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Abstract. The prospect of multiple launches by INPE's satellite program, has 
motivated the development of an application using techniques based on 
Artificial Intelligence (AI) concepts for automatic generation of flight 
operation plans to control satellite activities. However, making a critical 
analysis of these plans before real world implementation is not possible. We 
propose a decision support tool AI-based data mining technique to generate 
prognosis of satellite states for assisting experts in evaluating the performance 
of the plan. To build the tool, a comparative study of performance between 
classic data mining classifiers is accomplished to determine the classification 
model that provides greater accuracy to predict satellite future states. 

Keywords: Classification Model, Data Prediction, Satellite. 

1. Introduction 

There is general interest in automating satellite control operations related to the task of 
controlling multiple satellites in INPE ´s Space Program. In addition, it is generally 
accepted that the automation of satellite control activities represents a way of reducing 
in-orbit satellite maintenance costs. At INPE, autonomous systems to control satellite 
operations employing Artificial Intelligence are being studied to automate ground 
segment operations. 
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However, this increased autonomy in satellite control operations can lead to distrust of 
the automatic control system behavior as compared to that of the well known and 
routine manual control system. In such cases, these systems still require an 
improvement in reliability to become operational. 

In order to achieve this breakthrough in reliability, predictability and safety, an AI-
based strategy for automatic validation of a flight operation plan generated by a planner 
is presented. This is an architecture composed of software components, resulting from 
the combination of verification and validation techniques. As a relevant part of this 
strategy, a decision support tool is proposed in this article, to assist experts in evaluating 
the actions of the plan, aiming at guaranteeing the integrity of the satellite. This tool 
consists of software using Artificial Intelligence techniques aimed at predicting the 
behavior of critical platform satellite subsystems, such as the power supply subsystem, 
directly affected by the actions contained in each flight operation plan. 

This paper presents in the following section some concepts related to the automation of 
the control activities of the satellite in orbit. Section 3 describes the strategy for 
validation of a flight operation plan, an overview of the software architecture and the 
tool proposed for validation. Section 4 discusses some data mining techniques of 
classification for data prediction to design the tool. Section 5 presents a comparative 
study of performance between classifiers algorithms to determine the classification 
model that provides greater accuracy to predict satellite future states. Conclusions are 
presented in Section 6. 

2. Satellite Flight Operation Plan 

The Flight Operation Plan includes the planning of control operations of space missions 
and ground segment activities for the planning, execution and control of the satellite in 
orbit. Each Flight Operation Plan aims to maintain the satellite in orbit, working to 
achieve the goals of the mission, containing all the necessary information to control the 
satellite in orbit, such as: procedures for flight control, procedures for recovery of 
contingencies, rules, plans and schedules. All activities included in a Flight Operation 
Plan have as their starting point the passage of the satellite over the Earth station. The 
amount of time that a satellite is visible to a given Earth station determines the set of 
flight operations that should be performed during each pass. Among the activities to 
control for this period is the sending of commands from the ground (telecommand), and 
the reception of telemetry which indicates the general state of the satellite. 

To meet the growing demand for satellites in orbit and reduce costs significantly, recent 
studies in AI-based planning have been aimed at the development of tools that automate 
the tasks of controlling ground operations in INPE. The system called Intelligent 
Planning of Flight Operation Plans (PlanIPOV) [Cardoso 2006], uses temporal planning 
AI techniques (temporal planner) applied to the automatic generation of flight operation 
plans to support the activities of controlling satellites in orbit. 

At the same time, the use of automatically generated Flight Operation Plan leads to 
many doubts. These are partly related to the new technologies involved, but the greatest 
resistance is related to reliability in the execution of these actions, the predictability and 
safety of satellites. This increase in autonomy can lead to suspicion about the behavior, 
often well known and routine. The set of actions contained in a plan acts directly on 
data critical to maintain of the satellite integrity. Furthermore, depending on the demand 
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for satellites in orbit, a careful validation of these plans can become unviable. In others 
words, this increased autonomy in satellite control operations still require an 
improvement in reliability to become operational. 

