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Abstract 
 
This paper presents interesting results obtained 

when refactoring a piece of code compiled with an 
optimizing compiler. Some of the results were 
surprising, and at a first glance, contradictory.  Most 
of these results can be explained by the optimizations 
performed by the compiler.  This article concludes with 
lessons learned about compiler optimizations and  
some recommendations useful to achieve better code 
optimization. 

1. Introduction  

In embedded systems, especially in those with 
limited memory and computational power, consid-
erations about performance issues and code efficiency 
cannot be forgotten during the development process. 
However excessive preoccupation with code efficiency 
can lead to code that is hard to understand and 
maintain, and may become unreliable. 

This paper presents results obtained during 
refactoring a piece of embedded code, some of which 
were surprising, proving that some common 
assumptions made by developers during code 
implementation are not always true. The main 
motivation for refactoring was to improve code clarity 
and maintainability. 

2. Background 

In an effort to develop a Brazilian autonomous star 
sensor, a PC based software for testing algorithms for 
this star sensor was created [1]. In this software, named 
PTASE, many versions of two base star identification 
algorithms were implemented [2]. After various tests 
were performed and considering the target hardware 

characteristics, one of the best implementations of 
these two star identification algorithms was ported 
from the desktop PC environment to the target 
hardware, which is an embedded system. 

A star sensor is an instrument normally used aboard 
a spacecraft to gather spacecraft attitude information. 
In spacecraft terminology, attitude means spatial 
orientation, and instruments used to gather attitude or 
information that can be used to calculate the spacecraft 
attitude are collectively known as attitude sensors. Star 
sensors are fine attitude sensors, capable of returning 
very accurate attitude measurements, with uncertainties 
usually in the order of few arcseconds (micro-radians) 
or less. Basically a star sensor takes a picture of the sky 
or space, extracts a list of observed stars from this 
image, and by comparing this list of observed stars 
with an internal database of stars (star catalog) is able 
to derive the relation between the star sensor reference 
frame to an inertial reference frame. This relation is the 
star sensor attitude, which can be very easily converted 
to the spacecraft attitude, since the relation between 
these two reference frames are known from the 
spacecraft assembly and alignment processes.  

At the heart of the process of computing the star 
sensor’s attitude lies the star identification algorithm 
(star ID algorithm, for short). This algorithm matches 
stars from the list of observed stars with stars in the star 
catalog. When a sufficient number of stars have been 
matched (identified), the star sensor attitude can be 
calculated. 

The chosen star ID algorithm implementation, 
ported to the embedded system, had a very large main 
function, followed by few small helper functions in the 
same module. This module was ported from PTASE, 
which was written in C++ to the embedded 
environment, in plain C language.  Since both lan-
guages are very similar, this migration was relatively 
straightforward, with the exception of some modi-



fications required due to naming conventions adopted 
in the embedded code and for some debugging features 
present in PTASE but not in the embedded hardware. 

For embedded code running in spacecraft hardware, 
code quality is very important, due to difficulties in 
performing spacecraft maintenance after launch and 
associated high costs with a space mission. This 
prompted a greater care during development of the 
embedded code to keep the code clean. 

Before refactoring, the main function of the star ID 
module had 628 physical lines of code (including 
comments and blank lines) and 247 statements. That 
huge size prompted splitting this function into many 
smaller functions during a code review, so the code 
would become easier to understand and maintain. This 
function’s large size can be explained in part by lack of 
time for better organization during its development, 
and also by an attempt to prematurely optimize code in 
order to reduce function call overhead. 

Since the overall structure of the algorithm was 
preserved during the code refactoring, it was expected 
that after refactoring (mainly “extract function” 
refactoring), some loss in executable code size and 
performance would occur, due to the expected increase 
in function call overhead. To check for losses and gains 
obtained after every refactoring step the code was 
instrumented to allow measurement of time spent by 
the code and the executable code size was closely 
monitored. 

3. Method 

Before attempting to refactor the embedded code, a 
copy of the corresponding star ID module in PTASE 
was refactored, in order to check if refactoring would 
be feasible, and also to provide a guideline that could 
be used when refactoring the embedded code itself. 
Refactoring was done mainly through the “extract 
function” technique. 

The tests were performed in an embedded system 
using the ERC-32 single chip processor[3], a processor 
based on the SPARC-V7 specification, running at 12 
MHz. The system had 4 MB of RAM, being accessed 
by the processor with zero waitstates. The code was 
compiled with GCC version 4.3.2 cross-compiler for 
sparc-rtems 4.9 [4], with optimization level  -O2. 

