land cover 
classification was elaborated through data mining using the C4.5 
algorithm, created by Quinlan (1993) and implemented as the 
tree.J48 classifier in  the   data    mining    platform   WEKA, 
developed      by     the   University    of    Waikato,       New    Zealand.        This 

algorithm builds decision trees based  on  training  samples and 
through a recursive procedure of data partitioning. The trees are 
expressed as a flowchart, where each internal node executes a 
test with a given attribute, the branch (or arc) represents the test 
result, and the external node (or leaf) accounts for the expected 
class. For each node, the algorithm chooses the best attribute to 
separate the data in individual classes. The attributes that are not 
included in the tree are regarded as irrelevant. If the number of 
samples and/or their class descriptive ability are not appropriate, 
the decision tree will incorrectly classify many objects. Big trees 
tend to data overfitting, while very small trees end up by missing 
important attributes of the data. The algorithm always strives to 
produce less complex and smaller trees, for they are more easily 
understandable and show a better performance. For this end, it 
uses entropy in order to assess to what extent the node is 
informative. Small entropy values mean that less information 
will be used to describe the data.  

 
 

4. EXPERIMENT DESIGN: OBJECT-BASED 
CLASSIFICATION 

The optimal parameters provided by SPT drove the 
segmentation of the four pan-sharpened IKONOS II image 
bands in the Definiens Developer 7.0.4. This segmentation 
level was used to collect the samples for the decision tree 
training in the WEKA platform. Eleven classes of urban land 
cover were defined: bare soil, light French tiles, dark French 
tiles, metallic roofs, swimming pool, light concrete deck or 
light asbestos cement tiles, medium to dark concrete deck or 
medium to dark asbestos cement tiles, asphalt, shadow, trees, 
and grass.  All attributes existent in the Definiens Developer 
platform together with customized ones related to arithmetic 
transforms of image bands were added to the training set, what 
totalized 355 attributes, exported as file with CSV extension. In 
WEKA, the input dataset was subject to a preliminary filtering 
for removing noise and inconsistencies. The number of training 
samples per class was very diverse, but they tried to be 
representative of the spectral and textural heterogeneity of the 
concerned classes. A minimum of 55 objects (sample units) 
was set to be considered during the decision tree processing. 
After a certain number of consecutive training experiments in 
WEKA, the final decision tree was produced (Fig. 5), 
considering only five attributes out of the 355 initially selected. 
This decision tree was then converted into a hierarchical 
semantic network inside the Definiens Developer 7.04 
platform. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. a. Genetic algorithms parameters definition (left), inset of IKONOS II image (upper right corner) and respective reference 
samples in different colors (bottom right corner) of SPT GUI b. Fitness curve showing convergence c. Segmentation results 

a b c 
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Figure 5. Decision tree generated with the C4.5 algorithm for the study area, considering optical orbital data from IKONOS II images 
and a DHM extracted from laser scanning

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Object-based classification of urban land cover for the study area and its respective hierarchical semantic network derived 
from the generated decision tree 
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TToottaall A B C D E F G H I J K 
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ss ss
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aa tt
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A - Swimming Pool 1 0 0 0 0 0 0 0 0 0 0 1 
B - Bare Soil 0 8 0 0 0 3 0 2 1 0 4 18 
C - Trees 0 0 39 7 0 0 0 0 0 1 0 47 
D - Grass 0 0 4 12 0 0 0 0 0 0 0 16 
E - Light French Tiles 0 0 0 0 11 4 0 0 6 0 0 21 
F - Dark French Tiles 0 0 0 0 0 40 0 1 3 3 10 57 
G - Metallic Roofs 0 0 0 0 0 0 18 2 2 4 4 30 
H - Asphalt 0 1 0 0 0 0 1 62 5 3 8 80 
I - Light Concrete Deck/Asbestos Cement Tiles 0 0 0 0 0 0 0 1 30 7 0 38 
J - Medium to Dark Concrete Deck/Asbestos Cement Tiles 0 0 2 0 0 5 0 6 4 94 6 117 
K - Shadow 0 0 0 0 0 0 1 7 0 0 67 75 

