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ABSTRACT

A simplified model for the combustion of multiple droplets is presented under the
consideration of unitary Lewis numbers, infinitely fast chemistry and potential flow,
and also the assumption that the flame is in the transient region (i.e., sufficiently
far from the droplets). The extinction conditions are determined from the Large
Activation Energy Asymptotics and studied for several configuration of droplets in
axisymmetric geometry. It was found that the critical Damköhler number of extinc-
tion decreases monotonically with time, showing that the flame becomes more stable
with time. It was also seen that the forced convection makes the flame less stable,
but the addition of other droplets does not affect the extinction, which always occur
around the largest droplet, unless a smaller droplet is added in the upstream region
of a larger droplet, in which case the extinction can occur around the smaller droplet
if the convection is sufficiently strong.

Keywords: Combustion; Laminar flames; Extinction.
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MODELAGEM DA CHAMA DIFUSIVA ESTABELECIDA AO
REDOR DE MÚLTIPLAS GOTAS

RESUMO

Um modelo simplificado para combustão de múltiplas gotas é apresentado sob a
consideração de números de Lewis unitários, química infinitamente rápida e escoa-
mento potencial, e também a consideração de que a chama está na região transiente
(isto é, suficientemente longe das gotas). As condições de extinção são determinadas
pela Teoria Assintótica de Alta Energia de Ativação e estudada para diversas con-
figurações de gotas em geometria axissimétrica. Foi encontrado que o número de
Damköhler crítico de extinção diminui monotonicamente com o tempo, mostrando
que a chama fica mais estável com o tempo. Também percebeu-se que a convecção
forçada deixa a chama menos estável, mas que a adição de outras gotas não afeta a
extinção, que sempre ocorre ao redor da gota maior, a menos que uma gota menor
seja adicionada a montante da gota maior. Neste caso, a extinção pode ocorrer ao
redor da menor gota se a convecção for suficientemente forte.

Palavras-chave: Chamas laminares; Combustão; Extinção.
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1 INTRODUCTION

The atomization is related to the burning of liquid fuels in the same way that the heat
is related to the combustion. The atomization divides the liquid in small droplets
whose total surface is sufficiently large to allow the heat transfer from the ambient
to the droplets, allowing a sufficiently large vaporization rate to maintain a flame
suitable for the application. The spray is not constituted of droplet of the same
size, but rather of a wide spectrum of droplet sizes, which makes the deterministic
description of a spray prohibitive, demanding the solution of the Boltzmann equa-
tions from the statistic mechanics in nine dimensions to include the time, position,
velocity, droplets radius and temperature, and also the description of the base flow,
involving the Navier-Stokes and energy conservation equations. A proper description
of the dynamics of a spray is of extreme relevance to the achievement of efficiency
in combustion.

This master thesis presents a simplified model of the combustion of several droplets
developed from the well established models for the combustion of isolated droplets.
Suitable methods for the description of the external and internal structure of diffu-
sion flames, with infinitely fast chemistry for the former and finite one-step chem-
istry for the latter are applied to describe the extinction of the flame around several
droplets. One of the applications of the model here presented is in the spray-flamelet
model to account for the combustion of small groups of droplets.

The objective of this work is to describe mathematically the flame established around
an arbitrary number of droplets, and the specific objectives are to analyze the
thermo-fluid-dynamic field around the droplets, to establish the extinction condi-
tions, and to study the influence of a relative flow and the distance and size of the
droplets over the extinction.

A review of the literature of droplet interaction is presented in Chapter 2, compiling
the most important theoretical, numerical and experimental studies in this theme
in the last decades. The mathematical formulation of the combustion of multiple
droplets is presented in Chapter 3, describing separately the combustion of isolated
droplets, the coupling of the combustion of isolated droplets to the complete problem
and the derivation of the extinction conditions for the flame around the droplets.
Chapter 4 presents the comparation of the results of the model presented in this
master thesis to analytical and numerical results from the literature of combustion of
isolated droplets and in Chapter 5 the results obtained with the model are presented
and the extinction of the flame is discussed.
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2 LITERATURE REVIEW

It is well known that experimental studies with droplets found in Diesel or rocket
engines combustion chambers cannot be realized due to their size, which is of order
of 10 µm. The most usual approach is the use of droplets with size in the order of
1 mm, which are enormous if compared to the actual size of droplets in combustion
processes. In those spatial scales the effects of buoyancy deform the flame, which
does not happen in droplets in the scale of 10 µm, in which case the flame around
the droplets is practically spherical. The different flame shape affects the heat flux
from the flame to the droplet and, therefore, the vaporization rate is different to
the determined for a spherical flame. The solution to this problem is to impose
microgravity condition for the large droplets.

In Earth, microgravity can be reached through parabolic flights and drop towers. The
first studies employing those methods were in Japan, with prof. Kumagai launching
droplet combustion experiments inside a cardboard suitcase from the mechanical
engineering building in the University of Tokyo (KUMAGAI; ISODA, 1957). Japan
had the largest drop tower, built from a mine shaft approximately 600 m deep. This
drop tower was closed due to the large maintenance costs, but there are drop towers
nowadays in China, Germany and in the USA. Microgravity can be obtained also
with experiments launched from high altitude balloons and orbital flights, althouth
the cost per experiment is very high (NAYAGAM et al., 1998; FACHINI et al., 1999).

Among the studies developed at INPE regarding droplet combustion there are, for
example, the effect of the acoustic field over the flame, in which the results showed
that the acoustic field anticipates the extinction of the flame around the droplet
(FACHINI, 1996). Another issue that was analyzed was the ignition and transient
processes around the droplet (FACHINI; LIÑÁN, 1997). It was also studied the tran-
sient effects of the acoustic field in the region far of the droplet over the vaporization
rate, which had important effects in the flame (FACHINI, 1998). Finally, an analytical
model for droplet combustion was developed, which can be implemented in spray
combustion simulation codes, for example (FACHINI, 1999).

The interaction between droplets is a natural sequence of the previous studies. The
complexity, however is not determined directly by the number of droplets since in
this problem the flow field is not one-dimensional anymore, and the velocity is not
determined solely by the continuity equation, as in the one-dimensional case of iso-
lated droplets. The following paragraphs do not consist of an extensive discussion of
the previous studies on droplet interaction avaliable in the literature, but of a review
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of the most relevant studies in the fundamental aspects of droplet interaction, such
as the most important theoretical approaches and the numerical and experimen-
tal works investigating the differences to the classical case of an isolated droplets.
The combustion of sprays is certainly the most studied problem of diffusion flames
in theoretical, numerical, and experimental approaches, and the combustion of iso-
lated and interacting droplets is a mere particular case of the combustion of sprays.
Therefore, a proper review of the literature of interacting droplets must include the
contextualization provided by the combustion of sprays and the intermediate cases
that couples the problem of the interaction of a few droplets to the combustion of a
cloud of droplets. However, for the sake of brevity, this review will be limited to the
problem of the combustion of interacting droplets and arrays of droplets, since there
are several review works in the literature dealing with droplet interaction in the
context of spray combustion (FAETH, 1977; LAW, 1982; FAETH, 1983; SIRIGNANO,
1983; ANNAMALAI; RYAN, 1992; SIRIGNANO, 2014; SÁNCHEZ et al., 2015).

