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ABSTRACT:

Due to the ongoing urbanization (e.g. urban sprawl) the demand for frequent updates of urban land use classes for monitoring, control-
ling and modeling purposes is increasing. The derivation of urban land use (LU) from satellite images is an added value that can not be
achieved directly from the data itself. Distinguishable structures and patterns are described using thematic, morphological, topological
and spatial properties forming specific relations of land cover classes. The objective of this work is to formalize those properties and
relations within a graph based concept to model a specific urban land use type by identifying typical spatial arrangements. The study
area is Rostock, a German city at the Baltic Sea with more than 200.000 inhabitants. For first analysis cadastral building polygons and
building objects derived from high resolution Quickbird data and LiDAR building heights are used. Nodes describing a certain urban
object and edges representing a relation of the object are the components of a graph. At first the distribution of the cadastral building
objects is investigated to generate meaningful Euclidean distance ranges. Graphs of the distance ranges are generated and compared
using graph measures that evaluate the compactness and connectivity of the graph, like alpha-, beta-, gamma-index and the clustering
coefficient. Afterwards the appliance of the distance ranges on building polygons derived from segmentation algorithms of Quickbird
images is tested. The results show that the spatial relation of distance is a reliable indicator for distinguishing urban LU-categories.
The separability of LU-classes should be improved by combining significant properties of land cover classes and graph indices to a
LU-signature.

KURZFASSUNG:

Aufgrund der fortschreitenden Verstädterung (Suburbanisierung/Zersiedelung) wächst der Bedarf an regelmäßiger Aktualisierung urba-
ner Landnutzungsklassen für Modellierungs-, Überwachungs- und Kontrollzwecke. Die Ableitung urbaner Landnutzung aus hochauf-
gelösten Satellitenbildern stellt einen Mehrwert dar, der nicht direkt aus den Daten extrahiert werden kann. Erkennbare Strukturen und
Muster werden mit Hilfe von thematischen, morphologischen, topologischen und räumlichen Eigenschaften und Beziehungen zwischen
Landbedeckungsklassen verdeutlicht. Das Ziel des Projektes ist es diese Eigenschaften und Beziehungen in einem Graphen-Konzept
umzusetzen, um urbane Objekte und deren räumliche Anordnung zu modellieren. Das Untersuchungsgebiet ist Rostock, eine deutsche
Stadt an der Ostsee mit mehr als 200.000 Einwohnern. Für erste Untersuchungen wurden Gebäudepolygone aus der Automatisier-
ten Liegenschaftskarte (ALK) und Gebäudeobjekte, abgeleitet aus Quickbird Satellitendaten und LiDAR Gebäudehöhen, verwendet.
Knoten, die ein bestimmtes Stadtobjekt beschreiben und Kanten, welche die Beziehung der Objekte zueinander definieren, sind die
Komponenten des Graphen. Die Verteilung der ALK-Gebäudepolygone wird untersucht, um signifikante euklidische Distanzberei-
che zu erhalten. Mit Hilfe der Distanzbereiche werden Graphen erzeugt und spezifische Indikatoren verwendet, um die Graphen bzgl.
Kompaktheit und Verbindungsgrad zu vergleichen. Anschließend wird die Übertragbarkeit der Distanzbereiche auf Gebäudeobjekte ge-
testet, die auf Basis von Segmentierungsalgorithmen aus Quickbirddaten abgeleitet wurden. Die Ergebnisse zeigen, dass die räumliche
Eigenschaft der Distanz ein verlässlicher Indikator für die Unterscheidung von urbanen Landnutzungskategorien ist. Die Trennbar-
keit urbaner Landnutzungsklassen kann verbessert werden, indem man signifikante Eigenschaften der Landbedeckungsklassen und
Graphenindikatoren zu einer Landnutzungssignatur kombiniert.

