
Model-Based Testing Considering Natural Language
Requirements

Valdivino Alexandre de Santiago Júnior1, Nandamudi L. Vijaykumar1,2,
José Demı́sio S. da Silva1,2

1Programa de Pós-Graduação em Computação Aplicada
Instituto Nacional de Pesquisas Espaciais (INPE)

Av. dos Astronautas, 1758 – 12227-010 – São José dos Campos – SP – Brazil

2Laboratório Associado de Computação e Matemática Aplicada (LAC)
Instituto Nacional de Pesquisas Espaciais (INPE)

São José dos Campos – SP – Brazil

valdivino@das.inpe.br, {vijay,demisio}@lac.inpe.br

Abstract. A methodology addressing test case generation based on Natural
Language (NL) requirements specifications is presented in this paper. A tool
that supports the methodology translates automatically NL requirements into
models. Once the models are obtained, another tool, GTSC, is used to generate
the test cases. The methodology identifies scenarios for testing by means of
combinatorial designs, hence providing a formal manner to derive scenarios.
Our methodology is easy to use and at the same time is supported by a formal
method, consequently leading to potential decrease of time with respect to test
case generation.

Keywords: Model-Based Testing, Natural Language Requirements, Formal Methods.

1. Introduction
Model-Based Testing (MBT) is as a type of testing in which tests are derived from
software behavioral models [El-Far and Whittaker 2001]. This definition includes formal
model/language specifications and other notations, like Unified Modeling Language
(UML) models [OMG 2007]. Among the formal methods used for system and acceptance
model-based test case generation are Statecharts [Harel 1987] [Santiago et al. 2008],
Finite State Machines (FSMs) [Sidhu and Leung 1989], and Z [Cristiá et al. 2010].

Taking into account model-based system and acceptance test case generation, a
test designer usually breaks down the entire system based on ways to use the system
(scenarios), and then models are derived to address each scenario. Based on such models,
test cases can be obtained. One problem here is the difficulty and the time necessary to



identify the scenarios and consequently to generate the test cases. The test designer tries
to identify the scenarios based on the very first deliverables elaborated within the software
development lifecycle, such as software requirements specifications.

The academic community has been advocating the use of formal methods to
elaborate software requirements specifications, but they require high expertise for that.
Thus, formal methods are not widely used in industrial practice. The conclusion is that
Natural Language (NL) is still the most used to elaborate requirements specifications
[Mich et al. 2004] as it is the simplest way for stakeholders. Moreover, NL may be
associated to requirements modeling methods, like use case models where a textual
description exists in order to narrate the behavior through a sequence of actor-system
interactions.

The identification of scenarios, their respective models, and generation of test
cases based on NL requirements documents are cumbersome and time-consuming tasks
specially for real complex applications. This paper thus presents a methodology which
aims model-based test case generation considering NL requirements specifications. The
methodology is supported by a tool that makes it possible to automatically translate NL
requirements into Statecharts models. Once the Statecharts are derived, the Geração
Automática de Casos de Teste Baseada em Statecharts (GTSC - Automated Test Case
Generation based on Statecharts) environment [Santiago et al. 2008] is used to generate
the test cases. Our methodology uses combinatorial designs [Mathur 2008] to identify
the scenarios for system and acceptance testing. The key benefits from applying our
methodology/tool within a test process are the easiness of use, and at the same time based
on the support of a formal method, consequently leading to potential decrease of time
with respect to test case generation.

This paper is organized as follows. Section 2 presents our methodology. Section 3
describes the computational aspects of the activity within the methodology that generates
the model. Section 4 presents the application of our methodology/tool using as case study
a space application software product. Conclusions and future directions are in section 5.

2. A test case generation methodology

Creating a Dictionary is the first activity that the test designer shall accomplish in order to
apply our methodology. The Dictionary defines the application domain and it is composed
of three sets: Names that will mainly define the names of the states of the model;
Reactiveness which is composed of two subsets (input event and output event) that
represent the Reactiveness of the system; and Control that characterizes specific control
behaviors.

The Names and Reactiveness sets shall be defined by the user, but the Control
set is already defined within the tool that supports the methodology, although the user can
change it if needed. It is not required from the user any knowledge in formal methods and
their respective notations to define the application domain. The Reactiveness feature of
the Dictionary comes into picture because the main systems that our methodology aims
to address are the reactive ones.

After the definition of the Dictionary, the scenarios shall be identified. Our
methodology uses combinatorial designs, a set of techniques for test case generation



[Mathur 2008], to this end. However, the methodology uses combinatorial designs not
to generate test cases but rather to identify scenarios. The basic idea is to identify factors
(input variables) and levels (values assignable to a factor) and to use a combinatorial
designs algorithm to determine the set of levels, one for each factor, known as a factor
combination or run1.

