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Abstract. The prospect of multiple launches by INPE's s&efirogram, has

motivated the development of an application usiaghmniques based on
Artificial Intelligence (Al) concepts for automatigeneration of flight

operation plans to control satellite activities. Wever, making a critical

analysis of these plans before real world implemgon is not possible. We
propose a decision support tool Al-based data ngingchnique to generate
prognosis of satellite states for assisting experevaluating the performance
of the plan. To build the tool, a comparative studyperformance between
classic data mining classifiers is accomplishediébermine the classification
model that provides greater accuracy to predice8iae future states.
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1. Introduction

There is general interest in automating satellteto| operations related to the task of
controlling multiple satellites in INPE “s Spaceo@am. In addition, it is generally

accepted that the automation of satellite contctivies represents a way of reducing
in-orbit satellite maintenance costs. At INPE, aotmous systems to control satellite
operations employing Atrtificial Intelligence areihg studied to automate ground
segment operations.
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However, this increased autonomy in satellite adrdperations can lead to distrust of
the automatic control system behavior as compaoethat of the well known and
routine manual control system. In such cases, thesgems still require an
improvement in reliability to become operational.

In order to achieve this breakthrough in reliapjlipredictability and safety, an Al-
based strategy for automatic validation of a fligheration plan generated by a planner
is presented. This is an architecture composeafbivare components, resulting from
the combination of verification and validation teafues. As a relevant part of this
strategy, a decision support tool is proposedimadlticle, to assist experts in evaluating
the actions of the plan, aiming at guaranteeinginkegrity of the satellite. This tool
consists of software using Artificial Intelligendechniques aimed at predicting the
behavior of critical platform satellite subsysterssch as the power supply subsystem,
directly affected by the actions contained in effight operation plan.

This paper presents in the following section somecepts related to the automation of
the control activities of the satellite in orbite@ion 3 describes the strategy for
validation of a flight operation plan, an overvi®iithe software architecture and the
tool proposed for validation. Section 4 discussesies data mining techniques of

classification for data prediction to design thelt®ection 5 presents a comparative
study of performance between classifiers algorititmsdetermine the classification

model that provides greater accuracy to prediatligat future states. Conclusions are
presented in Section 6.

2. Satellite Flight Operation Plan

The Flight Operation Plan includes the planningaritrol operations of space missions
and ground segment activities for the planningcatien and control of the satellite in
orbit. Each Flight Operation Plan aims to mainttie satellite in orbit, working to
achieve the goals of the mission, containing alricessary information to control the
satellite in orbit, such as: procedures for fligluntrol, procedures for recovery of
contingencies, rules, plans and schedules. Alvitiets included in a Flight Operation
Plan have as their starting point the passageeotd#itellite over the Earth station. The
amount of time that a satellite is visible to aegivEarth station determines the set of
flight operations that should be performed durirgle pass. Among the activities to
control for this period is the sending of commafrds the ground (telecommand), and
the reception of telemetry which indicates the gelngtate of the satellite.

To meet the growing demand for satellites in oabitl reduce costs significantly, recent
studies in Al-based planning have been aimed ati¢hrelopment of tools that automate
the tasks of controlling ground operations in INPEie system called Intelligent
Planning of Flight Operation PlanBl&nIPOV) [Cardoso 2006], uses temporal planning
Al techniques (temporal planner) applied to theomatic generation of flight operation
plans to support the activities of controlling ##tss in orbit.

At the same time, the use of automatically gendr&tigght Operation Plan leads to
many doubts. These are partly related to the nelantdogies involved, but the greatest
resistance is related to reliability in the exeontof these actions, the predictability and
safety of satellites. This increase in autonomy lead to suspicion about the behavior,
often well known and routine. The set of actiongstamed in a plan acts directly on
data critical to maintain of the satellite integriEurthermore, depending on the demand
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for satellites in orbit, a careful validation oketfe plans can become unviable. In others
words, this increased autonomy in satellite contoplerations still require an
improvement in reliability to become operational.