 TToottaall  1 9 45 19 11 52 20 81 51 112 99 500 
           Global Accuracy:  0.7640                                                    Kappa Index :  0.7344                             Variance of Kappa:  0.00045 

 
Table 1. Error matrix and agreement indices for the object-based classification of urban land cover 

 
 

5. RESULTS AND DISCUSSION 

In the trend analysis, the validation of the orthoimage showed 
that it presented a mean error of 0.0071 m in the E component, 
and 0.0008 m in the N component, without trends in both 
components, and a standard error of 0.66m, compatible with a 
1:2,000 scale. In the precision analysis, the results also 
confirmed the orthoimage is up to the highest cartographic 
accuracy standard of a 1:2,000 scale. 
The statistical tests for the DSM and DTM demonstrated that the 
mean elevation error lied around 0,41 m and 0,48m, and the 
RMSE about 0,48 m and 0,47 m, respectively. In both cases, the 
presence of trend in the H direction was observed, revealing 
systematic influences in this component. This trend was further 
removed by means of algebraic manipulations. The precision 
analysis revealed that the DSM and DTM were up to the highest 
cartographic accuracy standard of a 1:5,000 scale. 
As to the optimal segmentation parameters, SPT provided a 
scale factor of 11, a color factor of 0.57, a compactness factor of 
0.64, and a weight of 0.06 for the blue band, of 0.52 for the 
green band, and of 0.42 for the red band.  
The generated decision tree showed a concise and logical 
structure, relying only on five attributes: the Normalized 
Difference Vegetation Index (NDVI); the ratio of the sum of the 
mean of brightness and the mean of the blue band to the mean of 
the red band; the mean of the DHM; the mean of the blue band; 
the mean of the near infrared band; and the difference between 
the mean of brightness and the mean of the near infrared band. 
There was only one repetition of a leaf node, namely the class 
metallic roofs, what is considered a very satisfactory result. It is 
worth remarking that the mean of the DHM has been used to 
differentiate trees from grass, bare soil from dark and light 
French tiles, and medium to dark concrete deck or asbestos 
cement tiles from asphalt, as expected.  
The classification result generated from the application of this 
decision tree is shown in Fig. 6. For validating this 
classification, 500 random points, collected through stratified 
sampling based on the share of the expected areas of each class, 
were taken into account for assessing the global accuracy and 
the Kappa index (Congalton, 1991). The validation results are 
presented in Table 1, indicating a reasonable amount of 
omission errors of shadow, which has been in some cases 
wrongly classified as dark French tiles, asphalt and medium to 
dark concrete deck or asbestos cement tiles. There were also 
meaningful commission errors of shadow, to which asphalt  
objects have been assigned. The  global accuracy achieved  76% 

and the Kappa index reached 73%, what is regarded as a very 
good accuracy according to a ranking of Landis and Koch (1977). 

 
 

6. CONCLUSIONS 

The use of the genetic algorithm routine implemented in SPT 
showed a satisfactory performance for the automatic 
assessment of the optimal segmentation parameters. 
Nevertheless, the shape complexity of some targets, the internal 
spectral variability of certain classes, and the diverse conditions 
of ageing and maintenance of some roof classes found in the 
study area led to an over-segmentation of some targets. 
In face of the massive number of available attributes (spectral, 
geometric, topological, textural) in the Definiens platform, the 
data mining techniques proved to be crucial for handling and 
exploring this great amount of information. Adding height 
information derived from laser scanning to the multispectral 
images helped in the discrimination between targets with 
similar spectral behavior but diverging elevation values. It is 
worth mentioning that all methodological stages in this work 
were subject to a quality control, aiming at assessing the quality 
and accuracy obtained by each generated product. The 
employed methods demonstrated to be applicable for the 
classification of urban land cover. 
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