
Generating test scenarios and improving

software quality with model-based testing
*

Caroline C. Letizio Fernando R. Villas-Boas Bruno T. de Abreu
†

Institute of Computing –

Unicamp

Sofist – Intelligent Software

Testing

Sofist – Intelligent Software

Testing

Campinas SP, Brazil Campinas SP, Brazil Campinas SP, Brazil

caroline.letizio@gmail.com fernando.villasboas@sofist.com.br bruno.abreu@sofist.com.br

*
 The authors would like to thank the support of FAPESP given through research grant #2008/55297-0.

†
 Corresponding author

Abstract

Today’s challenge of software’s lifecycle is to do

more with less resources and costs. In software testing,

automated test is being seen as a means to accomplish

this goal. However, there is a lack of proposals that fo-

cus on test design automation. One way to do it and

that is becoming common is model-based tests. This

work briefly presents a tool that eases test design and

that automatically generates test scenarios, presenting

too the opinions of those who tried it.

1. Introduction

In the beginnings of software testing, test cases had

to be designed manually, with the following inconve-

niences:

 Too many test cases to be manually designed;

 Intensive rework due to the huge number of test

cases;

 Test team becoming unmotivated;

 Some errors when designing test cases;

One alternative that testers found to this problem was

to automate tests in order to minimize time and effort

without affecting test quality [2], and model-based tests

has been proving to be an efficient way of automating.

One way to abstract the software’s main idea and

behavior is by modeling, either using a decision tree, a

finite state machine, a case diagram, an activity dia-

gram, or any equivalent representation. Testers noted

that it is possible with these models to create scenarios

and test cases, since it is a way to verify the software

decisions and all the paths that data can take.

A test model is obtained from software require-

ments. It must have an exact syntax and exact seman-

tics, i.e., the model must be executable by tools. Such

tools should be able to create the model itself or to

create tests from this model.

Presently there are many solutions both in the soft-

ware industry and in the academy that focus on automat-

ing the execution of white box and black box tests [8, 9,

10]. Model-based testing is a black box testing tech-

nique, so it is neither necessary to know the type of lan-

guage or tool that was used to develop the software, nor

its internal structure [6], so this type of testing has been

very effective. The following are its main advantages.

 The generation of test cases begins earlier at the

development cycle, helping to find failures right

from the beginning and reducing the cost of bug

correction;

 It allows automated generation of tests;

 It reduces test generation costs, since in frequently

changing systems a tester only have to modify the

model of the system and then quickly recreate his

tests, as opposed to recreating them manually and

originating accidental mistakes [7];

 The model allows automated exploratory testing at

the software;

 It allows regression tests, which involve testing the

modified program in order to establish confidence

in the modifications [2].

Organizations want to test software in an adequate but

quick and as thorough as possible way [2]. This paper

shows model-based testing in practice, and it is orga-

nized as follows: Section 2 describes a tool produced by

Sofist, which generates tests scenarios from an activity

diagram, while Section 3 presents some of the results of

those tests in one of Sofist partners.

2. Model-based testing in practice

Since the source code of the components is general-

ly not available in earlier stages of software develop-

ment, we adopted a method to generate test cases from

UML Activity Diagrams [3, 5]. Most of the diagrams

are modeled using information taken from use cases,

and this method was improved by Sofist R&D team. It

resulted in a tool that generates test scenarios from one

or many activity diagrams (AD). A test scenario could

be defined as a high-level test case (one without de-

tailed test input and output).

Test scenarios can serve as a guide to the test team,

helping them to focus on what really needs to be tested.

They can also be used as a way to generate many dif-

ferent test cases, because it is generic and does not tell

which test data is needed as input; the test analyst must

discover a way to execute that scenario. This last aspect

makes test scenarios more flexible and useful even for

agile development teams.

There are several advantages in using activity dia-

grams: 1) putting together information about the use

case flow makes it easy to see what the software has to

do, 2) it provides a higher understanding of the costu-

mer about its business, since an AD is generally a

workflow, and 3) it facilitates the identification of the

impact due to changes at the use case flows.

The tool also enables the modeling of interaction

among use cases. For instance, in unit testing and inte-

gration testing we can test each unit and later integrate

them, until we have the complete system with all its

units grouped. Furthermore, a standalone use case

could be seen as a unit, therefore a scenario that de-

scribes interactions between two or more use cases can

uncover more different types of faults than a scenario

that has steps of just one use case [4].