3. Strategy for Validation of Flight Operation Plan

For this advance in reliability a strategy for daliion of flight operation plans is being

proposed. The strategy of validation consists ofaeshitecture composed of several
software components for validation of an operaptan generated automatically, to be
executed in simulation before actual execution Fégl). Designed with the aim of

evaluating the impact of the plan from the simudattate of the satellite, the strategy is
designed on the basis of appropriate assurancaeitges for space systems [Blanquart
et al. 2004].

Operations
Subsystem Planner
Model Setup
Preliminary
Operations Plan
Satelitte
Simulator
Maintenance
and Service

Figure 1. Validation of Flight Operations Plan: architecture and situation

As the relevant part of this strategy a validatiool called the Diagnosis Generator has
being developed to provide prediction about futsaellite states from the parameters
and critical telemetries, indicating how the gehesatellite state should evolve,
suggesting the adoption or rejection of the plan.

Through an execution off-line of the generated pdgrthe planner, each action of the
plan is executed and a simulation of the behaviothe satellite is performed by a
satellite simulator. The simulator is based onrtual satellite, with simplified models,

which is also part of the strategy for validatidnttoe generated plan [Tominaga et al.
2009].

The simulator returns to the Diagnosis Generatarameters and telemetries (see
section 2) containing the simulated state of thellg®, resulting from the execution of
the plan’s actions. As a study case, a simplifiextleh of telemetries, parameters and
operational limits of the power supply subsystermaofirtual satellite XSAT is being
used. The power supply is a critical subsystenhersatellite integrity [Tominaga et al.
2009]. The tables 1, 2, 3, 4 and 5 below prese@saription of these XSAT parameters
and telemetries used as input data for Diagnosieaéor:
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Table 1. XSAT mission operations summary.

Payload | Description | Payload data Data Operation criteria Power
receiving Consumption
station

PL1 Optical Satellite imagery for | Image Over station, at PPL1

Camera land surface receiving sunlight or at night if | ON = 800 W
monitoring station calibration requested | OFF = 100 W
PL2 Data Environmental data | Data Over station or PPL2
Collection acquired by data collection continuous, at ON=15W
Subsystem collection platforms | station sunlight and eclipse OFF=5W

Table 2. XSAT Power Supply Subsystem parameters.

Identifier Description Identifier Description
SAG Solar Array Generator PAV Power Available to the Satellite
PSAG SAG Power IBAT BAT Charging Current
BAT Battery VBAT BAT Voltage
@BAT BAT Charge DoD BAT Depth-Of-Discharge
Table 3. XSAT power values.
Generated Consumed Power
Onboard Status | Description Power (W) (W)
SAG |SUN Sunlight - Sun Illuminated Phase 1600 0
ECL Eclipse - Eclipse Phase 0 0
PL1 |[ON PL1 Operating 0 800
OFF PL1 Standby 0 100
PL2 |ON PL2 Operating 0 15
OFF PL2 Standby 0 5
SM_ |- Service Module 0 780

Table 4. XSAT Power consumed in each operation mode.

Operation Mode Onboard Status Power (W)
(defined in the plan) SAG PL1 PL2 SM | Consumed | Generated Available
A SUN ON ON - 1595 1600 5
B SUN ON OFF - 805 1600 795
C SUN OFF ON - 115 1600 1485
D SUN OFF OFF - 885 1600 715
E ECL ON ON - 1595 0 -1595
F ECL ON OFF - 1585 0 -1585
G ECL OFF ON - 895 0 -895
H ECL OFF OFF - 885 0 -885

Table 5. XSAT battery DOD control criteria.

DOD (%) DOD Status Operation Status
<15 LOW SAFE

15~ 20 HIGH UNSAFE
> 20 EXTREME FORBIDDEN

Upon receiving the data from the XSAT virtual shtiel PSS model due to an
implementation of the plan’s actions, the Diagn@enerator tool provides prediction
from these parameters and telemetries, generatiagnpsis of the satellite states
indicating how the general state of the satellitk @volve, indicating the impact of the
plan in the security level of the satellite operyatstatus.
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4. Techniques for Data Prediction

Computational prediction models are based on pibs@ab reasoning over time,
interpreting the present and understanding the padtfuture forecast [Russell and
Norvig 2005]. Prediction is one of the basic infere tasks in time models, in which the
posterior distribution on the future state is chdted, given all the evidence to date.
Predictive models have been widely used for bugdools to support decision making.

