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ABSTRACT: 
 
The aim of this work was to assess the potential of Object-Based Image Analysis for mapping fuel types from WorldView-2 imagery 
in the Canary Islands (Spain). The study area, located in the north of Tenerife Island, is topographically complex and it includes 
several endemic species. An adaptation of the Prometheus fuel type to Canary vegetation was mapped from a WorldView-2 image 
using an object-based image analysis step-wise approach. Then, field data collected during May-December, 2011 was used to 
validate the obtained classification. The object-based image analysis performed for the WorldView2 imagery produced an overall 
accuracy of 84%, with most error due to inaccurate of allocation fuel types (allocation disagreement of 11%). Only 5% of the 
detected disagreement was due to inappropriate proportion of the identified fuel types (quantity disagreement). 
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1. INTRODUCTION 

 
1.1 Introduction 

Forest fire managers need precise information about the 
conditions, amount and spatial distribution of forest fuels, since 
they are key variables in fire behaviour models. Fuel types are 
defined as the physical characteristics of the live and dead 
biomasses (fuel elements of distinctive species, form, size 
arrangement and continuity) that contribute to the spread, 
intensity and severity of fire (Burgan et al., 1998; Arroyo et al 
2008).  
 
Digital fuel maps are a critical input in GIS-based models, 
which simulate fire behaviour as BEHAVEPlus (fire behaviour 
prediction and fuel modelling system) (Andrew, 2009), 
FARSITE (fire area simulator) (Finney, 2004) or FlamMap (fire 
potential simulator) (Finney, 2006).  
 
Tenerife Island (Canary Islands, Spain), located off the 
northwest coast of mainland Africa, does not currently have an 
adequate digital fuel type map. Besides, the presence of 
endemic species and the complexity of the vegetation of the 
island results in an unsuitable adjustment of the fuel types 
defined for the Spanish forests in mainland (MAPA, 1989).  
 
Remotely sensed data provides an important way to derive the 
spatial distribution of fuel types and its variation over the time, 
reducing considerably the cost associated to fieldwork. High 
and medium spatial resolution imagery has proven good 
performance to map fuel types. Using Quickbird imagery, 
Arroyo et al (2006), Mutlu et al (2008) and Mallinis et al (2008) 
obtained fuel type maps with overall accuracies of 81, 76 and 
80% respectively. Using ASTER data, Lasaponara and Lanorte 
(2007) obtained an overall accuracy of 91%.  
 
The objective of this work is to evaluate the potential of using 
very high spatial resolution WorldView-2 (WV-2) data with an 
object-based approach (OBIA) to map fuel types in Tenerife 
Island. 
 

2. DATA AND METHODOLOGY 

 
2.1 Study area 

The study area, with an extension of 18 km2, is located in the 
north of Tenerife Island (Figure 1). The altitude ranges from 
870 to 1,808 meters above sea level. It includes a very complex 
geological mixture of terrains with big ravines. The area 
contains the most important endemic groups of vegetation in the 
Canary Islands, being representative of the distinctive 
vegetation of the Archipelago. Some of most important species 
included in this region are Azores Laurel (Laurus azorica L.), 
Faya (Myrica faya Ait.), Tree Heath (Erica arborea L.) or 
Canary Pine (Pinus canariensis L.). 
 
2.2 Fieldwork data collection 

Field data was collected from 77 circular plots with 10 m radius 
from May to December of 2011. The plot3 were located every 
500 m, forming a grid that covered the whole study area. The 
coordinates of the centre of each plot were recorded with a 
GeoExplorerXT (a minimum of 60 positions were collected for 
each plot and saved to the GPS unit). 
 

The vegetation species and their heights were collected each 
meter within four transects starting at the centre of the plot 
(following North, South, East and West directions). This 
information was then used to identify the Prometheus fuel types 
(Prometheus, 2000) adapted to the Canarian vegetation (Table 
1). Pots were assigned into one of the following fuel types: 
M1/M2; M3/M4; M5 and M6/M7 (Figure 2).  
 

 
Figure 1. a) and b) orthophoto from GRAFCAN, c) WV-2 
image (band combination: RGB 532) of the study area. The 

yellow dots indicate de location of field plots. 
 

Prometheus 
Classification 

Description 
Adapted 

Prometheus 
Classification 

Fuel type 1 grass cover >50% 
M1/M2 

Fuel type 2 
average fuel height 0.3-

0.6 m 

Fuel type 3 
average fuel height 0.6-

2.0 m 
M3/M4 

Fuel type 4 
average fuel height 2.0-

4.0 m 

Fuel type 5 
shrub cover <30% 
tree cover >50% 

M5 

Fuel type 6 

shrub cover >30%, tree 
cover >50%, distance 

between the canopy base 
and surface fuel layer 

>0.5 m 
M6/M7 

Fuel type 7 

shrub cover >30%, tree 
cover >50%, distance 

between the canopy base 
and surface fuel layer 

<0.5 m 
Table 1.  Prometheus fuel type classification (adapted from 

Arroyo et al., 2008) and the used fuel type classification 
(adapted for the Canarian vegetation).  
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Figure 2. Examples of fuel types within the study area: M1/M2 

(a & b), M3/M4 (c), M5 (d) and M6/M7 (e & f). 
 