Three phenomena were identified in the combustion of droplet clouds and sprays,
viz., the effect of the droplets in the conditions of the gaseous phase, the effect of
the droplets in the local ambient and the effects of the droplets over each other
(SIRIGNANO, 1983). Theoretical studies of the burning of interacting droplets were
developed to solve the permanent regime problem disregarding the convection, in
which case the conservation equations take the form of the Laplace equation, which
was approached by numerical methods (LABOWSKY, 1976; LABOWSKY, 1978) and by
analytical methods using bispherical coordinates (TWARDUS; BRZUSTOWSKI, 1977;
BRZUSTOWSKI et al., 1979). A critical distance between droplets was found such that,
if the droplets are closer than that distance, there will be a flame surrounding both
droplets. However, it was demonstred that in most pratical applications the droplets
are closer than the critical distance and, therefore, combustion of isolated droplets
is rare (CHIGIER; MCCREATH, 1974).

Following this theoretical formulation, analytical expressions for the flame shape
were obtained, even for the case of different droplets, and it was found that the
vaporization rate is smaller for both droplets, although proportional to the case of
an isolated droplet (LABOWSKY, 1976). It was also shown that droplet tempera-
tures are independent of the distance between droplets for unitary Lewis numbers
(SIRIGNANO, 1983). Further advances to this formulation introduced the effect of
convection using potential flow to describe the droplets as point sources (UMEMURA

et al., 1981). The Laplace equation formulation was expanded to describe arrays of
droplets in different geometries (MARBERRY et al., 1984) which allowed the exten-
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sive determination of correction factors for parameters such as the vaporization rate.
Studies combining theoretical and experimental analysis showed that droplet inter-
action increases the burning time and the lifetime of interacting droplets is more
than twice larger than of isolated droplets if the distance between droplets is of two
diameters (SANGIOVANNI; LABOWSKY, 1982), but that the effects of interaction in
the vaporization can be neglected if the distance is larger than 10 diameters.

Later studies took advantage of increasing computational power to expand more
convoluted theories for isolated droplets, such as the asymptotic transient behavior of
droplets (CRESPO; LIÑÁN, 1975), to the problem of interacting droplets (UMEMURA,
1994), and also the description of the interaction between droplets in the context
of dense sprays (SILVERMAN; SIRIGNANO, 1994), revealing that groups of droplets
travels in a spray faster than isolated droplets due to the reduction of the drag
coefficient, resulting in a shorter droplet lifetime. Complete analysis of the influences
the flow over the droplets showed that the assumption of constant distance between
droplets is not always accurate and that, under certain conditions, the droplets
can collide (CHIANG et al., 1992), even in simple situations such as two droplets
with axisymmetry. The effect of forced convection in the burning rates of droplets
in axisymmetric geometry were identified (TSAI; STERLING, 1991b), showing that
the droplet in the upstream region has a higher burning rate for Reynolds number
Re = 10 because it is totally enclosed by the flame, while the same happens for
Re = 50 for the droplets in the downstream region. The use of a potential flow
solution for the flow field based on the superposition of point sources to an axial
flow was also presented as a suitable alternative to the solution of the Navier-Stokes
equations for a system with several droplets (TSAI; STERLING, 1991a), but using the
quasi-steady approximation for droplet burning (i.e., solving the governing equations
for a stationary solution) as opposed to the model presented in this thesis, in which
the solution in the transient region is presented. In the presence of forced convection
different flame modes can be observed, such as envelope flame, in which the flame
envolves the droplet in the upstream region, and the wake flame, in which the flame
does not envolves the droplet in the upstream region (SIRIGNANO, 2014), and the
occurrence of each mode is determined by a critical Damköhler number, which does
not depend in the distance between droplets. The flame mode can affect the burning
rate of the droplets, since in the wake flame the droplet in the upstream region will
have a smaller burning rate.

The combustion of an infinite array of fuel pockets, which can be interpreted as
droplets of fuel in a state close to the critical point (i.e., at high temperature and
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pressure), was analyzed for different Lewis numbers (CALDEIRA; FACHINI, 2010),
showing that the effect of the oxidizer Lewis number on the flame behavior is more
relevant because the ambient can provide an unlimited amount of oxidizer to the
flame, while the fuel pocket can provide a limited amount of fuel.

The isolated droplet combustion and vaporization models, which has been exten-
sively developed (SAZHIN, 2006), has been used in the modelling of sprays due to
its simplicity (MAIONCHI; FACHINI, 2013; FRANZELLI et al., 2015; LIÑÁN et al., 2015),
since the quasi-steady regime approximation allows the obtaining of analytical solu-
tions in several cases. The effect of the interaction between droplets on the ignition
of sprays was studied, showing that ignition takes more time to occur if the droplets
are close to each other in relation to a isolated droplet (SANGIOVANNI; KESTEN,
1977)

Experimental studies performed in several conditions demonstred the difference to
the case of an isolated droplet, such as the fact that interacting droplets no longer
follow the d2 law of vaporization (MIYASAKA; LAW, 1981), but also evidenced the
inaccuracy of early theoretical models. It was also shown that the initial distance
between droplets affects substantially the vaporization rate, leading to a larger or a
smaller vaporization rate in relation to the case of an isolated droplet (MIKAMI et

al., 1994). The influence of the pressure over the combustion of interacting droplet
was found to be similar to the case of isolated droplets, confirming that the quasi-
steady model of droplet combustion is accurate for low pressures (MIKAMI et al.,
1998), as predicted much earlier (WILLIAMS, 1960). The effect of the gravity over
experimental investigation of the extinction of interacting droplets was found to be
relevant, with interacting droplets in normal gravity having the flame extinguished
later than isolated droplets and earlier if in microgravity (STRUK et al., 2002), being
this phenomena attributed to the radiant heat loss.

This master thesis proposes a model for droplet interaction in which the droplets
are far apart. In that case, the flame is in the transient region of droplet combus-
tion, in which the quasi-steady approximation cannot be applied. The conservation
equations are solved numerically using the flow field provided by the potential flow
instead of the Navier-Stokes equations (TSAI; STERLING, 1991a).
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3 METHODOLOGY

The problem consists in a linear array of N droplets of fuel with initial radius â0k

and density ρ̂l at boiling temperature T̂b placed in an ambient of oxidizer with
concentration ŶO∞, temperature T̂∞ and density ρ̂∞. There is also an axisymmetric
base flow ûb. For the sake of simplicity, it is assumed that

(i) the thermodynamic and transport coefficients are constants;

(ii) the mass diffusivity of both reactants are equal and equal to their thermal
diffusivity (i.e., the Lewis number of both reactants are equal to 1);

(iii) the density of the gaseous phase is much smaller than the density of the
liquid fuel;

(iv) the chemical reaction is infinitely fast (Burke-Schumann limit), following
the one-step mechanism F + sO2 −→ (1 + s)P, in which s is the mass of
oxygen required to burn stoichiometrically a unit mass of fuel;

(v) the problem has axisymmetry around the line passing through the center
of the droplets;

(vi) the flame around the droplets is in the transient region, i.e., the distance
from the droplets to the flame is much larger than the droplet radius;

(vii) the droplets are far from each other (i.e., the distance between the droplets
is much larger than their radii), and, therefore, the droplets can be con-
sidered as point sources of fuel;

(viii) the characteristic time of the flow change is much smaller than the charac-
teristic time of energy or species diffusion and convection, so that the flow
is stationary in relation to the other variables;

(ix) in addition to being stationary, the flow is incompressible and irrotational
and, therefore, potential.