Data mining is a method, in which the ultimate galprediction, and represents a
process developed to examine routinely large ansoahidata collected in search of
consistent patterns and/or systematic relationshgiseen variables. Techniques for
finding and describing structural patterns in daae developed within a field known

as machine learning, where different styles ofrigay appear, depending on the data
mining application. Those applications where thedptive model requires a judgment
needed to inform future decisions, a classificatiearning scheme takes a set of
classified examples (training data) from which st éxpected to learn a way of

classifying unseen examples (test data) [Frank €089].

A classification technique (or classifier) is a teysatic approach to building

classification models from an input data set. Eaethnique employs a learning
algorithm to identify a model that best fits thdat®nship between the attribute set
(inpuf) and class labelo(tpu) of the input data. The model generated by a iegrn

algorithm should both fit the input data well anatrectly predict the class labels of
records it has never seen before. Therefore, akgctive of the learning algorithm is
to build models with good generalization capabilitg., models that accurately predict
the class labels of previously unknown recdifsn et al. 2005]. We approach the
classical techniques of classification, includingcidion tree classifiers, Bayesian
classifiers and neural networks.

Following the general approach to solving a classifon problem, it was used as a
case study, a training data; i.e., a dataset wai records (instances) of classified
examples (Table 6). These input data consist oibatt set of telemetries, parameters
and operational limits of a simplified model of aver Supply Subsystem (PSS)
[Tominaga et al. 2009], based on a virtual sagelgee section 3), as a result of the
action set of a flight operation plan. Each datoré is associated with classification of
satellite security levels SAFE2 and SAFE3 (STAT&ssllabel). For this input data was
applied a classifier algorithm, representing edabsical classification learning scheme,
which each algorithm produces a classification rhode

The method used to handle the input data for alsifiers algorithm was one of the
methods to random subsampling called cross-vatidatie used the 10-fold cross-
validation, which the data was segmented into llakgized partitions. During each
run, one of the partitions is chosen for testindpilevthe rest of them are used for
training. This procedure is repeated 10 times s #ach partition is used for test
exactly once.

As mentioned in a section 3, the Diagnosis Genetatd should be able to generate
data prediction for this satellite subsystem cosr®d critical, based on the
classification model that provides greater accutacgredict satellite future states. So,
aiming to provide adequate reasons, the followigjisns present the main features of
these classifiers and associated algorithms uskedili the classification models for the
Diagnosis Generator tool.
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Table 6. Input data from the virtual satellite XSAT.