3. Strategy for Validation of Flight Operation Plan 

For this advance in reliability a strategy for validation of flight operation plans is being 
proposed. The strategy of validation consists of an architecture composed of several 
software components for validation of an operation plan generated automatically, to be 
executed in simulation before actual execution (Figure 1). Designed with the aim of 
evaluating the impact of the plan from the simulated state of the satellite, the strategy is 
designed on the basis of appropriate assurance techniques for space systems [Blanquart 
et al. 2004]. 

 
Figure 1. Validation of Flight Operations Plan: architecture and situation 

As the relevant part of this strategy a validation tool called the Diagnosis Generator has 
being developed to provide prediction about future satellite states from the parameters 
and critical telemetries, indicating how the general satellite state should evolve, 
suggesting the adoption or rejection of the plan. 

Through an execution off-line of the generated plan by the planner, each action of the 
plan is executed and a simulation of the behavior of the satellite is performed by a 
satellite simulator. The simulator is based on a virtual satellite, with simplified models, 
which is also part of the strategy for validation of the generated plan [Tominaga et al. 
2009]. 

The simulator returns to the Diagnosis Generator, parameters and telemetries (see 
section 2) containing the simulated state of the satellite, resulting from the execution of 
the plan’s actions. As a study case, a simplified model of telemetries, parameters and 
operational limits of the power supply subsystem of a virtual satellite XSAT is being 
used. The power supply is a critical subsystem for the satellite integrity [Tominaga et al. 
2009]. The tables 1, 2, 3, 4 and 5 below present a description of these XSAT parameters 
and telemetries used as input data for Diagnosis Generator: 
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Table 1. XSAT mission operations summary. 

Payload Description Payload data Data 
receiving 
station 

Operation criteria Power 
Consumption 

PL1 Optical 
Camera 

Satellite imagery for 
land surface 
monitoring 

Image 
receiving 
station 

Over station, at 
sunlight or at night if 
calibration requested  

PPL1 
ON = 800 W 
OFF = 100 W 

PL2 Data 
Collection 
Subsystem 

Environmental data 
acquired by data 
collection platforms 

Data 
collection 
station 

Over station or 
continuous, at 
sunlight and eclipse 

PPL2 
ON = 15 W 
OFF = 5 W 

Table 2. XSAT Power Supply Subsystem parameters. 

Identifier Description Identifier Description 

SAG Solar Array Generator PAV Power Available to the Satellite 

PSAG SAG Power IBAT BAT Charging Current 

BAT Battery VBAT BAT Voltage 

QBAT BAT Charge DOD BAT Depth-Of-Discharge 

Table 3. XSAT power values. 

Onboard Status Description 
Generated 
Power (W) 

Consumed Power 
(W) 

SAG  SUN Sunlight - Sun Illuminated Phase 1600 0 

 ECL Eclipse - Eclipse Phase 0 0 

PL1  ON PL1 Operating 0 800 

 OFF PL1 Standby 0 100 

PL2  ON PL2 Operating 0 15 

 OFF PL2 Standby 0 5 

SM  - Service Module  0 780 

Table 4. XSAT Power consumed in each operation mode. 

Onboard Status Power (W) Operation Mode 
(defined in the plan) SAG PL1 PL2 SM Consumed Generated Available 

A SUN ON ON - 1595 1600 5 

B SUN ON OFF - 805 1600 795 

C SUN OFF ON - 115 1600 1485 

D SUN OFF OFF - 885 1600 715 

E ECL ON ON - 1595 0 -1595 

F ECL ON OFF - 1585 0 -1585 

G ECL OFF ON - 895 0 -895 

H ECL OFF OFF - 885 0 -885 

Table 5. XSAT battery DOD control criteria. 

DOD (%) DOD Status  Operation Status 

< 15 LOW SAFE 

15 ~ 20 HIGH UNSAFE 

> 20 EXTREME FORBIDDEN 

Upon receiving the data from the XSAT virtual satellite PSS model due to an 
implementation of the plan’s actions, the Diagnosis Generator tool provides prediction 
from these parameters and telemetries, generating prognosis of the satellite states 
indicating how the general state of the satellite will evolve, indicating the impact of the 
plan in the security level of the satellite operation status. 
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4. Techniques for Data Prediction 

Computational prediction models are based on probabilistic reasoning over time, 
interpreting the present and understanding the past and future forecast [Russell and 
Norvig 2005]. Prediction is one of the basic inference tasks in time models, in which the 
posterior distribution on the future state is calculated, given all the evidence to date. 
Predictive models have been widely used for building tools to support decision making. 