The problem will be described in cylindrical coordinates, in which the axis z pass
through the center of the droplets and the axis r is perpendicular to z. This config-
uration for a case with two droplets is depicted in Fig. (3.1).
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Figure 3.1 - Configuration of the problem for a case with two droplets.

r

zO

ub

Flame

1 2

R

Transient
region

Quasisteady region

After the ignition of the flame around a droplet the steady state in the region
immediately close to the droplet is rapidly achieved, and transient effects are relevant
mainly far from the droplet (CRESPO; LIÑÁN, 1975). The region close to the droplet,
called quasisteady region, is not affected by the external problem and can therefore
be solved separately. The region far from the droplet, called transient region, will
be solved as a single phase problem, in which the presence of droplets is regarded
through boundary conditions obtained by the analysis in the quasisteady region.
Since in the quasisteady region the droplet can be assumed to be isolated, the
problem in this scale is one-dimensional and can be described by the radial variable
R =

√
(r2 + (z − zd)2)/ε, in which zd is the position of the droplet and ε is a scale

factor to be defined later.

3.1 Quasi-steady region

Initially, the combustion of an isolated droplet with initial radius â0 is addressed,
which will provide the boundary condition that represents the droplet as a point
source of fuel. It is assumed that the density and the thermodynamic and transport
coefficients are constant in both gaseous and liquid phase, although they are kept
in the equations to address the difference of these properties in each phase. It is
assumed also that the problem of the combustion of a single droplet has spherical
symmetry, with R̂ being the radial coordinate with origin in the center of the droplet
and Û being the radial velocity. Since the flame is assumed to be in the transient
region the oxidizer concentration in the quasi-steady region is 0 and, therefore, only
the fuel conservation equation will be written. The conservation equations are the
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continuity equation
∂ρ̂

∂t̂
+ 1
R̂2

∂

∂R̂

(
R̂2ρ̂Û

)
= 0, (3.1)

the energy conservation equation (in terms of the enthalpy ĥ = ĉpT̂ ),

∂(ρ̂ĥ)
∂t̂

+ 1
R̂2

∂

∂R̂

(
R̂2ρ̂Û ĥ

)
= 1
R̂2

∂

∂R̂

(
R̂2k̂

∂T̂

∂R̂

)
, (3.2)

and the fuel conservation equation,

∂(ρ̂ŶF )
∂t̂

+ 1
R̂2

∂

∂R̂

(
R̂2ρ̂Û ŶF

)
= 1
R̂2

∂

∂R̂

(
R̂2ρ̂D̂F

∂ŶF

∂R̂

)
. (3.3)

Defining the nondimensional independent variables (i.e., time and radial coordinate)

t := t̂

t̂c
, R := R̂

L̂c
(3.4)

the nondimensional dependent variables density ρ, enthalpy h, temperature T , fuel
mass fraction YF , and radial velocity U

ρ := ρ̂

ρ̂∞
, h := ĥ

ĉpT̂∞
, T := T̂

T̂∞
, YF := ŶF , U := t̂cε

L̂c
Û , (3.5)

and the thermal diffusivity

α := k̂

ĉpρ̂∞
(3.6)

in which the characteristic time is t̂c := â2
0/α̂∞ε, i.e., the time scale corresponding to

the droplet heating and vaporization, and the characteristic length is L̂c := â0, the
initial droplet radius, with ε := ρ̂∞/ρ̂l (CRESPO; LIÑÁN, 1975). The nondimensional
equations are, therefore,

ε
∂ρ

∂t
+ 1
R2

∂

∂R
(R2ρU) = 0 (3.7)

ε
∂(ρh)
∂t

+ 1
R2

∂

∂R
(R2ρUh) = 1

R2
∂

∂R

(
R2α

∂T

∂R

)
, (3.8)

LeF

[
ε
∂(ρYF )
∂t

+ 1
R2

∂

∂R
(R2ρUYF )

]
= 1
R2

∂

∂R

(
R2ρα

∂YF
∂R

)
, (3.9)

in which the Lewis number of the fuel is given by

LeF := α̂∞

D̂F∞
. (3.10)
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It must be pointed out that
ρ = cp = α = 1 (3.11)

in the gaseous phase and that

ρ = ρl = ε−1, cp = cpl, α = αl (3.12)

in the liquid phase (consid. (i)). It can be seen that ε is the Strouhal number, which
is the ratio of the characteristic time scale of the gaseous phase to the characteristic
time scale of the liquid phase.

3.1.1 Boundary conditions at the droplet surface

The boundary conditions at the droplet surface are provided by the integration of the
conservation equations across the droplet surface. The integration of the continuity
equation leads to

0 = R2ρU
∣∣∣a+

a−
= a2ρU − a2ε−1Ur = a2ρU + a2da

dt
= a2ρU − λ, (3.13)

in which Ur = −εda/dt is the velocity of regression of the droplet surface and λ is
the nondimensional vaporization rate, given by

λ := −a2da

dt
= − d

dt

(1
3a

3
)

(3.14)

which, apart of a factor of 4π, is the rate of change of the droplet mass. Therefore,
the continuity equation leads to

a2ρU = λ. (3.15)

Using λ/a = −da2/dt, the droplet radius can be written as function of λ as

a2 = 1− 2
∫ t

0

λ

a
dt. (3.16)

Integrating the energy conservation equation, one has

R2ρUh
∣∣∣a+

a−
= R2α

∂T

∂R

∣∣∣∣∣
a+

a−
, (3.17)
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or, since the temperature distribution is assumed to be uniform inside the droplet,

λh|a
+

a− = a2 ∂T

∂R

∣∣∣∣∣
a+
. (3.18)

The term in the left-hand side is the difference of the enthalpy of the liquid and the
gaseous phases. Since the fuel in the droplet is at boiling temperature, this difference
is the latent heat of vaporization l := l̂/ĉp∞T̂∞. Therefore,

a2 ∂T

∂R

∣∣∣∣∣
a+

= λl. (3.19)

The integration of the fuel conservation equation leads to

a2∂YF
∂R

∣∣∣∣∣
a+
− LeFλYF = −LeFλ. (3.20)

An alternative derivation of these boundary conditions is presented in Appendix A.