DATETIME SAG FSAG FFL1 PAV VBAT OBAT CBAT

FPL? BAT IBA DOn
197472010 12:30:10 | SUN 1600 100 5 715 FULL 50 60 1,2 [i] 0 SAFE3
19/42010 12:30:40 | SUM 1600 100 3 715 FULL 30 60 1,2 [1] 0 SAFE3
19/42010 12:31:10 | SUN 1600 100 5 715 FULL 50 60 1,2 ] 0 SAFE3
19742010 12:31:40 | SUN 1600 100 5 713 FULL 30 60 1,2 [1] [1] SAFE3
19742010 12:32:10 | SUN 1600 100 5 715 FULL 30 a0 12 0 0 SAFE3
19742010 12:32:40 | ECL 1 100 5 -383 LIS 50 59.84 12 -1947 0 SAFE3
19/4/2010 12:33:10 | ECL 0 100 5 -883 LIS 45386 50.68 12 -19.52 0.01 SAFE3
19/4/2010 12:33:40 | ECL g 100 3 -5835 LIS 49.73 5851 1.2 -19.38 0.01 SAFE3
19742010 12:3%10| ECL a 100 5 -883 LIS 4559 59.35 1.2 -19.63 0,01 SAFE3
19/42010 12:34:40 | ECL 0 100 3 -§83 oIS 4846 59.18 12 -19.68 0.01 SAFE3
19/42010 12:35:10 | BCL a 100 5 -383 LIS 4932 52.02 1.2 -19.74 0,02 SAFE3
1942010 12:35:40 | SUN 1600 100 5 715 CHG | 45138 58.14 12 14,54 0.01 SAFE3
19/4/2010 12:36:10 | SUN 1600 100 5 715 CHG [ 4518 52.26 1,2 14.51 0,01 SAFE3
197472010 12:36:40 | SUN 1600 100 5 715 CHG | 4538 5938 1.2 1448 0.01 SAFE3
19/42010 12:37:10 | SUN 1600 100 3 715 CHG [ 4549 59.5 1,2 14.45 0,01 SAFE3
19/4/2010 12:37:40 | SUM 1600 100 3 715 CHG | 495% 32.62 1,2 1442 0,01 SAFE3
19742010 12:38:10 | SUN 1600 100 5 715 CHG | 45969 59.74 12 14,39 [1 SAFE3
19/42010 12:50:10 | SUN 1600 100 5 715 CHG [ 458135 39.23 12 14,52 0,01 SAFE3
19472010 12:30:40 | ECL 1 800 3 -1385 IS 4933 58.93 1.2 3533 0.02 SAFE3
19/42010 12:531:10 | BCL 0 100 5 -885 LIS 4511 58.77 i 19.82 0.02 SAFE3
19/4/2010 12:51:40 | ECL @ 100 5 -85 DIS 4897 386 1.2 1988 002 SAFE3
19/42010 12:52:10| ECL ] 100 5 -883 DIS 4883 38.43 1.2 19.93 0.03 SAFE3
1942010 12:52:40| ECL 0 100 5 -§83 DIS 487 58,27 1.2 19.99 0,03 SAFE3
19/4/2010 12:53:10 | ECL a 100 3 -8835 LIS 56 58.1 1.2 2005 0,03 SAFE3
19472010 12:33:40 | SUN 1600 100 5 715 CHG [ 4842 58212 1,2 14,77 0.03 SAFE3
19/472010 12:3410 | SUN 1600 100 5 715 CHG [ 4852 5835 1,2 1474 0,03 SAFE3
19742010 12:34:40| 5UN 1600 100 5 715 CHG [ 4842 3847 1,2 14.71 0,03 SAFE3
19/42010 12:5%:10| SUM 1600 100 3 7135 CHG [ 4872 58.59 1,2 14.67 0,02 SAFE3
19472010 12:55:40 | SUN 1600 100 3 715 CHG [ 4833 38,71 1,2 14,64 0,02 SAFE3
19742010 12:36:10 | SUN 1600 100 5 715 CHG | 4893 38,84 1,2 14.61 0,02 SAFE3
1942010 13:4:40 | BCL [ 800 15 1385 LIS 4715 56.39 ] 37,13 0,06 SAFE2
1] 1.2

197472010 13:45:10 | ECL

-
=
LA

-383 ] 47 56.22

4.1. Decision Tree Classifiers

A decision tree classifier, which is a simple yeatlely used classification technique
also known as decision tree induction, derives frima simple divide-and conquer
algorithm for producing decision trees [Witten aRdank 1999]. A decision tree

includes the root and others internal nodes, cordtribute test conditions to separate
records that have different characteristics.

A decision tree classification learning algorithnasvapplied to dataset (Table 6) to
generate the decision tree model for classificatibthe satellite state. The algorithm
chosen for building the decision tree was a webtviin and frequently used over the
years the C4.5 and J48 as a class for generapngnad or unpruned C4.5 decision tree
[Witten and Frank 1999].

The output of classification learning algorithm J4&licating a pruned decision tree
model for the training set used with only 2 (SAFEBRd SAFE3) leaf nodes
classification of states (STATE class label). Ferthore, the resulting tree model
indicates that the telemetry related with the lbgtt®ltage (VBAT) (See section 3) is
critical to classify the security level of the dhite operation status. The Figure 2 shows
the decision tree classification model generatextl us prognosis of the satellite state
for unknown values in a new data record (recort).tes
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SAG |[PSAG|PPL1 [ PPL2 | PAV | BAT | VBAT |QBAT|CBAT| IBAT [...| STATE
ECL] 0 | 800 | 15 |-1505] DIS | 47,25[56,39] 1.2 |-37.13]..] 7
' 4
o
<VBAT\
S _,,/
<4772 /\ >47.72

SAFE2 SAFE3

Figure 2. Classification model based in decision tree applied a test record.