1 INTRODUCTION

Urban areas grow constantly and parts of them change in form,
functionality, demographic structure and are damaged by natural
disasters or human impacts like wars and rebuilt. The United Na-
tions Habitat announced in their “State of the world‘s cities 2010/
2011“ that by 2030 more people of the world will live in cities
than in rural areas (UN Habitat, 2011). Urbanization is the least
reversible human dominated LU-type. The consequences range
from land cover change to climate impacts, habitat loss or extinc-
tion of species and influence transportation development, energy
demand or specific commercial markets (Seto et al., 2011). The
European Environment Agency mentioned the main drivers in
Europe as: population increase, rising living standards, improve-
ment of quality of life, economic growth, globalization, policies

and regulations, low transport costs, availability of roads and oth-
ers (European Environment Agency, 2010). Hence there is a need
for urban LU-information for sustainable planning and develop-
ment applications, for political decision making, monitoring of
ecosystem changes, disaster management or analysis of quality of
living. The urbanization process is inevitable but the awareness
to handle, plan and manage urban growth sustainable, careful and
ecology-minded should be pushed forward. According to Di Gre-
gorio (2005) “Land Use is characterized by the arrangements, ac-
tivities and inputs people undertake in a certain land cover type
to produce change or maintain it.” (Di Gregorio, 2005). Barns-
ley and Barr (1997) describe land use as “abstract concept – an
amalgam of economic, social and cultural factors – one that is
defined in terms of function rather than physical form.”. So far
urban land use is collected from surveying, mapping or digitizing,
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population statistics or inquiries. These methods require high fi-
nancial and personal investments, are time-consuming and there-
fore less actual. The benefits of an approach based on satellite
images are the high temporal resolution, a constant coverage and
an area wide availability. Urban land use is an added value that
can be derived indirectly from urban land cover and its proper-
ties. Properties like building area, object shape, building height,
neighborhood or imperviousness describe a certain area and cre-
ate a distinguishable structure. A graph, as an abstract concept
of real world phenomena, can store these properties as node- or
edge-attributes and can emulate the structure of the LU-category.
The paper will give a brief overview of related work, the study
site and available datasets and a short digression into graph the-
ory follows. In section 5 the data analysis starts with a description
of the observed LU-classes. Afterwards the distribution of build-
ings is examined to derive distance ranges for analyzing the in-
fluence of distance when creating urban building graphs. Finally
a first approach to transfer the graph based concept to buildings
derived from satellite data is presented. The paper concludes with
a summary of the results and suggests future work.

2 RELATED WORK

Graph theory is applicable to various disciplines and networks
which illustrate issues in biology, geography, ecology or eco-
nomics are ubiquitous. Image Processing is a field of applica-
tion of graph theory which is not only related to remote sensing
but also to medicine, informatics and others. It is worth to gain
insight into those research fields when working with graph the-
ory for structural analysis and classification approaches. Deuker
et al (2009) used various graph indices for analyzing complex
networks in human brains. Magnetoencephalography (MEG)-
Images from brains in state of rest and solving memory exer-
cises were compared. Therefore global graph indices (cluster-
ing coefficient, path length, small-worldness, assortativity, hier-
archy etc.) were calculated on different frequency interval net-
works. These indices were classified into first (clustering coef-
ficient, path length) and second order (small-worldness, assorta-
tivity, hierarchy) depending on how many graph properties are
required to compute the index. Gunduz et al (2004) classified
cancer cells in brains (glioma) in tissue images by topological
properties. After using Euclidean distance and Waxman model
for graph generation, various graph indices and artificial neural
network (ANN) classification were accomplished. Three result-
ing classes for the cells were achieved: healthy, cancerous and
inflamed.
Within remote sensing and geoinformatics applications a deriva-
tion of urban LU-classes based on graphs was established by
Barnsley and Barr (1997). Their developed data model called
XRAG (eXtended Relational Attribute Graph) exists of nodes,
edges each with its properties, the land cover label, possibility
of grouping and the probability of the assigned land cover class.
Morphological, relational as well as spatial properties of land
cover types were derived from topographic maps in raster for-
mat. Graphs based on spatial relations (adjacency, containment)
were built and the node degrees of three residential areas of dif-
ferent decades and a hospital complex compared. Bauer and
Steinnocher (2001) implemented rules for LU extraction within
eCognition software (Benz et al., 2004) based on previous analy-
sis in SAMS (Structural Analyzing and Mapping System), where
XRAG is included. Investigating urban topological structures De
Almeida et al (2007) used graph-search algorithms to describe
the topological property of containment. Triangulated LiDAR
data was used and the slope of the triangles calculated. A clas-
sification of flat and steep polygons followed. Finally depth-first
search (DFS) and breadth-first search (BFS) algorithms in graph-

trees were compared. A graph clustering technique presented by
Anders et al (1999) was used to infer higher level urban structures
from detailed cadastral map data to allow a multi-scale map gen-
eration. Using a Delaunay triangulation (DT) a relative neighbor-
hood graph (RNG) was generated. After the removal of outlier
edges the local neighbor density was estimated from the mean
distance of edges.