3.1.2 Solution in the gaseous phase

The conservation equations can be integrated in the gaseous phase evaluating the
integrals in the region R > a. Under the assumption that ε � 1 (consid. (v)) the
transient term will be neglected. From henceforth it will be assumed that the specific
heat of the gaseous phase is constant (consid. (i)), with cp = 1, leading to h = T .
The integration of the continuity equation leads to

U = λ

R2 . (3.21)

For the energy conservation equation,

R2 dT

dR

∣∣∣∣∣
R

a

= R2UT
∣∣∣R
a
, (3.22)

leading to
R2 dT

dR
= λ(T − Tb + l), (3.23)

in which Tb is the boiling temperature, that can be assumed as identical to the
temperature of the droplet surface (WILLIAMS, 1985; LAW, 2006). For the fuel con-
servation equation,

R2dYF
dR

= LeFλ(YF − 1). (3.24)
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These equations can be written in a more compact form as

λ

R2 = 1
T − Tb + l

dT

dR
= 1
LeF (YF − 1)

dYF
dR

. (3.25)

Integrating these equations, one has

exp
(
− λ
R

)
= T − Tb + l

To − Tb + l
=
(
YF − 1
YFo − 1

)1/LeF

, (3.26)

in which the subscript o stands for the condition in the outer zone (i.e., in the limit
R→∞). The first equality can be applied to R = a, yielding

λ

a
= β(t) := ln

(
1 + To − Tb

l

)
, (3.27)

in which β is the vaporization function, which is a function of time through the
dependence of To on time. Therefore, the droplet radius can be obtained by

a2 = 1− 2
∫ t

0
β dt. (3.28)

In the classical theory of droplet combustion, β is a constant (called vaporization
constant) because the temperature around the droplet is constant, as it will be
demonstrated in Section 3.2.1. Under this condition one has a2 = 1 − 2βt, i.e., the
square of the droplet radius decreases linearly with time, as stated by the d2 law
(GODSAVE, 1953; SPALDING, 1953).

3.1.3 Notation for multiple droplets

Since the problem will be addressed with an arbitrary number of droplets, the no-
tation must be accordingly expanded. The subscript k will denote the properties of
the k-th droplet, e.g., λk is the vaporization rate of droplet k. Droplet 1 has initial
radius â01, and droplet k has initial radius â0k = Akâ01. Evaluating the nondimen-
sionalization with the initial radius of droplet 1 has no effect on the formulation
except that the radius of droplet k as function of vaporization function βk is

a2
k = A2

k − 2
∫ t

0
βkdt. (3.29)
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3.2 Transient region

In the description of the gas phase far from the droplet, called outer problem, the
geometry of the droplets is not seen (consid. (vi)). It is assumed that N droplets are
placed at r̂ = r̂k, k = 1, 2, · · ·N .

The conservation equations in the transient region are

∇ · û = 0, (3.30)

∂T̂

∂t̂
+∇ · (ûT̂ ) = α̂∇2T̂ + Q̂ω̂, (3.31)

∂ŶO

∂t̂
+∇ · (ûŶO) = D̂O∇2ŶO − sω̂, (3.32)

∂ŶF

∂t̂
+∇ · (ûŶF ) = D̂F∇2ŶF − ω̂, (3.33)

in which ω̂ is the reaction rate for a one-step mechanism (consid. (iii)), given by

ω̂ = B̂ŶOŶF exp
(
− Êa

RT̂

)
, (3.34)

in which B̂ is the pre-exponential factor, Êa is the activation energy and R is the
gas constant.

The proper length scale in the outer problem is L̂co := â01/
√
ε (CRESPO; LIÑÁN, 1975;

WALDMAN, 1975). The nondimensional variables of the outer zone are therefore

r := r̂
L̂co

, u := t̂c

L̂co
û, yO := ŶO

ŶO∞
, yF := ŶF√

ε
, (3.35)

while the remaining variables are the same of the quasisteady region (Eq. (3.5)).
The outer zone variables are related to the inner zone variables by (CRESPO; LIÑÁN,
1975; WALDMAN, 1975; FACHINI et al., 1999)

r =
√
ε(R −R0), u = U√

ε
, yF = YF√

ε
, (3.36)

in which R and U are the position and velocity vector in the inner zone, respec-
tively, and R0 allows an arbitrary translation of the origin. The nondimensional
conservation equations are

∇ · u = 0, (3.37)
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∂T

∂t
+∇ · (uT ) = ∇2T + qω, (3.38)

LeO

[
∂yO
∂t

+∇ · (uyO)
]

= ∇2yO − sZω, (3.39)

LeF

[
∂yF
∂t

+∇ · (uyF )
]

= ∇2yF − ω, (3.40)

in which the nondimensional reaction rate is given by

ω = DayOyF exp
[
Ta
Tf

(
1− Tf

T

)]
, (3.41)

in which Ta := Êa/RT̂∞ is the nondimensional activation temperature, often identi-
fied as Zeldovich number, and Tf is nondimensional flame temperature. The Lewis
numbers of the oxidizer are given by, respectively,

LeO := α̂

DO
, LeF := α̂

DF
, (3.42)

and the nondimensional heat of combustion (q), the Damköhler number (Da) and
the stoichiometric coefficient sZ are given by

q :=
√
ε

Q̂

ĉpT̂∞LeF
, Da = ŶO∞LeF

â2
0B̂e

−Ta/Tf

εα̂∞
, sZ =

√
ε
sLeO

ŶO∞LeF
. (3.43)

The results obtained for the quasisteady region (i.e., Eq. (3.26)) can be written in
terms of the outer zone variables as

‖r− rk‖2∇T · eRk =
√
ελk(T − Tb + l), (3.44)

‖r− rk‖2

LeO
∇yO · eRk =

√
ελkyO, (3.45)

‖r− rk‖2

LeF
∇yF · eRk = −λk, r→ rk, (3.46)

in which eRk := (r− rk)/‖r− rk‖ is the unit vector pointing away from the droplet
k center. In the boundary condition for yF it was assumed that

√
εyF � 1. These

boundary conditions can be interpreted as point sources of fuel and sinks of energy
at the droplets (consid. (vii)). The initial conditions can be chosen as

T = 1, yO = 1, yF = 0, (3.47)
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which represents an initially uniform ambient of oxidizer.

3.2.1 Generalized Schvab-Zeldovich formulation

If the chemical reaction is much faster than the transport processes the reaction is
confined to a thin region, outside of which the flow is inert (consid. (iii)). This situ-
ation is reflected in the reaction term (Eq. (3.41)), since the Damköhler number Da
is the ratio between the diffusion characteristic time t̂c = â2

0/εα̂∞ and the reaction
characteristic time B̂−1eTa/Tf . In the limit Da→∞ (i.e., the reaction time is much
smaller than the diffusion time) the reaction term is not infinite only if yFyO → 0,
i.e., if the reactants do not coexist.

In the present case, the fuel is provided by droplets in r = rk and the oxidizer by
the ambient (‖r‖ → ∞). Therefore, the flame is confined to a reaction sheet, i.e.,
a closed surface, inside of which yO = 0 and yF > 0 and outside of which yO > 0
and yF = 0. On that surface, both yO and yF are 0. Since the reactants do not
coexist, a variable Z (called mixture fraction) can be defined combining yO and yF
and taking advantage of the linearity of the equations to suppress the reaction term
of the governing equation of Z. Defining Z as

Z := sZyF − yO + 1 (3.48)

one has (LIÑÁN, ; LIÑÁN; WILLIAMS, 1993; FACHINI et al., 1999; LIÑÁN, 2001)

L(Z)
(
∂Z

∂t
+∇ · (uZ)

)
= ∇2Z, (3.49)

in which L(Z) is the effective Lewis number, a discontinuous function defined as

L(Z) :=

LeF , Z > 1

LeO, Z < 1.
(3.50)

Since in the flame yO = yF = 0, the flame can be defined as the surface corresponding
to Z = 1. The region in which Z > 1 corresponds to the fuel region and the region
in which 0 < Z < 1 corresponds to the oxidizer region.