4.2. Bayesian Classifiers

Following a different approach, we consider thatiehship between the attribute set
and the class variable being non-deterministi@ther words, it is when the class label
of a test record cannot be predicted with certaietyen though its attribute set is
identical to some of the training examples (seeuf€ig2). For solving these
classification problems, an approach based on Hye®8theorem is used for modeling
probabilistic relationships between the attribuge and the class variable. Consist in a
statistical principle for combining prior knowledgé the classes with new evidence
gathered from data.

P 1 X) = P(XTY)P(Y) (1)
P(X)

Describing how the Bayes theorem was used for ifizsson, let us formalize the
classification problem from a statistical perspeetiLet X denotes the attribute set and
Y denote the class variable. If the class varidi@e a non-deterministic relationship
with the attributes, then we can treat X and Y asdom variables and capture their
relationship probabilistically using P(Y|X). Thisrditional probability is also known
as the posterior probability for Y, as opposeds@rior probability, P(Y) (see equation
1). During the training phase, it need to learn plosterior probabilities P(Y|X) for
every combination of X and Y based on informatiathgred from the training data
[Tan et al. 2005].

The classifier algorithm used to implementationtleis model was a naive Bayes
classifier [Frank et al. 2009], which works usimg €lassification each test record from
training data (Table 6), needed to compute theegpastprobabilities P(SAFE2|X) and
P(SAFE3|X) based on the prior probability obtaif@dclass SAFE3 (P(SAFE3)=67%)
and the prior probability for class SAFE2 (P(SAFEZ3%). So, the classification is
based on the result of the condition: if P(SAFE3PXP(SAFE2|X), then the record is
classified as SAFE3; otherwise, it is classifiecBASE2.

4.3. Artificial Neural Networks

Analogous to human brain structure, an Artificiadudal Networks is composed of an
interconnected assembly of nodes and directed .lidlasist on set of individual

processing elements (formal neurons), grouped udiderse topologies and governed
by mathematical procedures clustering vectorsrelisoptimization, minimizing errors

and others [Haykin 2001].



A Classification Model to Generate Prognosis of BtdeStates

Following one more different approach to build assification model, we became
interested in models of artificial neural netwofks classification, because it is a non-
parametric and non-linear technique, which allowesrhapping of input data associated
with output data. Therefore, the output of the rmelwis the class associated to the
sample.

For representing a model of artificial neural natkgofor classification, we chose
Networks LVQ (Learning Vector Quantization), whiclkefine a family of adaptive
algorithms for quantifying vector, originally proped by Kohonen. LVQ networks
define methods for supervised trainieigploying a self-organizing network approach
which uses the training vectors to recursively tyfcement of competitive hidden
units that represent categories of the inputs. @me@etwork is trained, an input vector
is categorized as belonging to the class repregdnjtehe nearest hidden unit [Haykin
2001].

The classifier algorithm used to implementationL®Q networks was the LVQ2_ 1
classifier algorithm [Frank et al. 2009]; it corisi®n iterative algorithm, whose basic
principle is to reduce the distance of the inputtees in the same class, and to move
away input vector in the wrong class. The classstsiloution obtained as output were
SAFE3: 16 (80%) and SAFE2: 4 (20%) for the inputtees representing 12 attributes.

In the next section, a performance evaluation ohedassification model generated and
comparison between three classifiers is accomplidiesed on performance metrics
such as Accuracy and Error rate values, beingeblts presented and discussed.

All the classifiers algorithms used are an integaidt of the Waikato Environment for
Knowledge Analysis (WEKA), a suite of machine laagnsoftware written in Java
[Frank et al. 2009]. WEKA is free software avaighinder the GNU General Public
License, aiming at adding algorithms from differaagproaches in the sub-area of
Artificial Intelligence, dedicated to the studyle&rning by machines [Witten and Frank
1999].

5. Results and Discussion

Performance evaluation of a classification modddased on the counts of test records
correctly and incorrectly predicted by the moddiese counts are tabulated in a table
know as confusion matrix. The Table 7 depicts thiefesion matrix of classifiers: J48,
naive Bayes and LVQ2_1.