3 STUDY SITE AND DATASET

The study area is Rostock, a German Hanseatic city, situated
along the Warnow river and at the Baltic Sea with more than
200.000 inhabitants and an area of circa 181 km2. Vector data
from the German automated real estate map (ALK) and a digital
landscape model (DLM) of Rostock were beneficial to allocate
training areas, to develop the method and to evaluate the outcome.
The boundaries of the DLM dataset are classified relating to the
LU-types (see Sec.5). A cloud-free Quickbird scene with a pan-
sharpened spatial resolution of 60 cm from September 2009 is
available (Figure 1). The Quickbird image data is corrected for
atmospheric effects using ATCOR2 (Richter et al., 2006). Due to
the fact that a topographic correction is not included in the Ortho
Ready Standard Imagery product the CE90 (Circular Error with
90% level of confidence) is denoted as 23 m or higher, depending
on terrain variability in the scene and the view angle (Cheng et
al., 2003). Therefore the Quickbird scene is corrected by a pro-
jective transformation using 30 well distributed ground control
points acquired from the cadastral building data and the digital
elevation model (DEM) from LiDAR data. To obtain relative ob-
ject heights (buildings and vegetation) a normalization (nDSM)
of LiDAR data with a point density of two points per square me-
ter collected in 2006 with the DEM is performed.

Figure 1: Quickbird satellite image with superimposed borders
of Rostock ( c©DigitalGlobe, Inc., 2011)

For comparison purposes of the methods a segmentation of the
satellite image and the nDSM is performed followed by an object
based classification to extract the building land cover by Voltersen
(2011). Therefore the mean nDSM height of 2 m is the first
criterion. Afterwards the separation of buildings and trees is
achieved by considering the Normalized Differenced Vegetation
Index (NDVI).
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4 GRAPH THEORY

In 1736 Euler abstracted the problem of the ”Seven Bridges of
Königsberg“ and proved that a round tour crossing every bridge
only once is impossible. This abstraction was denoted as the ini-
tiation of a branch of mathematics called graph theory. Various
applications e.g. routing algorithms, social and cognitive net-
works, technological networks, cell networks or ecological net-
works, infrastructure networks, flow models, minimal costs com-
putation etc. emphasize the interdisciplinary character of graph
theory. A graph comprises vertexes (nodes) and edges (links)
(Caldarelli, 2007) and is defined by its adjacency matrix. The row
and column-indices of this matrix stand for the vertexes while the
binary entries represent the connection of the vertexes (1=con-
nected, 0=not connected). Graph measures indicate structural
characteristics of graphs. The beta index (1) , defined by edges (e)
over vertexes (v) is a measure for connectivity (Rodrigue et al.,
2009).

β =
e

v
(1)

The gamma index (2) is the quotient of the observed edges over
the maximum possible number of edges. It ranges between 0 and
1, where 1 stands for a complete graph with no subgraphs.

γ =
e

3(v − 2)
(2)

The alpha index (4) indicates the redundancy of a graph and is de-
fined by the ratio of observed cycles (meshes) over the maximum
possible cycles. Its values vary between 0 and 1, while 1 stands
for a fully connected graph. A cycle or mesh is a chain of edges
with same start and end node and no edge is crossed more than
once. The number of cycles (u) (3) is calculated from edges (e),
vertexes (v) and the number of sub-graphs (p), which are subsets
of a graph (Rodrigue et al., 2009, Stuttgart, 2011).

u = e− v + p (3)

α =
u

2v − 5
(4)

More extensive graph indices could reveal structural differences
between networks. The clustering coefficient, also named transi-
tivity in social network research, reveals whether neighbors of a
vertex are also adjacent to each other. It reveals cluster or com-
munities with a similar degree of links. While the local clustering
coefficient unveils the clustering of a specific node the global (5)
indicates the probability of a graph that adjacent nodes are con-
nected. Watts and Strogatz (1998) introduced the clustering coef-
ficient for social networks. In Newman et al (2001) the clustering
coefficient is defined as

C =
3 x number of triangles on the graph

number of connected triples of vertices
. (5)

A connected triple stands for a vertex which is connected to two
other vertexes. Hence a complete triangle consists of three con-
nected triples (Watts and Strogatz, 1998, Newman et al., 2001,
Rodrigue, 2009).