Other benefits are the anticipation of the software’s

scenarios for tests, since its specification is usually avail-

able at the beginning of the development cycle. This an-

ticipation reduces the risks of delay, in case the project

has been made after the analysis or implementation stage,

thus reducing costs even more. The use of ADs enables

the advance identification of inconsistencies in use cases,

or in the interaction between them, reducing the chance

of occurring changes in requirements after the beginning

of the implementation stage. A relevant issue is that 56%

of fault findings in software, after it has been delivered,

occur at the requirement stage [1].

3. Conclusions

Sofist is running a real-world proof of concept with

one of its partners. The feedback from the partner’s

team is that many issues started to arise when the mod-

eling was still ongoing, long before development. More

than 150 issues in 25 use cases were raised so far, and

all were relevant and valid according to the partners’

business analysts.

This feedback validates our proposal, since we were

able to anticipate the identification of issues that would

impact not only the test team, but also the development

team. Using Sofist’s test design tool, we were able to

generate automatically in less than 30 seconds more

than 500 test scenarios that guaranteed 100% of cover-

age of 25 use cases’ specification.

Another interesting feedback from the partner’s

team was the change in the team’s mood. People that

started doing test design based on models were happier,

and when the authors asked the reason they got two an-

swers: a) “Now I’m doing a thing that really excites me

and puts my brain to work hard”, and b) “I just can’t

wait to do a rework on just only a few models instead

of 100 test cases inside a spreadsheet”.

4. References

[1] D. Leffingwell, “Calculating your return on investment

from more effective requirements management”, Internet:

http://www.ibm.com/developerworks/rational/library/347.ht

ml accessed February 12, 2011.

[2] E.R.C. de Almeida, B.T. de Abreu, R.A. Moraes, “Simple

Approach to Automated Test Effort Estimation”. In: 4th Lat-

in-American Symposium on Dependable Computing, 2009,

João Pessoa. Proc. of the Fourth Latin-American Symposium

on Dependable Computing, 2009. v. 1. p. 1-2.

[3] I. R. D. C. Perez, E. Martins, “Automação em Projeto de

Testes Usando Modelos UML”. In Proc. of 1st Brazilian

Workshop on Systematic and Automated Software Testing

(SAST 2007). João Pessoa, PB, Brazil.

[4] L.C. Briand, Y Labiche, “A UML-Based Approach to Sys-

tem Testing”. Software and System Modeling V. 1 N. 1 (2002).

[5] P. Zielczynski, “Traceability from Use Cases to Test Cas-

es”.Internet:http://www.ibm.com/developerworks/rational/lib

rary/04/r-3217/ accessed February 12, 2011.

[6] S.H. Edwards, “Black-Box Testing Using Flowgraphs: An

Experimental Assessment”, Software Testing, Verification and

Reliability, Vol. 10, No. 4. (12 January 2001), pp. 249-262

[7] S.R. Dalal, A. Jain , N. Karunanithi , J.M. Leaton, G.C.

Patton, B.M. Horowitz, “Model-Based Testing in Practice”

ICSE 99 Proceedings of the 21st International Conference on

Software Engineering. ACM New York NY, USA 1999

[8] Test Design Tools. Internet http://www.testingfaqs.org/t-

design.html accessed March 18, 2011.

[9] Test Tools and Site Management Tools. Internet:

http://www.softwareqatest.com/qatweb1.html accessed Feb-

ruary 12, 2011.

[10] Testing tools and Unit testing tools. Internet:

http://www.opensourcetesting.org accessed February 12, 2011.

http://portal.acm.org/author_page.cfm?id=81100457454&coll=DL&dl=ACM&trk=0&cfid=9981892&cftoken=75500209
http://portal.acm.org/author_page.cfm?id=81100113921&coll=DL&dl=ACM&trk=0&cfid=9981892&cftoken=75500209
http://portal.acm.org/author_page.cfm?id=81100181313&coll=DL&dl=ACM&trk=0&cfid=9981892&cftoken=75500209
http://portal.acm.org/author_page.cfm?id=81100634320&coll=DL&dl=ACM&trk=0&cfid=9981892&cftoken=75500209
http://portal.acm.org/author_page.cfm?id=81100406411&coll=DL&dl=ACM&trk=0&cfid=9981892&cftoken=75500209
http://portal.acm.org/author_page.cfm?id=81100406411&coll=DL&dl=ACM&trk=0&cfid=9981892&cftoken=75500209
http://portal.acm.org/author_page.cfm?id=81100406411&coll=DL&dl=ACM&trk=0&cfid=9981892&cftoken=75500209
http://portal.acm.org/author_page.cfm?id=81408595715&coll=DL&dl=ACM&trk=0&cfid=9981892&cftoken=75500209
http://sunset.usc.edu/icse99
http://www.acm.org/publications