In a similar fashion, defining the excess enthalpy H as

H := sHT + yO + yF , (3.51)
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with sH := (sZ + 1)/q, one has

∂H

∂t
+∇ · (uH) = ∇2H +N(Z)∇2Z, (3.52)

in which N(Z) is defined as

N(Z) :=

(1− LeF )/sZLeF , Z > 1

(LeO − 1)/LeO, Z < 1.
(3.53)

The equations for Z and H can also be written in conservative form as(
∂

∂t
+∇ · u

)∫ Z

1
L(ζ)dζ = ∇2Z, (3.54)

(
∂

∂t
+∇ · u

)
H = ∇2H +∇2

∫ Z

1
N(ζ)dζ. (3.55)

The integrals
∫ Z

1 Ldζ and
∫ Z

1 Ndζ can be identified with the functions G and K

defined by Liñán (LIÑÁN, ), respectively.

Although there are several effects associated with the difference between the Lewis
number of the reactants (ALMAGRO et al., 2018), the use of LeO 6= LeF leads to
critical difficulties due to the fact that the function Z is no longer suitable to fulfill
the role of a independent variable (CHEATHAM; MATALON, 2000), as is required by
the flamelet formulation (PETERS, 1983), which will be introduced in Section 3.3,
due to the fact that the existence of a bijection between Z and T , for example, is
no longer assured. Since the introduction of the flamelet formulation is necessary to
evaluate the extinction conditions in a diffusion flame following the classical Large
Activation Energy Asymptotics (LIÑÁN, 1974), it will be assumed hereinafter that
LeO = LeF = 1. In future developments over this theme the effects of differential
diffusion in the extinction of the flame will be addressed through the application
of suitable methods (CHEATHAM; MATALON, 2000; LIÑÁN et al., 2017). With the
consideration LeO = LeF = 1 (consid. (ii)), the equations for Z and H are reduced
to

∂Z

∂t
+∇ · (uZ) = ∇2Z, (3.56)

∂H

∂t
+∇ · (uH) = ∇2H, (3.57)

with initial conditions
Z = 0, H = sH + 1, (3.58)
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and the boundary conditions are: far from the droplets,

Z = 0, H = sH + 1, ‖r‖ → ∞, (3.59)

and at the droplets,
‖r− rk‖2∇Z · eRk = −sZλk, (3.60)

‖r− rk‖2∇H · eRk = −λk
[
1−
√
ε
(
H − Z − 1

sZ
− sH(Tb − l)

)]
, r→ rk. (3.61)

The boundary conditions in the droplets can be interpreted as point sources of fuel
and sinks of energy. The boundary condition for yO at the droplets was eliminated
because the flame always surrounds the droplets, preventing the oxidizer to reach
it.

In the limit of small
√
ε the boundary condition for H at the droplets can be sim-

plified to
‖r− rk‖2∇H · eRk = −λk. (3.62)

In that case Z and H are not linearly independent, which can be proved defining the
function J := H −Z/sZ − (sH + 1) (FACHINI et al., 1999), whose governing equation
is

∂J

∂t
+∇ · (uJ) = ∇2J, (3.63)

and whose boundary conditions are

J = 0, ‖r‖ → ∞, (3.64)

‖r− rk‖2∇J · eRk = 0, r→ ri. (3.65)

and with initial condition J = 0. Therefore, from the maximum principle for
parabolic equations J ≡ 0 in the entire domain for all t ≥ 0 (PROTTER; WEIN-

BERGER, 2012), and then H can be written as function of Z as

H = Z

sZ
+ sH + 1. (3.66)

From the definition of Z and H (Eqs. (3.48) and (3.51), respectively), one has

T = 1 + sZ + 1
sZsH

= 1 + q

sZ
, Z > 1, (3.67)
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i.e., the temperature is constant inside the flame, and

T = 1 + q

sZ
Z, Z < 1, (3.68)

i.e., outside the flame. Therefore, the flame temperature (i.e., for Z = 1) is

Tf = 1 + q

sZ
. (3.69)

Also, in this limit, since the temperature is constant around the droplets, the va-
porization function β is constant (vid. Eq. (3.27)), given by

β = ln
(

1 + Tf − Tb
l

)
, (3.70)

and Eq. (3.28) can be readily integrated, leading to

ak =
√
A2
k − 2βt, (3.71)

showing that the droplets radii follow the d2 law.

The extinction analysis requires the determination of the gradient of temperature
in both sides of the flame. Since the limit of small

√
ε leads to constant T inside the

flame (in which case the flame cannot be extinguished), it is inappropriate to use
this simplification. However, the d2 law will still be used for the sake of simplicity.

3.2.2 Axisymmetric problem

With the assumption that all the droplets lie in the same axis the equations can
be written in cylindrical coordinates with axisymmetry (consid. (iv)). The axial
coordinate z is defined by the axis passing through the droplets and the radial
coordinate r is perpendicular to z. In that case r = rer + zez, u = urer + uzez, and
the equations are

∂Z

∂t
+ ∂

∂r
(urZ) + ∂

∂z
(uzZ) = 1

r

∂

∂r

(
r
∂Z

∂r

)
+ ∂2Z

∂z2 , (3.72)

∂H

∂t
+ ∂

∂r
(urH) + ∂

∂z
(uzH) = 1

r

∂

∂r

(
r
∂H

∂r

)
+ ∂2H

∂z2 , (3.73)

and the boundary conditions are: at the symmetry axis,

∂Z

∂r
= ∂H

∂r
= 0, r = 0, (3.74)
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far from the droplets,

Z = 0, H = sH + 1, r, z →∞, (3.75)

and at the droplets

√
r2 + (z − zk)2

(
r
∂Z

∂r
+ (z − zk)

∂Z

∂z

)
= −sZλk, (3.76)

√
r2 + (z − zk)2

(
r
∂H

∂r
+ (z − zk)

∂H

∂z

)
=

−λk
[
1−
√
ε
(
H − Z − 1

sZ
− sH(Tb − l)

)]
, r → 0, z → zk,

(3.77)

in which zk is the position of the droplet k along the z axis.

3.2.3 Potential flow

The existence of a potential function φ such that u = ∇φ ensures that the continuity
equation 0 = ∇ · u = ∇2φ is satisfied as long as φ is a harmonic function, i.e., a
solution to the Laplace equation. The linearity of the Laplace equation allows the
superposition of different potential functions to describe a flow (KUNDU; COHEN,
2004).

It is assumed that the flow consists in the superposition of the flow caused by the
droplets (∇φd) on a base (∇φb) flow, i.e., φ = φd + φb, in which φd itself is the
superposition of the flow generated by all the droplets. The velocity field generated
by each droplet, given by Eq. (3.21), can be written in vectorial form as

Uk = λk
‖Rk‖2 eRk, (3.78)

or, in outer zone coordinates,

uk =
√
ελk

‖r− rk‖2 eRk =
√
ελk

(r2 + (z − zk)2)3/2 [rer + (z − zk)ez] . (3.79)

It can be seen that one has ‖uk‖ ∼ 1 for ‖r − rk‖ ∼ ε1/4λ
1/2
k . Assuming that the

vaporization rate is of order unity, the distance affected by the convection of fuel
from the droplet is of order ε1/4.