5 DATA ANALYSIS

A goal of the project was to analyze the distance of neighboring
buildings as a property that could reveal urban typology. Five
meaningful urban LU-classes are defined in Table 1 delineating
the typical German urban land use. Characteristics are adopted
from Breuste et al (2001) or properties like imperviousness or
green area index from Banzhaf and Höfer (2008). Building area
index (BAI) and floor area index (FAI) are upper limits declared
by the German Federal Land Utilization Ordinance (Bundesmin-
isterium der Justiz, n.d.). While the BAI is defined as the ratio of
the building area over the parcel area, the FAI is the quotient of
the floor area over the parcel area.

LU-class Description

City center (1)

Dense multi-storied building type next to
the street, narrow streets or alleys, small
paved or vegetated courtyards, paved open
areas, churches, city halls, very high im-
perviousness (70-90%), BAI=1, FAI=3

Residential
single family
houses (2)

low building density with detached 1- or 2-
storied houses, uniform urban settlement
up to individual shaped buildings, access
to roads, garages, pools, terrace as paved
areas, low to intermediate imperviousness,
BAI= 0.2-0.6, FAI=0.4-1.2

Residential
block buildings
(3)

Large rectangular simple form buildings,
regular alignment, more than 3 stories,
low to intermediate imperviousness, green
area index 25-80%

Industrial area
(4)

large, multi-storied or low-rise buildings,
extensive paved area for parking lots, of-
ten situated next to railroad lines, port fa-
cility or highways, isolated few or no veg-
etation areas, often no clear spatial struc-
ture, BAI=0.8, FAI=2.4, green area aver-
age 16%

Allotment (5)

Detached small sized buildings (hovels,
arbors), low built up, low imperviousness,
abundant vegetation, BAI=0.2, FAI=0.2,
next to forest or green areas, used as buffer
between railroad lines, high traffic-roads,
industrial areas and residential buildings

Table 1: Urban land use classes

5.1 Analysis of ALK Building Polygons

For the following analysis the DLM-boundaries, which surround
a square of streets, in the settlement areas of Rostock are used.
Thereby industrial and allotment areas are extracted directly. Ar-
eas with appellation of harbor, dockyard, power station and wa-
ter works are classified as industrial as well. The residential
classes single, block and city center are assigned manually us-
ing the DLM-boundaries declared as general residential building
area, area of mixed use and area with special functional emboss-
ing. Additionally boundaries with less than five buildings are
disregarded due to insufficient significance. In Figure 2 the re-
sulting DLM-boundaries with their allocation to the LU-classes
are visualized. To establish distance ranges of buildings for the
graph development it is essential to investigate the distribution
of the buildings within each DLM-boundary. If the appearance
of the buildings is rather clustered than random or dispersed,
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the derivation of a mean distance value would not be meaning-
ful and would not result in useful findings. The applied method
for the investigation of the distribution is described in detail by
Trauth (2010,p.221ff.). Therefore the buildings of the real estate
map layers 11 and 84 (predominantly garden houses) are used
and centroids are computed. A nearest neighbor criterion is ap-
plied, starting with the calculation of the mean nearest neighbor
distance. The expected mean nearest neighbor required a value
for the area under investigation. The area of the DLM-boundary
is not reasonable because they could be greater than the occur-
rence of the buildings. At the city borders where no street limits
the outside of the city a crossover to agricultural fields or woods
is noticeable. Due to these circumstances the area of the convex
hull of the buildings within each DLM-boundary is chosen. Af-
terwards the z-distribution (standard normal distribution) is com-
puted using the standard error of the mean nearest-neighbor dis-
tance. At a significance level of 95% the z-distribution has its
critical values of 1.96 and -1.96. This connotes that values be-
low -1.96 leads to clustered distribution, values above 1.96 mean
dispersed and values in between represent random distribution.

Figure 2: Boundaries of the digital landscape model of Rostock
with assigned land use classes

In Table 2 the distribution of the buildings split by LU-class is
summarized. A visual inspection of the clustered polygons shows
that often a complex form of the DLM-boundaries is responsible
for the clustered result. These outlier-polygons were removed
from further analysis to ensure valid results.