To measure the time spent by the star ID algorithm, 
a call to the rtems_clock_get function immediately 
before calling the star ID algorithm main function 
(GiIdentifyStars) and another  immediately after, were 
made [5] (see Figure 1). The time difference between 
these two calls to rtems_clock_get was saved in a 
debug telemetry created to check the operation of the 
embedded code. 

 

Figure 1.  Instrumenting code to measure execution time by 
the star ID algorithm. GlngGetTime is a wrapper for the 

RTEMS function rtems_clock_get. 

To get comparable measurements every time the 
test was run after a modification, the star ID algorithm 
was presented always with the same list of observed 
stars. During the tests, no piece of code outside the star 
ID module was modified. 

4. Results 

Before refactoring, the star ID module (StarIdent.c) 
had 1051 physical lines of code (LOC) and 5 functions. 
The largest was GiIdentifyStars with 628 LOC 
(including comments, blank lines, etc) and 247 C 
language statements.  Table 1 (below) and Table 2 
show many useful software metrics gathered during 
module refactoring: 

 
Table 1 – Code size and execution time during 

refactoring 

step 
file 

LOC 

number 
of 

functions 

largest 
function 

LOC 

executable 
size (bytes) 

execution 
time* 

0**  1051 5 628 143,652 
1250 
ms 

A 1125 8 514 143,508 
1233 
ms 

B 1206 11 253 143,556 
1158 
ms 

B’ 1220 12 232 143,556 
1158 
ms 

C 1269 14 160 143,620 
1158 
ms 

D 1349 16 147 143,748 
1158 
ms 

*  measured with an 8.333 ms resolution. 
** step 0 = code before refactoring. 
 
In the first column of Table 1 there is a label for 

each step that allows these steps to be further 
referenced in the text. Step 0 refers to the code before 
refactoring, while step D refers to the code after 
refactoring is completed. The second column presents 
the total number of lines in the module StarIdent.c after 
each refactoring step. The third column lists the 
number of functions in the module. The fourth shows 
the count of physical lines for the largest function 
(including blank and comment lines). The executable 

start_time = GlngGetTime(); 

LiRetCode = GiIdentifyStars(.....); 

end_time = GlngGetTime(); 



size presented in the fifth column is the size for the 
whole application software layer binary image. This 
layer is composed of 24 modules, including 
StarIdent.c, and by the RTEMS operating system. 
From these 143 kilobytes, StarIdent.c accounts for only 
about 5 kilobytes. The last column lists the time spent 
in GiIdentifyStars and its subroutines when processing 
a standard list of observed stars. These time 
measurements were made with an 8.3333 ms 
resolution. 

Table 2 complements Table 1 with additional 
software metrics, including the number of C statements 
inside functions and counts of McCabe's cyclomatic 
complexity. 

 
Table 2 – Software metrics during refactoring 

step 

max 
state-

ments in 
function 

state-
ments 
inside 

functions 

largest 
function 
MVG 

module 
MVG 

source 
code file 

size 
(bytes) 

0**  247 309 46 75 48,241 
A 205 310 33 80 50,856 
B 111 322 14 87 50,369 
B’ 100 323 14 87 51,018 
C 64 338 14 89 53,586 
D 55 351 12 91 55,944 
*  measured with an 8.333 ms resolution. 
** step 0 = code before refactoring. 
 
The second column of table 2 presents the number 

of C language statements inside the function with the 
largest number of statements. The third column 
presents the summation of statements inside every 
function in the module. The fourth column shows the 
highest contribution from a single function to the 
overall module McCabe's cyclomatic complexity. The 
fifth column shows the overall module cyclomatic 
complexity. 

 The number of C language statements inside a 
function is a much more meaningful metric than the 
number of physical lines or even the number of lines of 
code in a function, since the number of lines of code 
can vary significantly due to coding style, while the 
number of statements is practically insensitive to the 
coding style used. However we also show the number 
of lines of code in Table 1 for completeness. Values 
presented in the second and third columns of Table 2 
do not count empty statements, those consisting of a 
single semicolon. 

The McCabe's cyclomatic complexity was 
measured with "CCCC - C and C++ Code Counter" 
version 3.1.4, a free software for measurement of 
source code related metrics [9]. 