Once the factor combinations are generated, the test designer shall interpret each
one in order to define the scenarios. Each factor combination will derive a scenario.
Hence, the test designer is able to select a set of requirements (a scenario) and he/she
can input these NL requirements via Graphical User Interface (GUI) of the tool that
supports the methodology. Thus, our methodology provides a formal manner to identify
scenarios for system and acceptance test case generation, instead of adopting the usual ad
hoc approach.

The next activity within the methodology is the generation of the Statecharts
model. This activity will be discussed in detail in section 3. After that, test cases
can be generated by using the GTSC environment [Santiago et al. 2008]. GTSC
allows test designers to model software behavior using Statecharts and/or FSMs in
order to automatically generate test cases based on some test criteria for FSM and
some for Statecharts. At present, GTSC has implemented Unique Input/Output
(UIO), Distinguishing Sequence (DS) [Sidhu and Leung 1989] and H-switch cover
[Souza 2010] test criteria for FSM models, and three test criteria from the Statechart
Coverage Criteria Family (SCCF) [Souza 2000], all-transitions, all-simple-paths and all-
paths-k-C0-configuration, targeting Statecharts models. In other words, test criteria define
the rules that drive test case generation in GTSC.

In order to use GTSC, a user shall translate the Statecharts behavioral
model into an XML-based language named PerformCharts Markup Language (PcML)
[Santiago et al. 2006]. In the case of our tool, the idea is to automatically translate the
generated model into the PcML language. Based on a PcML document, a flat FSM is
generated by GTSC2. This flat FSM is indeed the basis for test case generation.

Having created the test cases for a particular scenario, the test designer may start
again inserting the NL requirements for the next scenario. This process shall be repeated
until there is no more scenario left.

3. Generation of the model

When the user selects the options in the GUI of our tool in order to generate the model,
a set of algorithms take place to meet this goal. The first task refers to the generation of
Behavior-Subject-Action-Object (BSAO) 4-tuples. The BSAO tuples are an extension
of the concept of SAO triads used in the Java Requirement Analyzer (J-RAn) tool
[Fantechi and Spinicci 2005]. J-RAn implements a Content Analysis technique to support
the analysis of inconsistency and incompleteness in NL requirements specifications.

1The technique adopted within the methodology is the Mixed-Level Covering Array (MCA) which
allows factors to assume levels from different sets. The algorithm used is the In-Parameter-Order (IPO), a
procedure that can generate MCAs.

2A flat FSM is a model where all hierarchical and orthogonal features of a Statecharts model were
removed. PerformCharts tool [Vijaykumar et al. 2006], one of the components of the GTSC environment,
is responsible for that.



Based on the NL document, this technique explores the extraction of the interactions
between the entities described in the specification as SAO triads. These SAO triads are
obtained with the help of the Link Grammar Parser [Sleator and Temperley 1993], a
syntactic parser of English based on Link Grammar, a formal grammatical system.

In our tool, the first extension is the inclusion of Behavior features (“B”) in the
SAO triad so that it will be transformed into a BSAO 4-tuple. The reasoning behind
this relies on the fact that words like if determine a particular behavior in the generated
model. For instance, finding an if-then-else situation in one or several NL requirements
(e.g. in one requirement: “If the system works according to ...”; in the same or in the
next requirement: “On the other hand, if the system does not work according to ...”) may
imply that the behavioral model will have a state with two outgoing transitions each one
representing the possible outcome of the if-then-else situation.

The second modification is related to the object identification. J-RAn presented
a huge number of missing extractions [Fantechi and Spinicci 2005], and one possible
explanation for this fact was because J-RAn used a single link type (“O”) of the Link
Grammar Parser to identify objects. However, it is possible that there is no explicit object
generated by Link Grammar depending on the NL requirement. Consider the requirement
below:

Users’ data shall be updated on the server every 12 hours.

By using Link Grammar, there is no object because none of the link types
regarding object (“O”, “OT”, ...) appears in the parser output. We tried to overcome
situations like this in the tool that supports our methodology. We developed and
implemented an algorithm to automatically identify the BSAO tuples. The algorithm
makes use of the Stanford Part-Of-Speech (POS) Tagger [Toutanova et al. 2003] in order
to identify the lexical categories (i.e. the parts of speech) of each sentence of the NL
requirements. Actually, after the user has defined the NL requirements that form a
scenario, we combine all such requirements into a file. This file is input to the Stanford
POS Tagger which assigns the POS of each word (e.g. noun, verb, adjective, ...). Thus,
the algorithm first verifies if there is a preposition or subordinating conjunction and also
if such word is in the Control set. If these conditions are matched, then the B element of
the tuple is assigned to such word. If not, B is empty.

