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ABSTRACT: 

 

The lower Amazon River floodplain is subject to large seasonal variations in water level, which associated with the flat topography, 

result in significant variation in flood extent throughout the year. Synthetic Aperture Radar (SAR) data offers a good choice for 

mapping the flooded area in these wetlands, given its ability to provide timely and continuous information without being strongly 

affected by cloud cover and atmospheric conditions. As part of JAXA's Kyoto & Carbon Initiative, wide-swath, multi-temporal 

coverage of the Amazon basin has been obtained using the ScanSAR mode of ALOS PALSAR. One of the largest limitations of 

radar automated classification is the occurrence of speckle noise. Furthermore, the dynamic nature of the floodplain environment 

demands the use of advanced methods, capable of integrating multiple sources and scales of information. This study tests the 

applicability of object-based image analysis for monitoring flood extent changes as a function of river stage height, using ALOS 

ScanSAR images for the Curuai Lake floodplain. This study area is located at the lower Amazon River near the city of Óbidos (Pará 

State, Brazil). Seven ScanSAR scenes were acquired during the 2007 flood pulse. Water level records from two gauge stations 

(Curuai and Óbidos), field photographs collected during the rising water period of 2011 and optical images (Landsat-5/TM and 

MODIS/Terra and Aqua) were also used. A data mining algorithm allowed the identification of thresholds, later used to implement a 

hierarchical object-based classification algorithm to map the flooding status in the study area for all available dates. The accuracy of 

the classification was assessed for the first three hierarchical classification levels, as well as for flooding status. Levels 1 and 2 (one 

land cover map for the entire time series) had overall accuracies of 90% and 83%, respectively. Level 3 classifications (one map per 

date) were validated only for the lowest and highest water stages, with overall accuracies of 78% and 80%, respectively. Flooding 

status was mapped with 88% and 90% accuracies for the low and high water stages, respectively.  
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1. INTRODUCTION 

Flood extent monitoring in the Amazon River floodplain has 

great importance for the understanding and conserving this 

ecosystem. The floodplain fulfils several important roles, such 

as natural control of extreme events, habitat provision to flora 

and fauna species and as source of environmental services and 

resources to riverside communities (Mitsch & Gosselink, 2000). 

The Amazon wetlands also have an important role in the global 

carbon budget, both as a source of greenhouse gases (CO2 and 

CH4) and as a carbon sink (Melack et al., 2004; Richey et al., 

2002). 

Large seasonal variations in the spatial distribution of flooding 

in the Amazon floodplain are caused by the high amplitude of 

the annual flood wave. The periodicity and amplitude of this 

wave was introduced by Junk et al. (1989) for the Amazon 

system as the flood pulse concept. 

Access, cost and logistics limit the use of in situ techniques for 

monitoring flood extent in the wetlands of large rivers. Remote 

sensing data, especially Synthetic Aperture Radar (SAR) data, 

represents an alternative due to its ability to provide timely and 

continuous information. 

The wide swath of the ScanSAR mode from the 

PALSAR/ALOS sensor (L-band SAR) allows frequent image 

acquisition at several phases of the flooding season. This mode, 

however, has limitations such as speckle, coarse spatial 

resolution and a significant effect of the wide range of incidence 

angles on the recorded SAR backscatter (Ardila et al., 2010). 

Thus, object-based image analysis (OBIA) can be an alternative 

for an accurate monitoring of the flood extent, allowing the use 

of attributes other than per-pixel backscatter, and of 

complementary data such as optical images and topographic 

maps in the classification process. 

Therefore, this paper reports an OBIA based methodology to 

monitor the flood extent in the Amazon River floodplain, using 

PALSAR ScanSAR data acquired as part of JAXA's Kyoto & 

Carbon Initiative during the 2007 flood pulse in the Curuai Lake 

floodplain. 

 

2. METHODS 

2.1 Study area and input data 

The study area comprises the Curuai Lake floodplain, along the 

Lower Amazon River (Figure 1). Water level variation in the 

lake shows seasonal amplitude of ~ 6 meters. This amplitude, 

associated with its flat topography, results in significant 

variation in the flooding extent throughout the year. 