LU-class dispersed random clustered Sum

city center 129 17 2 148
single family 383 42 5 430
block buildings 212 29 3 244
industrial 221 29 3 253
allotment 676 58 7 741

Table 2: Summary of amount of DLM-boundaries assigned to
distribution category

In the next step a Delaunay triangulation (DT) of the building
centroids per DLM-boundary is computed, which takes the spa-

tial relationship of neighborhood of buildings into account. The
result is a planar graph per DLM-boundary where the mean edge
length is calculated. In Table 3 the statistics of the mean dis-
tance values of the LU-classes is summarized. It reveals that the
city center, residential single family houses and allotment areas
often have similar spacing of buildings as well as that industrial
and block building areas represent a group. Deduced from the
median and the interquartile range two distance ranges are deter-
mined: 0-35 m and 35-85 m.

LU Mean SD Median Q1 Q3 IQR

1 24.48 8.52 22.98 18.47 27.91 9.44
2 26.64 8.37 25.46 21.36 30.50 9.14
3 55.29 26.41 54.70 37.60 72.96 35.36
4 70.09 42.59 59.56 44.04 79.87 35.83
5 29.53 11.07 26.27 22.91 32.92 10.01

Table 3: Summary of statistics of mean distance values split by
LU-class (SD=Standard deviation, Q1=25th percentile, Q3=75th
percentile, IQR=Interquartile range )

Two different graphs per DLM-boundary are built. Based on the
DT the graphs are thinned out by values which are outside of the
distance ranges. The geometric graph visualization of a residen-
tial single family house-area and an industrial area during the two
distance ranges is shown in Figure 3.

(a) edge length 0-35 m (b) edge length 35-85 m

(c) edge length 0-35 m (d) edge length 35-85 m

Figure 3: Planar graphs of cadastral building polygons (ALK):
industrial area (a),(b); residential single family house-area (c),(d)

Looking at the two distance ranges the graph structure changed.
E.g. in the industrial area the graph changes from a sparsely con-
nected in the 0-35 m range to a multiple connected graph in the
35-85 m range. In the next step the graph measures described
in section 4 are computed. Exemplary the box plots of the beta
index and clustering coefficient are shown in Figure 4.

The beta index of single family houses, city center and allotment
areas for the distance range 0-35 m showed extreme values as ex-
pected. The beta index values for the distance range 35-85 m are
similar for all LU-classes. This is explained by the long edges
at the border of the triangulation that occurred with the classes
single family houses, city center and allotment areas, which also
appears in Figure 3(d). The box plots of gamma and alpha index
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(a) (b)

Figure 4: Box plots of beta index(a) and clustering coefficient(b)
of planar graphs of cadastral building polygons (ALK)

are similar to the beta index plot. Due to their related algorithm
basis the three measures strongly correlate in planar graphs. The
box plot of the clustering coefficient shows a significant narrow
interquartile range for single family houses, city center and al-
lotment areas in the 0-35 m range while in the 35-85 m range
a considerable descent is observed. The clustering value of in-
dustrial and block areas has a high variance with no significant
changes between the distance ranges.

5.2 Analysis of Building Objects from the Quickbird Scene

These investigations of distance as a spatial relation between build-
ings are transferred to buildings derived from spatial high resolu-
tion satellite data. The same initial DLM-boundaries are used.
As with the cadastral building polygons the boundaries with less
than five buildings are disregarded. During distribution analy-
sis we found that the amount of boundaries is noticeably smaller
than with the cadastral building polygons. The explanation is
that the polygons classified as buildings are merged when they
have a building neighbor. This resulted for most of the city cen-
ter boundaries that only one building is found per boundary and
these boundary therefor were removed. Also in residential single
family house areas a merging of neighboring buildings means a
fusion of house and garage when these objects are located next to
each other. The DT of the remaining LU-boundaries is calculated
and the statistical analysis of the mean distance is computed and
summarized in Table 4.