After the determination of B, the Subject (S), Action (A), and Object (O) elements
are identified. Essentially, what the agorithm does is to verify whether the POS tags of
words are equal to predefined POS tags that characterize a Subject, an Action, or an
Object. For S and O, the selected POS tags are commom nouns (singular and plural),
proper nouns (singular and plural), and adjectives. For A, the POS tags are verbs and
adverbs. If they match, the corresponding S, A, and O elements of the tuple are fulfilled.
However, a BSAO tuple is created if and only if a Subject and an Action and an Object
were determined. If any of these elements was not determined, no tuple is created. This is
to avoid several situations which might occur in NL sentences, and whose might produce
ill-formed tuples. For instance, a piece of a sentence might derive an S, an A but not an
O because the sentence has ended. In this way, a BSAO tuple in not generated.

After the generation of the tuples, the model shall be created. Several algorithms
were developed and implemented in order to reach this goal. In our tool, the generated



model is a set whose each element represents a transition in the model. Hence, each
element has these four fields: source state, input event, output event, and destination
state.

The initial idea is to denote the states of the model with the Subject component of
the BSAO tuple. However, an algorithm wonders whether there is already a source state
in the model with the same name of the current BSAO Subject. The algorithm will return
a name for the state just adding an underscore followed by an incrementing number after
the Subject, if there is already a same state name in the model; otherwise, it will return
the same BSAO Subject to be assigned as the name of the source state.

The Reactiveness set of the Dictionary plays an important role on defining the
input and output events within a transition. If the Object of the BSAO tuple exists in the
input event subset, then the input event will be assigned to such value, and the output
event will have the value of the corresponding element of the output event subset of the
Reactiveness set. However, if the tuple Object does not match any value in input event,
the input event will be formed by a combination of Action Object of the BSAO tuple, and
the output event will be null. Another remark is to mention that the if-then-else situation
in NL sentences is accounted for. Hence, more than one transition may be leaving the
same source state in the resulting model.

4. Case study

This section presents the application of our methodology/tool using as case study a
space application software product [Santiago et al. 2007]. The test designer starts by
the definition of the Dictionary as described in section 2. After that, the scenarios are
identified using combinatorial designs. Table 1 shows a possible choice of factors and
levels for this case study.

Table 1. Factors and levels for the case study.

Factors Levels
OpMode Nom Init Safe Diag Inv

Services Sci Hk Dmp Load Dg Tst Inv

Cmd TxSci PrpHk TxHk VOpM LdDat ExeP Inv

Storage MemMg No Inv

HkTime Def Min Max Inv

This configuration generates 50 factor combinations in a pairwise design option.
These 50 factor combinations shall be interpreted in order to produce 50 scenarios. We
will generate test cases related to scenario number 1: {Nom, Sci, TxSci, MemMg, Def}.
The test designer then searches in requirements specifications the NL requirements that
characterize such scenario.



Table 2. Sample of test cases for scenario 1.

Test Criterion Test Cases
all-simple-paths {be power Power Conditioning Unit/null, be/null, then accomplish post/null, do not

present irrecoverable problem/null, be/null, ACT-HW-EPP1-OFF/CMD-REC, ACT-HW-
EPP2-OFF/CMD-REC}, {be power Power Conditioning Unit/null, remain/null, wait 60
seconds/null, VER-OP-MODE/INFO-OP-MODE, ACT-HW-EPP1-ON/CMD-REC,
ACT-HW-EPP2-ON/CMD-REC, wait 30 seconds/null, wait 600 seconds/null, PREP-
HK/CMD-REC, TX-Data-HK/HK-DATA, CH-OP-MODE-NOMINAL/CMD-REC,
VER-OP-MODE/INFO-OP-MODE, wait 10 seconds/null, TX-DATA-SCI/SCI-DATA,
wait 10 seconds/null, TX-DATA-SCI/SCI-DATA, CH-OP-MODE-SAFETY/CMD-REC,
be/null, ACT-HW-EPP1-OFF/CMD-REC, ACT-HW-EPP2-OFF/CMD-REC}, ...

After that, the selected NL requirements are entered via GUI of the tool that
supports the methodology, and the test designer asks the tool to generate the Statecharts
model. The generated model has 22 BASIC states and 27 transitions. Sample of test cases
generated by the GTSC environment using the all-simple-paths test criterion are presented
in Table 2. We generated the test suites for the DS, UIO, and all-transitions criteria
too. The test designer can then repeat this process for another scenario as described in
section 2.