Image data was acquired by the PALSAR sensor, aboard the 

ALOS satellite. Seven scenes of the 409 orbit, ScanSAR mode 

were acquired at 1.5 processing level, in amplitude (digital 

numbers), with a pixel spacing of 100 meters. Each image date 

represents a different water level condition. 

 

Optical data was used to minimize classification confusion 

between land cover types. Landsat-5/TM and MODIS surface 

reflectance (Terra and Aqua) images acquired at dates close to 

ScanSAR acquisition and at similar water levels (Figure 2) were 

used in the OBIA process. Also, the SRTM (Shuttle Radar 

Topographic Mission) elevation model was used to exclude 

upland areas from the analysis. 

 

 
Figure 1. Curuai floodplain. a) Hatched area represents the 409 

ScanSAR/ALOS orbit; b) Filtered ScanSAR composite image 

(R:30/11/2006 - G:15/01/2007- B:02/06/2007).  

© JAXA/METI 2007. 

 

 
Figure 2. Image acquisition dates along the 2007 flood pulse. 

* MODIS 8 days surface reflectance data. 

 

The methodology of this study was structured in five main steps 

(Figure 3). 

 

 
Figure 3. Steps of the OBIA analysis. 
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2.2 Backscattering analysis of land cover types 

Backscattering analysis was performed to identify possible 

overlaps between class distributions that could result in 

confusion during the classification process. Eight land cover 

types were sampled in the ScanSAR images, according to their 

backscattering signals: Rough and Smooth Open Water (ROW 

and SOW); Flooded and Non-flooded Forest (FF and NFF); 

Dry/Smooth and Wet/Rough soil (DS and WS); and Emergent 

and Floating Macrophytes (EM and FM). Landsat-5/TM images 

were used as reference for sample collection of these classes (> 

500 pixels). A field campaign during the rising water period in 

2011 also helped class identification.  

The backscattering characteristics were examined in terms of 

amplitude, and later converted to normalized backscattering 

coefficients (  ) to allow for comparison with previous SAR 

studies. Backscattering samples were analysed using descriptive 

statistics and boxplots showing class overlap and temporal 

variation. 

 

2.3 Class hierarchy and data mining 

The classification of the land cover types of the floodplain was 

necessary as a preliminary step for the flood mapping, since the 

radar response to the flooding status varies between classes. The 

eight classes analysed were organized into four hierarchical 

levels, as a function of their backscattering and temporal 

variation characteristics.  

Similarly to Silva et al. (2010) study, the first classification 

level identified three classes, defined by their annual flooding 

pattern: Upland (non-floodable areas), Floodplain (variable 

flooding) and Permanent Open Water (open water surface 

during the lowest water level in 2007). At level 2, the 

Floodplain class was split into two main classes, assumed as 

spatially constant along the year: Forest and Non-forest. The 

third level segregated Forest areas into two classes, according to 

flooding status (Flooded -‘FF’ - and Non-Flooded forest – 

‘NFF’), and also segregated Non-Forest areas into two 

intermediary groups according to radiometric similarity: i) 

‘Bright’ (including Wet/Rough soil – ‘WS’, Emergent 

macrophyte - ‘EM’ - and Rough open water – ‘ROW’), and ii) 

‘Dark’ (with Dry/Smooth soil – ‘DS’, Floating macrophyte - 

‘FM’ and Smooth open water – ‘SOW’). Discrimination of each 

individual class within these radiometric groups was based on 

optical data, given their very similar backscattering. Finally, 

Level 3 classes were merged into a fourth level, according to 

their flooded condition (‘Flooding Status’, Figure 4). 

 

 
Figure 4. Hierarchical classification scheme for classifying land 

cover types and flooding status at the Curuai Lake floodplain, 

lower, Amazon River, Brazil. 