4.1. Use of the static keyword 

Much after this refactoring was performed, it was 
noticed that the developer had forgotten to declare two 
functions in this module, that doesn’t require external 
linkage, with the ‘static’ keyword. In C, when used 
with a variable/function declared at file scope, the 
‘static’ keyword tells the compiler that this variable or 
function doesn’t need to have external linkage, which 
means that it will be visible only inside the module 
where it was declared. This allows further optimi-
zations by the compiler, that would be impossible if 
these functions/variables had to be visible outside the 
module in which they were declared. But how much 
gain can be obtained?  Table 3 (below) gives some 
answers: 

 
Table 3 – Improvement with the use of the static 

keyword 

SVN 
revision 

use of the static 
keyword in file 
(module) scope 

executable 
size (bytes) 

execution 
time* 

150 
missing in two 

‘internal’ 
functions 

142,148 1.16 s 

151 
present in 

every ‘internal’ 
functions 

141,572 1.16 s 

* Measured with a 10 ms resolution. 

 
In table 3, the column ‘SVN revision’ refers to the 

revision number when committing changes made in the 
software in the revision control system. The difference 
between revisions 150 and 151 is just the addition of 
the ‘static’ keywords to these two functions where it 
was missing, an addition of only two words to the code. 
However this simple modification reduced the code 
size in 576 bytes, in a module whose total code size 
(after compilation) was just around 5 kilobytes. This is 
a huge improvement! 

5. Discussion 

Looking at the second column from table 1 (column 
‘file LOC’) and the third column from table 2 (column 
‘max statements in function’) it can be seen that as the 
refactoring progressed the overall source code number 
of lines and statements increased as the large 
GiIdentifyStar function was split into smaller functions, 
and even though the size of individual functions on 
average decreased, the total number of functions 
increased. At first glance, this might suggest that we 
have simply traded off complexity inside this large 
function for complexity outside functions and in the 



function call hierarchy, without too much gain. 
However this is not the case. As that large function was 
split into many smaller functions, each important 
segment of that function became a function with clear 
interface. In a sense, the code became more self 
documenting. Added to that, comments explaining 
every parameter passed to these new functions were 
written, as required by the automatic documentation 
system. These comments were responsible for much of 
the line count increase while the file was being 
refactored. 

As explained in the section II, one of the reasons 
the star ID algorithm was implemented with a very 
large function was to avoid function call overhead, 
which can be very costly in some platforms. However 
looking at the fifth column of table 1 we see that the 
executable code size fluctuates around the size it had 
before refactoring, sometimes increasing a bit, but at 
other times decreasing a little. Also, contrary to 
expectations, we can see in the last column, that  
the processing time has actually decreased after 
refactoring. These results suggests that somehow the 
compiler is avoiding these function call overheads, 
probably by merging functions with internal linkage, 
that are small or are called only once, into the caller 
function. This suggestion is confirmed when we look 
more carefully at what happened between step B and 
step B’ during code refactoring. 

The only difference between those two versions, is 
that when going from step B to step B’ a function was 
extracted from the largest function in B, which had 253 
lines and 111 statements. The extracted function, 
having 25 lines and 12 statements overall, is used by 
the caller function to compute an attitude estimate that 
is used to identify the remaining stars selected 
for identification. Performing a binary comparison 
between the executable code generated from step B 
with the code generated from step B’, no difference 
was detected, which means that the object code 
generated by these two versions were identical. This 
has happened despite the fact that the extracted 
function had 12 statements, a function call and a local 
variable, and is crucial for the stellar identification 
algorithm. 

When going from step A to step B, it was seen a big 
improvement in the processing time. The algorithm 
became around 6.5% faster. Between those two steps 
the code inside two nested loops was extracted as a 
new function. It happens that is precisely in those two 
nested loops that the algorithm spends most of it’s 
time. When the code inside these loops was extracted, 
some variables that had scope greater than these loops, 
but were used only inside this loop have been moved to 
the new extracted function, effectively changing their 
scope to a smaller scope that does not involve these 

loops. Probably this is what allowed the compiler to 
perform a better code optimization. A similar gain was 
observed in PTASE, when the same refactoring was 
done in PTASE, using another compiler. 

On the other hand, one should not take this 
refactoring technique to extremes. Having too many 
small functions with only one or two statements also 
reduces code clarity.  From our experience, it seems 
that good code clarity is better achieved when functions 
have between 5 to 200 lines of code and the number of 
functions per module is between 5 and 20, excluding 
special cases. 