5. Conclusions
This paper presented a methodology with its supporting tool which aims to help test
designers to generate test cases based on behavioral models taking into account reactive
systems. The methodology assumes that the documents that provide the basis for system
and acceptance test case generation, such as requirements specifications, are mostly
elaborated using NL. Deriving test cases in an automated manner, as proposed in this
paper, starting right from NL documents is a challenge given that NL is ambiguous.

Our methodology showed a formal manner to derive the usage scenarios for
system and acceptance test case generation by using combinatorial designs. We believe
that our methodology/tool is very easy to apply, but at the same time it is supported by a
formal method, not demanding from the user any skills related to formal notations. The
automation of the methodology has the potential to decrease the time related to test case
generation in complex and real projects.

Future work includes the development of a method that can identify self transitions
in the resulting model. Besides, we aim to develop an algorithm to determine hierarchy
within the Statecharts created.

References
Cristiá, M., Santiago, V., and Vijaykumar, N. L. (2010). On comparing and

complementing two MBT approaches. In Proceedings..., Washington, DC, USA.
Latin-American Test Workshop (LATW), IEEE Computer Society.

El-Far, I. K. and Whittaker, J. A. (2001). Model-based software testing. In Marciniak,
J. J., editor, Encyclopedia of software engineering. Wiley, USA.



Fantechi, A. and Spinicci, E. (2005). A content analysis technique for inconsistency
detection in software requirements documents. In Anais..., pages 245–256. Workshop
em Engenharia de Requisitos (WER).

Harel, D. (1987). Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8:231–274.

Mathur, A. P. (2008). Foundations of software testing. Dorling Kindersley (India),
Pearson Education in South Asia, Delhi, India. 689 p.

Mich, L., Franch, M., and Inverardi, P. (2004). Market research for requirements analysis
using linguistic tools. Requirements Engineering Journal, 9(1):40–56.

OMG (2007). OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2.
The Object Management Group (OMG), Needham, MA, USA. 722 p.

Santiago, V., Amaral, A. S. M., Vijaykumar, N. L., Mattiello-Francisco, M. F., Martins,
E., and Lopes, O. C. (2006). A practical approach for automated test case generation
using Statecharts. In Proceedings..., pages 183–188, Los Alamitos, CA, USA.
Annual International Computer Software & Applications Conference (COMPSAC)
- International Workshop on Testing and Quality Assurance for Component-Based
Systems (TQACBS), IEEE Computer Society.

Santiago, V., Mattiello-Francisco, F., Costa, R., Silva, W. P., and Ambrosio, A. M.
(2007). QSEE project: an experience in outsourcing software development for
space applications. In Proceedings..., pages 51–56, Skokie, IL, USA. International
Conference on Software Engineering & Knowledge Engineering (SEKE), Knowledge
Systems Institute Graduate School.

Santiago, V., Vijaykumar, N. L., Guimaraes, D., Amaral, A. S., and Ferreira, E. (2008).
An environment for automated test case generation from Statechart-based and Finite
State Machine-based behavioral models. In Proceedings..., pages 63–72, Washington,
DC, USA. International Conference on Software Testing, Verification and Validation
(ICST) - Workshop on Advances in Model Based Testing (A-MOST), IEEE Computer
Society.

Sidhu, D. P. and Leung, T. K. (1989). Formal methods for protocol testing: a detailed
study. IEEE Transactions on Software Engineering, 15(4):413–426.

Sleator, D. D. and Temperley, D. (1993). Parsing English with a link grammar. In
Proceedings..., pages 277–292. International Workshop on Parsing Technologies.

Souza, É. F. (2010). Geração de casos de teste para sistemas da área espacial usando
critérios de teste para máquinas de estados finitos. Master Dissertation, 133 p.

Souza, S. R. S. (2000). Validação de especificações de sistemas reativos: definição e
análise de critérios de teste. PhD Thesis, 264 p.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-
of-speech tagging with a cyclic dependency network. In Proceedings..., pages 173–
180. Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology.

Vijaykumar, N. L., Carvalho, S. V., Francês, C. R. L., Abdurahiman, V., and Amaral,
A. S. M. (2006). Performance evaluation from Statecharts representation of complex



systems: Markov approach. In Proceedings..., pages 183–202, Porto Alegre, RS,
Brazil. Congresso da Sociedade Brasileira de Computação (CSBC) - Workshop em
Desempenho de Sistemas Computacionais e de Comunicação, Sociedade Brasileira de
Computação.