 

The WEKA data mining tool (Witten & Frank, 2005) was used 

to identify backscattering patterns in the defined classes, as well 

as extract thresholds that could be later used as classification 

rules. The WEKA J4.8 algorithm was used to define the 

classification rules based on the input SAR data class attributes 

provided by the samples. When class overlaps were not resolved 

using SAR data (water and soil classes, for instance), MODIS 

infrared reflectance was used to further separate the classes. The 

optical classification thresholds were extracted through visual 

feature inspection in eCognition 8. 

 

2.4 Segmentation and classification 

Image segmentation was performed using the multi-resolution 

algorithm implemented in eCognition 8, which allows the 

integration of images of multiple sources and resolutions into 

the object-generation process (Definiens, 2008). Temporal 

images were generated of the same backscattering attributes 

selected for the data mining approach (Table 1). They were used 

at the first three classification levels and had specific objectives. 

Beyond the temporal images two other data were used at Level 

1: SRTM because of its importance on segregating Upland than 

Floodplain; and infrared band of Landsat-5/TM (B5) to 

segregate the Permanent Open Water. 

 

Image / 

attribute 
Description 

Classification 

Hierarchy 

TAB 
Temporal Average 

Backscattering 

Levels 1, 2 

and 3 

TSD 

Temporal Standard 

Deviation 

backscattering  

Levels 1, 2 

and 3 

HWL 
Highest Water Level 

backscattering 
Levels 1 and 3 

LWL 
Lowest Water Level 

backscattering 
Levels 1 and 3 

HLR 

Highest/Lowest water 

level backscattering 

Ratio 

Level 1 

SRTM Digital Elevation Model Level 1 

B5/TM 

Landsat-5/TM Infrared 

band of the low water 

stage (15/10/2006)  

Level 1 

  

Table 1.  Images/attributes used at the segmentation process of 

the classification levels.  

 

A hierarchical, object-based classification was applied at 

eCognition 8 not only the ScanSAR data but also optical 

classification thresholds to deal with the high variability of 

radar backscatter values in the Amazon Floodplain. 

 

2.5 Accuracy assessment 

Accuracy assessment was performed for all hierarchical levels 

using different approaches. For Levels 1 and 2, a set of 200 

points (50 per L2 class) was randomly generated. For the third 

classification level sample size was increased to 500 points, 

which were similarly interpreted, and with the final assignment 

of two water stages, corresponding to low (30/11/2006, 452 cm) 

and high (18/07/2007, 959 cm) water level. Validation samples 

were visually interpreted based on field and high resolution 

optical data, in addition to the SAR and TM images.  

Since no field data was available to validate the flooding status 

of forest areas during the studied period, a validation sample 

was created by simulating flood extent using the merged 

SRTM/bathymetry DEM produced by Barbosa (2005). An 

algorithm based on elevation thresholds was applied to generate 

an approximation of the flood extent based on the available 

Curuai water stage height data. 
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3. RESULTS 

3.1 Land cover types backscatter 

Important temporal aspects were observed in the ScanSAR data. 

Although the main confusion was observed between soil 

(Figure 5) and open water classes, as expected for L-band SAR 

(Hess et al., 2003), soil cover types had a wider temporal 

variation throughout the year (Figures 6 and 7). This occurs in 

response to changes in moisture content and the transition from 

bare to herbaceous vegetation cover (Balenzano et al., 2011), 

while water surface roughness is mostly affected by wind, 

resulting in radiometric variations of shorter duration that 

averaged to similar backscattering values over time. 

The results also supported the grouping of land cover types 

during the classification, since the Non-forest classes 

(macrophytes, soil and open water) presented bi-modal 

backscattering distributions. Therefore, Non-forest classes could 

be divided into two main classes according to backscatter 

values: ‘Bright’ (-10 dB to -17.5 dB, EM, WS and ROW) and 

‘Dark’ (-19.5 to -24 dB DS, FM and SOW). 

Despite the EM class present the mean value inside the ‘Bright’ 

group (i.e. -13.4 dB), it presented the highest radiometric 

variability, with values distributed along the three groups 

defined. This behaviour had to be considered in the 

classification rules definition. 