Data mining is a method, in which the ultimate goal is prediction, and represents a 
process developed to examine routinely large amounts of data collected in search of 
consistent patterns and/or systematic relationships between variables. Techniques for 
finding and describing structural patterns in data have developed within a field known 
as machine learning, where different styles of learning appear, depending on the data 
mining application. Those applications where the predictive model requires a judgment 
needed to inform future decisions, a classification learning scheme takes a set of 
classified examples (training data) from which it is expected to learn a way of 
classifying unseen examples (test data) [Frank et al. 2009]. 

A classification technique (or classifier) is a systematic approach to building 
classification models from an input data set. Each technique employs a learning 
algorithm to identify a model that best fits the relationship between the attribute set 
(input) and class label (output) of the input data. The model generated by a learning 
algorithm should both fit the input data well and correctly predict the class labels of 
records it has never seen before. Therefore, a key objective of the learning algorithm is 
to build models with good generalization capability; i.e., models that accurately predict 
the class labels of previously unknown records [Tan et al. 2005]. We approach the 
classical techniques of classification, including decision tree classifiers, Bayesian 
classifiers and neural networks. 

Following the general approach to solving a classification problem, it was used as a 
case study, a training data; i.e., a dataset with 156 records (instances) of classified 
examples (Table 6). These input data consist on attribute set of telemetries, parameters 
and operational limits of a simplified model of a Power Supply Subsystem (PSS) 
[Tominaga et al. 2009], based on a virtual satellite (see section 3), as a result of the 
action set of a flight operation plan. Each data record is associated with classification of 
satellite security levels SAFE2 and SAFE3 (STATE class label). For this input data was 
applied a classifier algorithm, representing each classical classification learning scheme, 
which each algorithm produces a classification model. 

The method used to handle the input data for all classifiers algorithm was one of the 
methods to random subsampling called cross-validation. We used the 10-fold cross-
validation, which the data was segmented into 10 equal-sized partitions. During each 
run, one of the partitions is chosen for testing, while the rest of them are used for 
training. This procedure is repeated 10 times so that each partition is used for test 
exactly once. 

As mentioned in a section 3, the Diagnosis Generator tool should be able to generate 
data prediction for this satellite subsystem considered critical, based on the 
classification model that provides greater accuracy to predict satellite future states. So, 
aiming to provide adequate reasons, the following sections present the main features of 
these classifiers and associated algorithms used to build the classification models for the 
Diagnosis Generator tool. 
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Table 6. Input data from the virtual satellite XSAT. 

 

4.1. Decision Tree Classifiers 

A decision tree classifier, which is a simple yet widely used classification technique 
also known as decision tree induction, derives from the simple divide-and conquer 
algorithm for producing decision trees [Witten and Frank 1999]. A decision tree 
includes the root and others internal nodes, contain attribute test conditions to separate 
records that have different characteristics. 

A decision tree classification learning algorithm was applied to dataset (Table 6) to 
generate the decision tree model for classification of the satellite state. The algorithm 
chosen for building the decision tree was a well known and frequently used over the 
years the C4.5 and J48 as a class for generating a pruned or unpruned C4.5 decision tree 
[Witten and Frank 1999]. 

The output of classification learning algorithm J48, indicating a pruned decision tree 
model for the training set used with only 2 (SAFE2 and SAFE3) leaf nodes 
classification of states (STATE class label). Furthermore, the resulting tree model 
indicates that the telemetry related with the battery voltage (VBAT) (See section 3) is 
critical to classify the security level of the satellite operation status. The Figure 2 shows 
the decision tree classification model generated used to prognosis of the satellite state 
for unknown values in a new data record (record test). 
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Figure 2. Classification model based in decision tree applied a test record. 

4.2. Bayesian Classifiers 

Following a different approach, we consider the relationship between the attribute set 
and the class variable being non-deterministic. In other words, it is when the class label 
of a test record cannot be predicted with certainty, even though its attribute set is 
identical to some of the training examples (see Figure 2). For solving these 
classification problems, an approach based on the Bayes theorem is used for modeling 
probabilistic relationships between the attribute set and the class variable. Consist in a 
statistical principle for combining prior knowledge of the classes with new evidence 
gathered from data. 

