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ABSTRACT:

The aim of this work was to assess the potenti@llgéct-Based Image Analysis for mapping fuel tyjpesn WorldView-2 imagery
in the Canary Islands (Spain). The study area, éocat the north of Tenerife Island, is topograpijcaomplex and it includes
several endemic species. An adaptation of the Rimue fuel type to Canary vegetation was mapped &diorldView-2 image
using an object-based image analysis step-wiseoappr Then, field data collected during May-Decemi2®11 was used to
validate the obtained classification. The objeddshimage analysis performed for the WorldView2gerg produced an overall
accuracy of 84%, with most error due to inaccurtallocation fuel types (allocation disagreemehtld%). Only 5% of the
detected disagreement was due to inappropriategiop of the identified fuel types (quantity disagment).
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1. INTRODUCTION

1.1 Introduction

Forest fire managers need precise information alibet
conditions, amount and spatial distribution of &rkuels, since
they are key variables in fire behaviour modelselRypes are
defined as the physical characteristics of the kel dead
biomasses (fuel elements of distinctive speciesmfosize
arrangement and continuity) that contribute to #mead,
intensity and severity of fire (Burgan et al., 1998royo et al
2008).

Digital fuel maps are a critical input in GIS-basetbdels,
which simulate fire behaviour as BEHAVEPIus (firehbeiour
prediction and fuel modelling system) (Andrew, 2)09
FARSITE (fire area simulator) (Finney, 2004) or FMap (fire
potential simulator) (Finney, 2006).

Tenerife Island (Canary Islands, Spain), located tfé
northwest coast of mainland Africa, does not cutyelmave an
adequate digital fuel type map. Besides, the preseoic
endemic species and the complexity of the vegetabibthe
island results in an unsuitable adjustment of thel types
defined for the Spanish forests in mainland (MARS39).

Remotely sensed data provides an important way rivedéhe
spatial distribution of fuel types and its variatiover the time,
reducing considerably the cost associated to fietfdwHigh
and medium spatial resolution imagery has provemdgo
performance to map fuel types. Using Quickbird iergg
Arroyo et al (2006), Mutlu et al (2008) and Malkret al (2008)
obtained fuel type maps with overall accuracie8bf 76 and
80% respectively. Using ASTER data, Lasaponaralambrte
(2007) obtained an overall accuracy of 91%.

The objective of this work is to evaluate the ptitdrof using
very high spatial resolution WorldView-2 (WV-2) datvith an
object-based approach (OBIA) to map fuel types imefie
Island.

2. DATA AND METHODOLOGY

2.1 Study area

The study area, with an extension of 18%kim located in the
north of Tenerife Island (Figure 1). The altitudenges from
870 to 1,808 meters above sea level. It includesracomplex
geological mixture of terrains with big ravines. eTtarea
contains the most important endemic groups of \a&iget in the
Canary Islands, being representative of the distiact
vegetation of the Archipelago. Some of most impar&pecies
included in this region are Azores Laureh(rus azorical.),
Faya (Myrica faya Ait.), Tree Heath KErica arborealL.) or
Canary PineRinus canariensis.).

2.2 Fieldwork data collection

Field data was collected from 77 circular plotshsiD m radius
from May to December of 2011. The plot3 were lodateery
500 m, forming a grid that covered the whole stadya. The
coordinates of the centre of each plot were reabndéh a
GeoExplorerXT (a minimum of 60 positions were cotéal for
each plot and saved to the GPS unit).
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The vegetation species and their heights were atetleeach
meter within four transects starting at the cemfethe plot
(following North, South, East and West directiong)his
information was then used to identify the Promeshiex¢! types
(Prometheus, 2000) adapted to the Canarian veget@kable
1). Pots were assigned into one of the followingl ftypes:
M1/M2; M3/M4; M5 and M6/M7 (Figure 2).

a) Canary Islands

b) Tenerife Island

Figure 1. a) and b) orthophoo from GRAFCAN, c) VZV-
image (band combination: RGB 532) of the study afea.
yellow dots indicate de location of field plots.

Prometheus _ Adapted
o Description Prometheus
Classification o
Classification
Fuel type 1 grass cover >50%
average fuel height 0.3t M1/M2
Fuel type 2 0.6m
Fuel type 3 average fuel height 0.6+
20m
. M3/M4
Fuel type 4 average fuel height 2.0t
4.0m
shrub cover <30%
Fuel type 5 tree cover >50% M5
shrub cover >30%, treeg
cover >50%, distance
Fuel type 6 | between the canopy base
and surface fuel layer
>0.5m
shrub cover >30%, tree M6/M7
cover >50%, distance
Fuel type 7 | between the canopy base
and surface fuel layer
<0.5m

Table 1. Prometheus fuel type classification (éeldfrom
Arroyo et al., 2008) and the used fuel type clasation
(adapted for the Canarian vegetation).



(a & b), M3/M4 (c), M5 (d) and M6/M7 (e & ).

2.3 Satellitedata

One WV-2 image of the study area was acquired oe,J2011.
The WV-2 sensor provides a very high resolutionghaomatic
band (0.50 m) and eight multispectral bands (2.00 four
standard colour (red, green, blue and near-infrajednd four
new bands (coastal, yellow, red edge and nearradre?)
(Table 2).