 

 
Figure 5. Backscattering kernel density of the eight classes 

sampled. 

 

 
Figure 6. Temporal variation of the classes Wet/rough soil (WS) 

and Rough open water (ROW).  

 

 
Figure 7. Temporal variation of the classes Dry/smooth soil 

(DS) and Smooth open water (SOW).  

 

 

3.2 Object-based classification 

Images used for segmentation had different importance on the 

object generation results. The TAB image allowed the 

identification of areas with similar backscattering along the 

entire flood pulse, while the TSD revealed those with larger 

radiometric variation along the year, which have higher spatial-

temporal dynamic. The LWL, HLW and HLR images were 

important in the identification of classes’ objects that present 

very specific backscattering behaviour according to the water 

level. 

The attributes explored from the classes allowed the definition 

of the classification rules that segregated the land cover types 

using SAR, optical and topographic data (Figure 8, 9 and 10).  

 

 

 
Figure 8. Object-based classification rules for levels 1 and 2. 

sc=scale; sh=shape; co=compactness; LWL=Lowest Water 

Level backscattering; TAB=Temporal Average Backscattering; 

B5/TM= Landsat-5/TM band 5 acquired at low water stage; 

IA=Incidence angle. 
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Figure 9. Object-based classification algorithm for Forest class 

at level 3. sc=scale; sh=shape; co=compactness; HWL=Highest 

Water Level backscattering; LWL=Low Water Level 

backscattering; TAB= Temporal Average Backscatter; TSD= 

Temporal Standard Deviation backscattering;  SDB= Single 

Date Backscattering. 

 

 

 
Figure 10. Object-based classification algorithm for Forest class 

at level 3. sc=scale; sh=shape; co=compactness; HWL=High 

water stage backscatter; LWL=Low water stage backscatter; 

TAB= Temporal Average Backscatter; TSD= Temporal 

Standard Deviation backscatter;  SDB= Single Date 

Backscatter. B5/TM= Landsat-5/TM band 5 acquired at low 

water stage; IA=Incidence angle; and WL=water level at Curuai 

station. 

 

 

Level 1 classification had the best overall accuracy (91%) and 

kappa index value (0.86). The overall accuracy and kappa index 

of Level 2 were reduced to 83% and 0.77, respectively. At this 

level the highest classification errors were observed for Forest 

and Non-Forest. Level 3 low water stage had an overall 

accuracy of 77%, while the high water stage Level 3 overall 

accuracy was slightly lower (76%). The decrease in the 

accuracy throughout the classification hierarchy is explained 

both by error propagation and by the increasing similarity 

between classes at the higher classification levels (Walker et al., 

2010).  

The final merging of classes into a binary flooding status map 

increased the accuracy of Level 3 classification, as a large 

portion of the confusion occurred among classes with the same 

status. The overall accuracies of the flood maps for low and 

high water stages were, respectively, 88% and 90% (Figure 13). 

 

 
Figure 11. Mapped flooded area for the Curuai Lake floodplain, 

Lower Amazon River, for two dates: 30/11/2006 representing 

the low water stage (a) and 18/07/2007 representing the high 

water stage (b). The black line represents the polygon 

considered for area calculations. 

 

 

4. CONCLUSION 

The use of OBIA allowed the integration of optical and SAR 

data, and the exploration of the spatial and temporal variation of 

PALSAR ScanSAR backscattering observed for the Amazon 

floodplain, and supported the monitoring of flooding extent 

during 2007, while reducing the effect of image speckle and 

incidence angle variability on the SAR data classification. 

The major restriction of the algorithm is the requirement of 

optical data to improve classification accuracy for open water 

and soil areas. A viable alternative would be the use of SAR 

data acquired at shorter wavelengths, which more sensitive to 

small roughness variations in smooth targets (Aubert et al., 

2011). 

A remarkable advantage of the present approach is the short 

processing time of the object-based algorithm, yielding accurate 

flood extent maps without the need for laborious and time-

consuming manual editing. 
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