Each entryg; in the Table 7 denotes the number of records itaiss SAFE3 predicted
to be class SAFE2. For instanag, is the number of records from class SAFE2
predicted incorrectly predicted as SAFE3. Thuselasn the entries in the confusion
matrix, the total number of correct predictions amtal number of incorrect predictions
of each model was calculated and presented on Balleom these matrix elements is
possible also get the performance metrics sucle@gacy for each model and the error
rate values (Table 8).
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Table 7. Confusion matrix of tree classifiers: J48, naive Bayes, lvq2_1.

J48 Class = SAFE3 Class = SAFE2 Total
Class = SAFE3 g =99 g =6 105
Class = SAFE2 g =8 g =43 51

Total 107 49 156
NAIVE BAYES Class = SAFE3 Class = SAFE2 Total
Class = SAFE3 g =99 e =6 105
Class = SAFE2 g =2 g =49 51

Total 101 55 156

LvVQ2 1 Class = SAFE3 Class = SAFE2 Total
Class = SAFE3 g = 96 e =9 105
Class = SAFE2 g =12 g =39 51
Total 108 48 156
Table 8. Accuracy and Error rate performance metrics for each classifier.
Classifiers Accuracy (%) Error rate (%)
J48 91.02 8.97
NAIVE BAYES 94.87 5.13
LVQ2_ 1 86.53 13.46

Most classification algorithms seek models thatiattthe highest accuracy, or
equivalently, the lowest error rate. Then, evahg@tin terms of percentages, the
accuracy and error rate values for each classifiercan say that the classifier naive
Bayes shows the better accuracy value (95%) andrremor rate (5%) followed of the
decision tree classifier (91%) and (9%). The waseuracy and error rate associated
was the neural classifier LVQ2_1 (86%) and (13%).

Other key measure for evaluating classifiers isp&agtatistics or Kappa coefficient. A
measure of agreement used in nominal scale, thasgis an idea of how much the
observations deviate from those expected due tacehajiving us so how legitimate
interpretations areThis observer disagreement is indicated by how rolese classify
individual subjects into the same category on tleasarement scal®uring in run,
each classifier assigned items to one of 2 claS8¢4€3 and SAFE2, but the number of
individuals assigned to each class by classifierdisagree (see Table 7).

The values of Kappa are interpreted as the maximiuinwhen agreement is perfect, O
when agreement is no better than chance and negatiues when agreement is worse
than chance. Other values can be roughly intergpetd Sheskin 2003]:

* Poor agreement = Less than 0.20

» Fair agreement = 0.20 to 0.40

* Moderate agreement = 0.40 to 0.60
» Good agreement = 0.60 to 0.80

* Very good agreement = 0.80 to 1.00

Kappa measures the percentage of data values imdime diagonal of the confusion
matrix (Table 7) and then adjusts these valueshieramount of agreement that could
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be expected due to chance alone. In Table 9, thpakaoefficient values of each
classifier are reported and interpreted.

Table 9. Kappa coefficient values provided by the three classifiers.

Classifiers Kappa Agreement
J48 0.7940 Good

NAIVE BAYES 0.8858 Very good
LVQ2 1 0.6894 Good

The Kappa coefficient value obtained of naive Bagkessifier presented a perfect

agreement, while the others classifiers presemtoa ggreement. Overall, the classifier
algorithm naive Bayes showed better results, insigahe Bayesian method as the best
classification model generated to predict satellitare states

6. Conclusion

This paper presented a comparative study of pedoce between classifiers algorithms
used in data prediction to determine the clasgibobamodel that provides greater
accuracy to predict satellite future states. Tlsgfication model consist on the design
of a prediction tool, that is being developed aslavant part of the validation strategy
for a flight operation plan generated automaticatlycontrol and track satellites. The
tool performs data prediction of a critical platfosubsystem, directly affected by the
actions contained in each satellite flight plan.abidition, the tool assists experts in
impact analysis of each plan’s action on the stgddehavior, suggesting the adoption
or rejection of the plan.

The most significant contribution of the Diagno§i€nerator tool is related to the
possibility of evaluating the impact of the plarfr simulated satellite states, when
integrated with the simulator or from real datadexision support making, providing
effective support to experts, and representing crarece in reliability, predictability
and safety of the satellite control activities gated automatically, especially
considering multiple launchings planned for therrfeture, when a careful evaluation
of these plans, before real execution would be Bajide.
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