LU Mean SD Median Q1 Q3 IQR

1 52.01 11.66 48.58 43.85 61.01 17.17
2 48.23 13.29 45.30 38.84 54.61 15.77
3 74.63 30.02 70.75 50.56 91.11 40.55
4 89.50 40.24 79.58 62.94 105.76 42.82
5 40.47 15.64 36.60 30.65 45.74 15.09

Table 4: Statistics of mean distance of building land cover from
satellite images after DT split by LU-class (SD=Standard devia-
tion, Q1=25th percentile, Q3=75th percentile, IQR=Interquartile
range)

The similar spacing of city center, residential single family houses
and allotment areas still remains but the median distance of the
buildings increased up to 25 m, due to the mentioned merging.
The median of industrial and block building house areas increased
by 10 to 15 m. The interquartile range go along with the observed
increase of the median and is widened. Especially the IQR-value
for the city center showed the highest raise. This leads to a new
definition of the distance ranges for the graphs. Deduced from
the median values and the IQRs the two distance ranges of 0-
60 m and 40-150 m are determined with an overlap of 20 m. The
two different graphs per DLM-boundary are built by thinning out
the edges of the DT removing the values outside of the distance

ranges. The graph visualization of the same residential single
family house and industrial area as in Figure 3 are shown in Fig-
ure 5 for visual comparison. Despite the overlapping of the dis-
tance range and the wider interquartile range the graph structure
of the industrial area is more distinctive in the 40-150 m range
while the graph of the single family house-area has a higher de-
gree of connection in the 0-60 m range. Afterwards the graph
measures are computed. The box plot of the beta index and clus-
tering coefficient are shown in Figure 6. The interquartile range
in the beta index in 0-60 m range of single family houses, allot-
ment and center areas displayed small overlaps with the industrial
and block areas. But in general a decrease of the beta index from
the shorter to the longer distance range is visible for single family
houses, allotment and center areas. Whereas the graph structure
for industrial and block buildings shows an increase.

(a) edge length 0-60 m (b) edge length 40-150 m

(c) edge length 0-60 m (d) edge length 40-150 m

Figure 5: Planar graphs of building objects derived from the
Quickbird scene: industrial area (a),(b); residential single fam-
ily house-area (c),(d)

A combination of the distance classes and the computed increase
or decrease can be helpful to distinguish between the two groups.
This aggregation of graph measures for different spatial, rela-
tional or topological properties should result in a significant sig-
nature for each LU-class.

(a) (b)

Figure 6: Box plots of beta index(a) and clustering coefficient(b)
of planar graphs of building objects derived from the Quickbird
scene

The box plot of the clustering coefficient do not vary much com-
pared to the one with cadastral building polygons. The interquar-
tile range of single family houses, allotment and center areas is
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still very narrow in the shorter distance range and shows a de-
crease for longer distances. The clustering of industrial and block
areas has a wide spread especially for shorter distances. On the
basis of the clustering coefficient alone a distinction of the LU-
classes is not possible.

6 CONCLUSION AND FUTURE WORK

The distribution of the cadastral building polygons as well as the
building objects derived from the Quickbird image is rather dis-
persed or random than clustered. This fact legitimated the evalu-
ation of the graph structure relating to different distance ranges.
Particularly the beta index of the shorter distance range is a signif-
icant measure for the distinction between two groups in the cadas-
tral building dataset (Fig. 4(a)). Better results could be achieved
using the graph structures of both distance ranges and combine
the results to a land use signature. Using the building land cover
objects derived from the Quickbird scene a displacement of the
mean distances and a widening of the interquartile ranges was
observed. A reason for that is the prior merging of the segmented
building polygons. This resulted predominantly in the city cen-
ter in large rather than separated buildings. Also in single family
house areas a merging of neighboring building objects means a
fusion of the residential house with the adjacent garage, as in
Fig. 5 compared to Fig. 3 is shown. A re-segmentation to gener-
ate sub-partitions of the merged building objects should be con-
sidered for future analysis. However this circumstance led to an
adjustment of the distance ranges. Nevertheless the derived beta
index of both distance ranges (Fig. 6(a)) indicated a decrease for
the single family house, allotment and center classes from shorter
to longer distances. On the contrary an increase of the beta in-
dex for industrial and block areas from shorter to longer distance
ranges could be observed. The clustering coefficient has signif-
icant narrow interquartile ranges for single family house, allot-
ment and center classes with both approaches (cf. Fig. 4(b) and
Fig. 6(b)), which should be focused on in later work. Further re-
search has to be done concerning graphs with several vertexes and
edge attributes. Not only the distances as a spatial attribute but
also the building heights, areas and direct neighborhood will be
analyzed. The mentioned land use signature has to be developed
further based on the combination of various graph properties in
order to achieve a better LU-class separability. The adoption of
supervised machine learning methods (e.g. random forest) will
be utilized to analyze various graphs and graph measures simul-
taneously.
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Breuste, J., Wächter, M. and Bauer, B. (eds), 2001. Beiträge zur
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