Since uk depends on time due to λ, there is no potential function such that uk =
∇φdk. However, it is assumed that the characteristic time of flow change is much

19



smaller than the characteristic time of convection and diffusion, and therefore the
flow can be considered to be quasisteady (consid. (viii)). The potential function
associated with the field generated by the droplets is then (consid. (ix))

φd = −
√
ε
∑
k

λk√
r2 + (z − zk)2

. (3.80)

The base flow is assumed to be a uniform flow of intensity
√
εV in the axial direction

(with V := t̂c/â01V̂ , in which V̂ is the dimensional magnitude of the axial velocity),
whose potential function is φb =

√
εV z, preserving the axisymmetry of the problem.

Therefore, the potential function is

φ =
√
ε

V z −∑
k

λk√
r2 + (z − zk)2

 (3.81)

and the velocity components are

ur =
√
ε
∑
k

r

(r2 + (z − zk)2)3/2λk, (3.82)

uz =
√
ε

(
V +

∑
k

(z − zk)
(r2 + (z − zk)2)3/2λk

)
. (3.83)

For axisymmetric flow the streamfunction ψ must satisfy u = −∇φ×∇ψ (KUNDU;

COHEN, 2004). The streamfunction corresponding to the uniform flow is ψb =
√
εV r2/2 and the streamfunction corresponding to each droplet is

ψdk = −
√
ε

z − zk√
r2 + (z − zk)2

λk. (3.84)

Therefore, the complete streamfunction is

ψ =
√
ε

1
2V r

2 −
∑
k

z − zk√
r2 + (z − zk)2

λk

 . (3.85)

The contours of ψ, i.e., the streamlines, are shown in Fig. (3.2) for a case with two
droplets placed at z = 0 and z = 2, being the former twice as larger than the latter,
and V = 1/10. The markers corresponds to the droplets positions, but their sizes
does not correspond to the sizes of the droplets.
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Figure 3.2 - Streamlines for a typical case with two droplets and V = 1/10.
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3.3 Extinction analysis

The flamelet formulation is adopted to allow the description of the variables in the
direction normal to the flame. Introducing the mixture fraction Z as an independent
variable one has (PETERS, 1983; PETERS, 1984)

∂

∂t
→ ∂

∂t
+ ∂Z

∂t

∂

∂Z
, ∇ → ∇Z ∂

∂Z
+∇Z⊥, (3.86)

in which ∇Z⊥ is the variation in the direction normal to ∇Z, i.e., in the direction
tangential to the flame. Therefore, Eq. (3.38) can be written as

∂T

∂t
+ ∂Z

∂t

∂T

∂Z
+ u ·

(
∇Z ∂T

∂Z
+∇Z⊥T

)
= ‖∇Z‖2 ∂

2T

∂Z2 +∇2
Z⊥T + 2∇Z ·∇Z⊥

∂T

∂Z
+ qω.

(3.87)
If the flame is infinitely thin the only relevant terms are the diffusive and the reactive
and, in the flame, the equation reduces to

d2T

dZ2 = −q 2
χf
DayOyF exp

[
Ta
Tf

(
1− Tf

T

)]
, (3.88)
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in which χf := 2‖∇Z‖2
f is the scalar dissipation rate at the flame (PETERS, 1983).

Similarly, the species conservation equations can be written as

d2yO
dZ2 = sZ

2
χf
DayOyF exp

[
Ta
Tf

(
1− Tf

T

)]
, (3.89)

d2yF
dZ2 = 2

χf
DayOyF exp

[
Ta
Tf

(
1− Tf

T

)]
. (3.90)

From the Large Activation Energy Asymptotics, the problem of determining the
conditions of extinction of a diffusion flame can be transformed into the analysis
of the existence of the solution of a boundary value problem, called canonical form
(LIÑÁN, 1974). This transformation is detailed in Appendix B and, through the
definition of the reduced Damköhler number δ as

δ := 4
χf

ε3sZDa

q(T ′− − T ′+) (3.91)

and the coefficient γ as
γ := T ′+ + T ′−

T ′+ − T ′−
(3.92)

in which ε := T 2
f /Ta and

T ′+ := dT

dZ

∣∣∣∣∣
Z=1+

, T ′− := dT

dZ

∣∣∣∣∣
Z=1−

, (3.93)

the flame is found to be extinguished if δ is smaller than a critical value δE, given
approximately by (LIÑÁN, 1974)

δE = e[(1− |γ|)− (1− |γ|)2 + 0.26(1− |γ|)3 + 0.055(1− |γ|)4]. (3.94)

It is relevant to point out that T ′+ is the gradient of T inside the flame (i.e., where
Z > 1) and T ′− is the gradient of T outside the flame (where Z < 1).

It can be defined a critical Damköhler number DaE such that the flame is found to
be extinguished if Da < DaE, with

DaE := χf
T ′− + |T ′+|

4
q

ε3sZ
δE, (3.95)

where it was used the fact that T ′+ < 0.

In the limit of small
√
ε it was found that T is constant inside the flame (vid. Eq.

22



(3.67)), leading to T ′+ → 0. Then, the magnitude of the gradient of temperature can
be expected to be much larger outside of the flame than inside of it (i.e., |T ′−| �
|T ′+|) and, from Eq. (3.92), γ ≈ −1. Therefore, the higher order terms in Eq. (3.94)
can be neglected and the critical value of δ can be approximated as δE ≈ e(1− |γ|),
leading to

δE ≈ e(1− |γ|) = e

(
1 + T ′− − |T ′+|

T ′− + |T ′+|

)
= 2e |T ′+|

T ′− + |T ′+| , (3.96)

and the critical Damköhler number can be approximated as

DaE = eχf
2

1
ε3

q

sZ
|T ′+|. (3.97)

3.3.1 Estimation of the gradient of temperature inside the flame

The boundary condition for T at the droplets (Eq. (3.44)) can be written as

dT

dZ
= −
√
ε

sZ
(T − Tb + l), (3.98)

which follows from Eq. (3.76) (which is the boundary condition for Z at the droplets)
and the identity ∇T = ∇Z dT/dZ, which follows from the chain rule. In the limit of
small

√
ε the gradient of temperature inside the flame is 0 and the temperature inside

the flame is constant and equal to the temperature of the flame, i.e., Tf . For
√
ε 6= 0,

it is assumed that dT/dZ is of order
√
ε inside the flame and, therefore, the deviation

of T from the asymptotic solution T = Tf is of order
√
ε, i.e., T = Tf + O(

√
ε).