)(
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Describing how the Bayes theorem was used for classification, let us formalize the 
classification problem from a statistical perspective. Let X denotes the attribute set and 
Y denote the class variable. If the class variable has a non-deterministic relationship 
with the attributes, then we can treat X and Y as random variables and capture their 
relationship probabilistically using P(Y|X). This conditional probability is also known 
as the posterior probability for Y, as opposed to its prior probability, P(Y) (see equation 
1). During the training phase, it need to learn the posterior probabilities P(Y|X) for 
every combination of X and Y based on information gathered from the training data 
[Tan et al. 2005]. 

The classifier algorithm used to implementation of this model was a naive Bayes 
classifier [Frank et al. 2009], which works using for classification each test record from 
training data (Table 6), needed to compute the posterior probabilities P(SAFE2|X) and 
P(SAFE3|X) based on the prior probability obtained for class SAFE3 (P(SAFE3)=67%) 
and the prior probability for class SAFE2 (P(SAFE2)=33%). So, the classification is 
based on the result of the condition: if P(SAFE3|X) > P(SAFE2|X), then the record is 
classified as SAFE3; otherwise, it is classified as SAFE2. 

4.3. Artificial Neural Networks 

Analogous to human brain structure, an Artificial Neural Networks is composed of an 
interconnected assembly of nodes and directed links. Consist on set of individual 
processing elements (formal neurons), grouped under diverse topologies and governed 
by mathematical procedures clustering vectors, discrete optimization, minimizing errors 
and others [Haykin 2001]. 



A Classification Model to Generate Prognosis of Satellite States 

8 

 

Following one more different approach to build a classification model, we became 
interested in models of artificial neural networks for classification, because it is a non-
parametric and non-linear technique, which allows the mapping of input data associated 
with output data. Therefore, the output of the network is the class associated to the 
sample. 

For representing a model of artificial neural networks for classification, we chose 
Networks LVQ (Learning Vector Quantization), which define a family of adaptive 
algorithms for quantifying vector, originally proposed by Kohonen. LVQ networks 
define methods for supervised training employing a self-organizing network approach 
which uses the training vectors to recursively tune placement of competitive hidden 
units that represent categories of the inputs. Once the network is trained, an input vector 
is categorized as belonging to the class represented by the nearest hidden unit [Haykin 
2001]. 

The classifier algorithm used to implementation of LVQ networks was the LVQ2_1 
classifier algorithm [Frank et al. 2009]; it consists on iterative algorithm, whose basic 
principle is to reduce the distance of the input vectors in the same class, and to move 
away input vector in the wrong class. The classes distribution obtained as output were 
SAFE3: 16 (80%) and SAFE2: 4 (20%) for the input vectors representing 12 attributes. 

In the next section, a performance evaluation of each classification model generated and 
comparison between three classifiers is accomplished based on performance metrics 
such as Accuracy and Error rate values, being the results presented and discussed. 

All the classifiers algorithms used are an integral part of the Waikato Environment for 
Knowledge Analysis (WEKA), a suite of machine learning software written in Java 
[Frank et al. 2009]. WEKA is free software available under the GNU General Public 
License, aiming at adding algorithms from different approaches in the sub-area of 
Artificial Intelligence, dedicated to the study of learning by machines [Witten and Frank 
1999]. 

5. Results and Discussion 

Performance evaluation of a classification model is based on the counts of test records 
correctly and incorrectly predicted by the model. These counts are tabulated in a table 
know as confusion matrix. The Table 7 depicts the confusion matrix of classifiers: J48, 
naive Bayes and LVQ2_1. 

Each entry eij in the Table 7 denotes the number of records from class SAFE3 predicted 
to be class SAFE2. For instance, eji is the number of records from class SAFE2 
predicted incorrectly predicted as SAFE3. Thus, based on the entries in the confusion 
matrix, the total number of correct predictions and total number of incorrect predictions 
of each model was calculated and presented on Table 8. From these matrix elements is 
possible also get the performance metrics such as accuracy for each model and the error 
rate values (Table 8). 
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Table 7. Confusion matrix of tree classifiers: J48, naive Bayes, lvq2_1. 