2.3 Satellite data 

One WV-2 image of the study area was acquired on June, 2011. 
The WV-2 sensor provides a very high resolution panchromatic 
band (0.50 m) and eight multispectral bands (2.00 m), four 
standard colour (red, green, blue and near-infrared 1) and four 
new bands (coastal, yellow, red edge and near-infrared 2) 
(Table 2). 
 

Spectral Band 
Centre 

wavelength (nm) 
Sensor Bands 

(nm) 
Panchromatic 632 450 – 800 
Coastal 427 400 – 450 
Blue 478 450 – 510 
Green 546 510 – 580 
Yellow 608 585 – 625 
Red 659 630 – 690 
Red Edge 724 705 – 745 
NIR 1 831 770 – 895 
NIR 2 908 860 – 1040 

Table 2.  The spectral information of WV-2 imagery. 
 

The acquired WV-2 image was a standard ortho ready product, 
which was radiometrically corrected. This image was converted 
to surface reflectance using the atmospheric correction 
algorithm/code FLAASH (Fast Line-of-sight Atmospheric 
Analysis of Spectral Hypercubes) available as a part of ENVI 
(RSI/ENVITM) image processing package. FLAASH derives 
its ‘physics based’ mathematics from MODTRAN4 (Cooley et 
al., 2002). 
 
The resulting image was ortho-rectified using a digital elevation 
model (DEM) with 5 m spatial resolution. Finally, the image 
was cropped to the size of the study area.  
 
2.4 Vegetation indices 

In addition to the original WV-2 image bands, the following 
vegetation indices were calculated: NDVI (Normalized 
Difference Vegetation Index) (Rouse et al., 1973); and YNDVI, 
a modified NDVI where the Yellow and NIR2 Bands are used 

instead of the Red and NIR1 Bands. These indices were 
estimated at an object level. 
 
2.5 OBIA classification 

The fuel type classification methodology is outlined in Figure 3. 
First, an iterative multi-scale image segmentation was carried 
out in order to generate a two-level network of image objects. A 
level called vegetation was created first, and it was used to 
distinguish the main vegetation groups: coniferous forests and 
broadleaved forests. In order to reduce the processing time, a 
thematic band was used to mask out the non-forested areas. . 
 

 
 
Figure 3. Workflow chart of the methodology used in this study. 
 
The second level, so called fuel type level, was segmented using 
the vegetation indices, the original WR-2 bands and the DEM.  
The objects created in the fuel type level were classified in a 
step-wise manner. Those fuel types showing a characteristic 
spectral behaviour were classified first, and context information 
was used to aid in the identification of the remaining fuel types. 
The classification result of level vegetation was considered here 
by means of hierarchical object-based features. Table 3 shows 
the object-based features and thresholds used for classifying 
each fuel type. 
 

Fuel Type Coniferous Broadleaved 

M1/M2 
Mean Coastal ≥350 YNDVI ≤0.5 
Mean Yellow≥800 Mean Blue≥375 

M3/M4 NDVI≥0.7 Max Diff≤3 
M5 NDVI≤0.55 No present 

M6/M7 
Remaining objects Remaining 

objects 
Table 3. Object-based features and thresholds used for 

classifying fuel types 
 
The obtained classification was then refined by re-classifying 
those small isolated objects that were fully surrounded by a 
different fuel type. For doing so, we used the feature “relative 
border to”, with a threshold of 1. The obtained map was 
exported as a shapefile for validation against the field data. The 
accuracy of the obtained map was estimated by comparison 
with the 77 plots assessed in the field, using an error matrix. 
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The performance of the classification was analyzed in terms of 
error, which was divided in two components: errors due to 
quantity disagreement and errors due to allocation disagreement 
(Pontius and Millones, 2011). 
 

3. RESULTS AND DISCUSSION 

The obtained fuel map is presented in Figure 4. Using OBIA 
and the spectral information from the WV-2 imagery, four fuel 
types were identified.  
 

 
 

Figure 4. Fuel type map of the study area. 
 

The overall accuracy of the fuel map was 84%. For fuel type 
M3/M4, 23% of the validation plots had been misclassified as 
fuel type M6/M7. 12 and 6% of plots assigned as fuel type 
M6/M7 in the field had been misclassified as fuel types M1/M2 
and M3/M4, respectively. Fuel types M1/M2 and M5 were the 
most accurately classified, with an accuracy of 100%.  
 

 
Figure 5. Quantity disagreement and allocation disagreement for 

each fuel type. 
 
Figure 5 shows proportion of quantity and allocation 
disagreement for each fuel type. Fuel type M1/M2 showed a 
quantity disagreement of 5%, whereas fuel type M6/M7 had the 
highest allocation disagreement (16%). Fuel types M3/M4 
showed 5% for quantity and allocation disagreement. Fuel type 
M5 has not showed any disagreement. 
 
For all the fuel types, the proportion of error assigned to 
quantity disagreement, indicates differences in the proportion of 

fuel types in relation to the proportions found for the validation 
plots. In contrast, the values obtained for allocation 
disagreement indicate that, when accurately identified, fuel 
types were correctly allocated within the study area.  
 

4. CONCLUSIONS 

Fuel type maps of a topographically complex area can be 
obtained using OBIA and the spectral information of sensor 
WV-2.  
 
We are currently studying the possible incorporation of new 
synthetic indices and LiDAR data to the OBIA. These new 
sources of information would allow considering the height of 
the vegetation, which would further improve the developed fuel 
type mapping method.  
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