Therefore, Eq. (3.98) can be written as

dT

dZ
= −
√
ε

sZ
(Tf − Tb + l) +O(ε), (3.99)

and T ′+ can be approximated as T ′+ ≈ −K
√
ε, with the constant K given by

K := Tf − Tb + l

sZ
= leβ

sZ
, (3.100)

in which the relation with β follows from Eq. (3.70). The critical Damköhler number
is therefore given by

DaE = eK

2

√
ε

ε3
q

sZ
χf . (3.101)

The critical Damköhler number depends only of the parameters of the problem
(through K, ε, ε, q and sZ) and the distribution of Z (through χf ). Since DaE is
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proportional to χf , it must be evaluated at each point of the flame surface. It must
be noticed that a large DaE implies that the flame is more unstable, while a small
DaE implies that the flame is more stable. In the limit case of DaE = 0, the flame
cannot be extinguished.

3.4 Regarding the singularity at the droplets

For the special case of one isolated droplet, the problem reduces to

∂Z

∂t
+ 1
r̃2

∂

∂r̃

(
√
ελZ − r̃2∂Z

∂r̃

)
= 0, (3.102)

r̃2∂Z

∂r̃
= −sZλ, r̃ → 0, (3.103)

Z = 0, r̃ →∞, (3.104)

with r̃ here representing the radial coordinate in spherical coordinates. It will be
assumed that the vaporization rate is constant and given by λ ≡ β (i.e., the droplet
radius is constant) and that a permanent regime solution is achieved. The general
solution of the governing equation for Z satisfying the boundary condition at infinity
is

Z = C

[
1− exp

(
−
√
εβ

r̃

)]
. (3.105)

Since dZ/dr̃ = 0 at r̃ = 0, the boundary condition for r̃ → 0 cannot be applied.
However, Z can be expanded in Taylor series around r̃ =∞ as

Z = C

√
εβ

r̃
+O

(
εβ2

r̃2

)
. (3.106)

Therefore, if r̃ �
√
εβ, Z can be approximated as

Z ≈ C

√
εβ

r̃
. (3.107)

The boundary condition at r̃ → 0 can now be applied, leading to C = sZ/
√
ε = SZ

and
Z = sZβ

r̃
. (3.108)

The asymptotic agreement between both solutions for Z is depicted in Fig. (3.3),
showing that the analytical solution is incompatible with the prescribed boundary
condition, although the asymptotic solution for r̃ →∞ has behavior consistent with
the boundary condition.
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Figure 3.3 - Solution for Z in the stationary case.
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Therefore, from a numerical point of view, the boundary condition for r̃ → 0 can
be applied only at a sufficient distance to the droplet because the behavior of the
boundary condition cannot be supported by the governing equation for Z much close
to the droplet. Then, a ball with radius rbk ∼

√
εβAk and center in the droplet k

must be excluded from the domain, and the boundary condition

r̃2∂Z

∂r̃
= −sZλ (3.109)

must be applied in the boundary of this ball. Therefore, the boundary condition for
Z for the more general case, in vectorial form, will be applied numerically as

∇Z · eRk = −sZλ
r2
bk

2
, ‖r− rk‖ = rbk. (3.110)

This difficulty in the application of the boundary condition at the droplets can be
viewed from another point of view by noticing that Eq. (3.108) is the exact solution
of the equation

d

dr̃

(
√
εβZ − 1

r̃2
dZ

dr̃

)
= −sZ

√
εβ2

r̃2 , (3.111)
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which is identical to Eq. (3.102) (after the application of the considerations of per-
manent regime and λ = β) except for a source term in the right-hand side. Therefore,
the application of the boundary condition Eq. (3.103) makes the equation for Z non-
conservative. Also, for large r̃ the source term is negligible and both equations are
identical in the limit r̃ → ∞. Therefore, if the boundary condition at the droplets
must be applied, the equation must be solved only for large r̃.

In that case, the magnitude of the gradient of Z is limited by sZλ/r2
b . Defining rb =

k
√
εβ, with k being a constant and recalling χ = 2‖∇Z‖2, the critical Damköhler

number of extinction is limited by DaE ≤ DaEmax, with

DaEmax = eK

(ε
√
ε)3

qsZ
(k2β)2 , (3.112)

where it was used λ/β = a ≤ 1.

3.5 Numerical scheme

The physical domain is approximated by a numerical domain 0 ≤ r ≤ Lr, 0 ≤
z ≤ Lz, in which Lr and Lz are the domain sizes in r and z directions, respectively.
To properly address the boundary conditions imposed by the droplets the regions
surrounding each one is removed from the domain, as explained in the previous
section. The domain is discretized with a uniform rectangular mesh with resolution
∆r and ∆z in directions r and z, respectively, and Eq. (3.72) is discretized following
the FTCS scheme, in which the spatial derivatives are substituted with centered
discretizations, e.g.,

∂Z

∂r
≈ Zi,j+1 − Zi,j−1

2∆r , (3.113)

in which i and j are the indexes in z and r directions, respectively. The boundary
conditions for the discretized problem are: far from the droplets:

Z1,j = ZNz ,j = Zi,Nr = 0, (3.114)

in which Nz = 1 +Lz/∆zand Nr = 1 +Lr/∆r are the number of points in the mesh
in directions z and r, respectively; at the symmetry axis:

Zi,1 = Zi,2, (3.115)
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and at the contour of the region surrounding the droplets:

Zi,j =
(
rj ± (zi − zk)

∆r
∆z

)−1
 sZλk∆r√

r2
j + (zi − zk)2

+ rjZi,j+1 ± (zi − zk)
∆r
∆zZi±1,j

 ,
(3.116)

which follows from the discretization of Eq. (3.76). The time step was calculated as
(HINDMARSH et al., 1984)

∆t ≤ min
(

(∆z∆r)2

2(∆z2 + ∆r2) ,
2

U2
max

)
, (3.117)

in which Umax =
√
ε(V + β/r2

b ) is the maximum magnitude of the velocity in the
domain.

The numerical domain for a case with two droplets (represented by dots) and the
boundary conditions applied at each region of the boundary of the domain are shown
in Fig. (3.4).

Although the regions surrounding the droplets are not part of the domain, the equa-
tion is solved in these regions, which has no effect in the solution inside the domain.
Once the droplet is vaporized, the region which was surrounding it is incorporated
into the domain, the boundary condition Eq. (3.116) is no longer applied and the
symmetry boundary condition is applied in r = 0.
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Figure 3.4 - Representation of the numerical domain for a case with two droplets.
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4 VALIDATION

It was tried to reproduce analytical results for the flame radius (CRESPO; LIÑÁN,
1975) for the case α = 1, in which α is a parameter relating the vaporization time
of the droplet and the time in which the flame vanishes and is defined as (CRESPO;

LIÑÁN, 1975)

α :=
√

2π
sZβ3/2 , (4.1)

using ε = 0.42 × 10−3,
√
εs−1
Z = 0.065 and β = 3.983. The flame radius as function

of time is depicted in Fig. (4.1). Several curves are presented, as it was observed
that the result is dependent on rb, i.e., the position in which the boundary condition
addressing the droplets is applied. The general behavior of the flame radius is very
similar to the analytical result, despite the overestimation in the flame radius.