Spectral Band Centre Sensor Bands
wavelength (nm) (nm)

Panchromatic 632 450 — 800
Coastal 427 400 — 450
Blue 478 450 - 510
Green 546 510 - 580
Yellow 608 585 - 625
Red 659 630 — 690
Red Edge 724 705 — 745
NIR 1 831 770 — 895
NIR 2 908 860 — 1040

Table 2. The spectral information of WV-2 imagery.

The acquired WV-2 image was a standard ortho readguct,
which was radiometrically corrected. This image wasverted
to surface reflectance using the atmospheric ctorec
algorithm/code FLAASH (Fast Line-of-sight Atmospiter
Analysis of Spectral Hypercubes) available as @ pAENVI
(RSI/ENVITM) image processing package. FLAASH desive
its ‘physics based’ mathematics from MODTRAN4 (Cqobéd
al., 2002).

The resulting image was ortho-rectified using atdiglevation
model (DEM) with 5 m spatial resolution. Finallyet image
was cropped to the size of the study area.

2.4 Vegetation indices

In addition to the original WV-2 image bands, tluldwing
vegetation indices were calculated: NDVI (Normatize
Difference Vegetation Index) (Rouse et al., 1978y aNDVI,
a modified NDVI where the Yellow and NIR2 Bands ased
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instead of the Red and NIR1 Bands. These indices were
estimated at an object level.

2.5 OBIA classification

The fuel type classification methodology is outtina Figure 3.
First, an iterative multi-scale image segmentatias carried
out in order to generate a two-level network of gmabjects. A
level calledvegetationwas created first, and it was used to
distinguish the main vegetation groups: coniferargsts and
broadleaved forests. In order to reduce the pratgdsne, a
thematic band was used to mask out the non-forestes. .

’ WorldView-2
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FLAASH
Module

|

Orthorectification

PROMETHEUS
l Classification adapted
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}

Classification
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Figure 3. Workflow chart of the methodology usedhiis study.

The second level, so callégel type levelwas segmented using
the vegetation indices, the original WR-2 bands #nredDEM.
The objects created in the fuel type level werssifeed in a
step-wise manner. Those fuel types showing a ctearstic
spectral behaviour were classified first, and cxinitgformation
was used to aid in the identification of the rermagnfuel types.
The classification result of level vegetation wasgidered here
by means of hierarchical object-based featuresleTatshows
the object-based features and thresholds used ldssifying
each fuel type.

Fuel Type Coniferous Broadleaved
M1/M2 Mean Coastat350| YNDVI<0.5
Mean Yellow800 | Mean Blue375
M3/M4 | NDVI>0.7 Max Diff<3
M5 NDVI<0.55 No present
M6/M7 Remaining objects| Remaining
objects

Table 3. Object-based features and thresholdsfosed
classifying fuel types

The obtained classification was then refined byglessifying
those small isolated objects that were fully sunded by a
different fuel type. For doing so, we used the feat'relative
border to”, with a threshold of 1. The obtained maps
exported as a shapefile for validation againsffitld data. The
accuracy of the obtained map was estimated by cosgpa
with the 77 plots assessed in the field, using mar enatrix.



The performance of the classification was analyimettrms of

error, which was divided in two components: errdige to

quantity disagreement and errors due to allocatisagreement
(Pontius and Millones, 2011).

3. RESULTSAND DISCUSSION

The obtained fuel map is presented in Figure 4ndgy$BIA
and the spectral information from the WV-2 imagdoyr fuel
types were identified.
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Figure 4. Fuel type map of the study area.

The overall accuracy of the fuel map was 84%. ket fype
M3/M4, 23% of the validation plots had been missifesd as
fuel type M6/M7. 12 and 6% of plots assigned ad fype
M6/M7 in the field had been misclassified as fyges M1/M2
and M3/M4, respectively. Fuel types M1/M2 and Mb5revéhe
most accurately classified, with an accuracy of%00
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Figure 5. Quantity disagreement and allocationgtesament for
each fuel type.

14 16 18

Figure 5 shows proportion of quantity and allogatio
disagreement for each fuel type. Fuel type M1/Mavad a
quantity disagreement of 5%, whereas fuel type MEHdd the
highest allocation disagreement (16%). Fuel type3/M4
showed 5% for quantity and allocation disagreemeéugl type
M5 has not showed any disagreement.

For all the fuel types, the proportion of error igsed to
quantity disagreement, indicates differences inpttogortion of
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fuel types in relation to the proportions found foe validation
plots. In contrast, the values obtained for allorat
disagreement indicate that, when accurately idedtif fuel
types were correctly allocated within the studyaare

4. CONCLUSIONS

Fuel type maps of a topographically complex area ba
obtained using OBIA and the spectral informationsehsor
WV-2.

We are currently studying the possible incorporatal new
synthetic indices and LIDAR data to the OBIA. Thesaw
sources of information would allow considering theight of
the vegetation, which would further improve the eleped fuel
type mapping method.
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