5.1. The static keyword case 

The huge improvement seen in section 4.1 can be 
explained by the fact that the two functions are very 
similar. One of them increments an index, while the 
other decrements the same index, however their 
structure is practically the same, to the point that the 
object code in one function may be essentially 
duplicated in the other. Thus, it seems that during the 
optimization allowed by the addition of the static 
keyword, the compiler noticed the strong similarity 
between those two functions, finding a better 
implementation where a single code could perform the 
function of both functions, provided that some 
variables where set up correctly at the beginning, 
depending on the case. With this optimization, we 
believe that roughly the code of one of these functions 
could be removed from object code. To prove this 
explanation, an analysis of the generated assembly 
code would be required. This will be left for the future. 

Regarding execution time, there was no noticeable 
difference before and after the addition of the static  
keyword. This is due to the fact that the affected code 
is not in a critical section, so that any timing 
differences, if any, are smaller than the sensibility of 
our experiment. 

In face of the reduced risk of name clashes that the 
addition of the static keyword brings to variables and 
functions declared at file scope that don’t need external 
linkage, it’s use is mandated or strongly recommended 
by most of the coding standards used in the aerospace 
and high reliability industries [6] [7]. 

5.2. The compiler documentation 

After discovering that the code produced from step 
B and step B' where identical, we decided to check in 
the compiler documentation [10] what compiler optimi-
zation switch was responsible for merging the extracted 
function in B’ with its caller.  This extracted function is 



called only in one place, and was declared with internal 
linkage. 

The command line -O2 optimization switch acts as 
a master switch that enables many optimization 
switches in GCC.  One of these, in GCC 4.3, is the  
-funit-at-a-time switch which in turn turns the  
-finline-functions-called-once. This last 
switch considers for inlining every function with 
internal linkage that is called only once. If the call to 
that function is inlined by the compiler, no separate 
code is generated for that function. 

The compiler documentation [10] warns that some 
optimizations may introduce compatibility issues with 
code that relies in assumptions that may become 
invalid after optimization (such as a particular ordering 
of variables, etc). Hence it is strongly advisable that the 
developer read carefully the chapter about compiler 
optimizations in the compiler manual if he/she is 
compiling code with optimizations turned on. 

6. Conclusion 

Compiler technology and compiler optimization 
techniques have improved significantly in the last 
decades, to the point that in many situations it has 
become hard to surpass code generated by a good 
optimizing compiler with handwritten assembly code 
[8]. 

This experiment showed some remarkable results, 
from where some lessons could be learned: 

• The optimizing compiler used is capable of 
performing many intra and interprocedural 
optimizations, including the ability to merge 
functions in order to avoid function call 
overheads. 

• These and many other optimizations performed 
by the compiler allow a very high performance 
to be achieved without the need to hand 
optimize code. 

• Many optimizations are only possible when 
variables and functions are declared with the 
‘static’ keyword. Hence, every function or 
variable (declared at file scope) that doesn’t 
need external linkage should be declared with 
the ‘static’ keyword. 

These results provides another argument to the 
recommendation that programmers should avoid 
optimizing code prematurely when implementing code, 
since this may reduce code clarity, and many 
optimizations that the programmer tries to perform by 
hand can be better performed by a good optimizing 
compiler. However, this doesn’t mean that the 
programmer should completely forget about code 

efficiency, only that code efficiency and performance 
should be set as secondary goals, with safety and 
clarity set as primary goals [7]. Another important 
conclusion is that the programmer should never forget 
the ‘static’ keyword, as this oversight may significantly 
impair optimization, aside from increasing the risk of 
name clashing in the linking process. 

When implementing a system where performance is 
critical, it’s advisable first to check if the compiler is 
indeed able to perform these optimizations before 
relying on them. We have used GCC 4.3.2 which is 
fairly recent. Older versions of GCC and older 
compilers might not be so good in code optimization. 
Also, when compiler optimizations are being used, it is 
strongly recommended that the development team 
reads the compiler manual carefully, in order to know 
the implications of the optimizations performed by the 
compiler. This is specially true for projects with some 
safety criticality aspect, as ours. 

In some very safety critical applications compiler 
optimizations are severely restricted or even 
completely forbidden by requirements. The results and 
conclusions of this study do not apply to these cases.  

This work has led to many new ideas that could be 
better explored in future works. For example, one 
interesting test would be to perform the same 
comparison done here, but with optimizations turned 
off to see how the employed refactorings would affect 
code efficiency in this case. 

As additional suggestions for future works, this 
experiment could be repeated with more precise time 
measurements (using resolution of microseconds or 
better), and using additional software metrics besides 
those we have used. 
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