J48 Class = SAFE3 Class = SAFE2 Total 

Class = SAFE3 eii = 99 eij = 6 105 

Class = SAFE2 eji = 8 ejj = 43 51 

Total 107 49 156 

NAIVE BAYES Class = SAFE3 Class = SAFE2 Total 

Class = SAFE3 eii = 99 eij = 6 105 

Class = SAFE2 eji = 2 ejj = 49 51 

Total 101 55 156 

LVQ2_1 Class = SAFE3 Class = SAFE2 Total 

Class = SAFE3 eii = 96 eij = 9 105 

Class = SAFE2 eji = 12 ejj = 39 51 

Total 108 48 156 

Table 8. Accuracy and Error rate performance metrics for each classifier. 

Classifiers Accuracy (%) Error rate (%) 

J48 91.02 8.97 

NAIVE BAYES 94.87 5.13 

LVQ2_1 86.53 13.46 

Most classification algorithms seek models that attain the highest accuracy, or 
equivalently, the lowest error rate. Then, evaluating in terms of percentages, the 
accuracy and error rate values for each classifier, we can say that the classifier naive 
Bayes shows the better accuracy value (95%) and minor error rate (5%) followed of the 
decision tree classifier (91%) and (9%). The worse accuracy and error rate associated 
was the neural classifier LVQ2_1 (86%) and (13%). 

Other key measure for evaluating classifiers is Kappa statistics or Kappa coefficient. A 
measure of agreement used in nominal scale, that gives us an idea of how much the 
observations deviate from those expected due to chance, giving us so how legitimate 
interpretations are. This observer disagreement is indicated by how observers classify 
individual subjects into the same category on the measurement scale. During in run, 
each classifier assigned items to one of 2 classes SAFE3 and SAFE2, but the number of 
individuals assigned to each class by classifier are disagree (see Table 7). 

The values of Kappa are interpreted as the maximum of 1 when agreement is perfect, 0 
when agreement is no better than chance and negative values when agreement is worse 
than chance. Other values can be roughly interpreted as [Sheskin 2003]: 

• Poor agreement = Less than 0.20  
• Fair agreement = 0.20 to 0.40  
• Moderate agreement = 0.40 to 0.60  
• Good agreement = 0.60 to 0.80  
• Very good agreement = 0.80 to 1.00 

Kappa measures the percentage of data values in the main diagonal of the confusion 
matrix (Table 7) and then adjusts these values for the amount of agreement that could 
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be expected due to chance alone. In Table 9, the kappa coefficient values of each 
classifier are reported and interpreted. 

Table 9. Kappa coefficient values provided by the three classifiers. 

Classifiers Kappa Agreement 

J48 0.7940 Good 

NAIVE BAYES 0.8858 Very good 

LVQ2_1 0.6894 Good 

The Kappa coefficient value obtained of naïve Bayes classifier presented a perfect 
agreement, while the others classifiers present a good agreement. Overall, the classifier 
algorithm naive Bayes showed better results, indicating the Bayesian method as the best 
classification model generated to predict satellite future states. 

6. Conclusion 

This paper presented a comparative study of performance between classifiers algorithms 
used in data prediction to determine the classification model that provides greater 
accuracy to predict satellite future states. The classification model consist on the design 
of a prediction tool, that is being developed as a relevant part of the validation strategy 
for a flight operation plan generated automatically to control and track satellites. The 
tool performs data prediction of a critical platform subsystem, directly affected by the 
actions contained in each satellite flight plan. In addition, the tool assists experts in 
impact analysis of each plan’s action on the satellite behavior, suggesting the adoption 
or rejection of the plan. 

The most significant contribution of the Diagnosis Generator tool is related to the 
possibility of evaluating the impact of the plan from simulated satellite states, when 
integrated with the simulator or from real data to decision support making, providing 
effective support to experts, and representing an advance in reliability, predictability 
and safety of the satellite control activities generated automatically, especially 
considering multiple launchings planned for the near future, when a careful evaluation 
of these plans, before real execution would be impossible. 
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