The value of rb has influence on the solution, although the overall behavior does not
change. A more physical behavior can be expected from the solutions with larger
rb, as explained in Section 3.4. However, the initial condition will correspond to a

Figure 4.1 - Comparison of the flame radius as function of time to an analytical solution
for different sizes of the ball in which the boundary condition for the droplets
is applied.
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flame moving outwards with radius rb, due to the boundary condition of imposed
flux, and therefore the flame will be always larger than the analytical solution. Also,
if the flame is close to the boundary of the domain in the moment that the droplet
vanishes the change of the boundary condition will affect the flame, as the case
rb = 4

√
εβ shows at 2βt = 1.

The fact that the solution for rb = 2
√
εβ presents a flame much larger than the

analytical solution and also a behavior different from the solutions for rb = 3
√
εβ

and 4
√
εβ shows that rb = 2

√
εβ is not sufficient for the domain to “absorb” the

singularity from the boundary condition. As Fig. (3.3) shows, the singularity solution
for Z has a much stronger gradient than the exact solution for small r. This stronger
gradient causes a larger transport of Z close to the boundary of the domain, which
is responsible by the larger flame provided by that case.

The flame radius as function of time is compared to previous results (FACHINI et

al., 1999) for several rb in Fig. (4.2). The difference between the results for the
three values of rb has the same explanation as the case presented in Fig. (4.1), with
results for larger rb presenting a larger initial flame radius and results for smaller rb
presenting larger flames due to the overestimation in the flux of Z in the boundary.
Although the presented results are more consistent, they differ substantially from the
results of the mentioned study due to the fact that the latter considered the effect of
thermal compressibility and the transport coefficients dependence on temperature.
However, the results agree in order of magnitude and the general behavior of the
flame is similar.
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Figure 4.2 - Comparison of the flame radius as function of time to the previous results for
different sizes of the ball in which the boundary condition for the droplets is
applied.
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5 RESULTS

The parameters of the problem were chosen to match the ones of a previous analysis
(FACHINI et al., 1999), i.e., sZ = 1, q = 5, Ta/Tf = 30, ε = 10−3, β = 2.534. Also, the
approximation l = Tb is used for the sake of simplicity (FACHINI et al., 1999). This
leads to sH = 0.4, Tf = 6, K = 6, ε = 0.2 and DaE/χf = 161.2. It was used also
rb = 3

√
εβ = 0.24, and the maximum Damköhler number is DaEmax = 7.1 × 107.

The extinction conditions for different cases will be addressed to study the influence
of the base flow and the interaction between droplets on the extinction.

5.1 Single droplet in steady ambient

The case of the combustion of a single droplet in a steady ambient corresponds to
the aforementioned problem (FACHINI et al., 1999), which also considered radiant
heat loss and non-unit Lewis numbers.

The critical Damköhler number as function of time is depicted in Fig. (5.1). The
droplet was completely vaporized at t = 1/2β = 0.197. It can be seen that DaE
decreases monotonically with time, and attains its maximum at t = 0. This is due
to the fact that the flame starts at the boundary of the domain where the boundary
condition for the droplet (i.e., Eq. (3.110)) is applied. Therefore, since the behavior
of the flame cannot be described accurately when it is close to the boundary, the
actual behavior of DaE for small t may not be the one presented in Fig. (5.1).

The critical Damköhler number as function of the droplet radius for several values of
the normalized emissivity σ was presented in the cited study (FACHINI et al., 1999),
which represents the intensity of the radiant heat loss. Those results, compared to
the current case, are presented in Fig. (5.2). The critical Damköhler number of the
current case is larger than the critical Damköhler number for small σ and comparable
to the case σ = 2, while it should be expected that the current case represents the
limit σ → 0, i.e., the case with no radiant heat loss. Therefore, DaE for the current
model should have been smaller than any of the values obtained in the mentioned
study.

This unexpected behavior of DaE can be explained by the approximations adopted
in the current model, the most relevant of which is the assumption of incompressible
flow (i.e., of ρ = 1 in the gaseous phase), while in the cited work it was considered the
thermal expansion of the gaseous phase through the ideal gas law ρT = 1 (FACHINI

et al., 1999). It was also considered in that work the variation of the transport
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Figure 5.1 - Critical Damköhler number as function of time.
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coefficients with the temperature through the relation ρα =
√
T and, therefore,

1 ≤ α ≤ 63/2 = 14.70, since the highest temperature is the flame temperature
Tf = 6. Since the diffusivity is larger, the transport of Z could happen with a weaker
gradient of Z. It must be noticed, furthermore, that the most general definition of
the scalar dissipation rate is χ = 2α‖∇Z‖2 (PETERS, 1983). Therefore, the variation
of the specific mass and the transport coefficients have a direct influence in χf and,
therefore, in the critical Damköhler number.

Another possible explanation for the difference between the results is the fact that
the extinction in the current model is based solely on the heat lost by the flame to
the reactants (since there is no radiant heat loss), and the heat loss to the fuel is
relevant, although small (more precisely, of order

√
ε, as derived in Section 3.3.1). If

the heat loss to the fuel is not considered there cannot be extinction due solely to
convective-diffusive effects, since in that case the critical Damköhler number would
be DaE = 0 (since Eqs. (3.92) and (3.94) would lead to γ = −1 and δE = 0,
respectively). However, the influence of order

√
ε in the gradient of temperature in

the fuel region was neglected in the mentioned work (which can be seen comparing
Eq. (31) of the cited work to Eqs. (3.61) and (3.62)), and the gradient of temperature
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Figure 5.2 - Comparison of the critical Damköhler number to the cases with radiant heat
loss. The line continuous represents the result of the current model and the
dotted lines represent the results obtained in a previous work.
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in the fuel region is not 0 only if there is radiant heat loss (FACHINI et al., 1999).

Although the results disagree in order of magnitude, the general behavior of the
critical Damköhler number for the current model is similar to the behavior for σ =
0.1, which has also a monotonic dependence of time. This is due to the fact that for
larger σ (i.e., for more intense radiant heat loss) the heat loss is more dependent on
the flame radius, since a larger flame will lose more heat due to its larger area. For
small σ, though, this dependence on the flame radius is weak, while in the absence
of radiant heat loss there is no heat loss related to the flame size.

5.2 Single droplet under forced convection

The distribution of Z for the cases without forced convection (i.e., the case studied
in the previous section) and the case with forced convection with velocity V = 100
at t = 1/4β = 0.0986, i.e., at half the vaporization time, are shown in Figs. (5.3)
and (5.4), respectively. It can be seen that the overall flame size is approximately
the same, but the forced convection dislocates the flame to the direction of positive
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Figure 5.3 - Distribution of Z for the case without forced convection (V = 0) at half the
vaporization time (t = 1/4β = 0.0986). The dashed line represents the flame
and the white half circle is the region around the droplet excluded from the
domain.
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z. Therefore, the flame upstream of the droplet gets closer to the it, while the flame
downstream of the droplet gets farther. As a consequence, the flame upstream of
the droplet has a stronger gradient of Z and, since the critical Damköhler number
is proportional to χf = 2‖∇Z‖2

f , it is larger at the upstream region of the flame,
that is where the flame extinguishes first. It is depicted in Fig. (5.5), which shows
the critical Damköhler number along the flame.

Figure (5.6) shows the information of Fig. (5.5) parameterized by the angle θ, mea-
sured from the axis z to the line joining the center of the droplet to the position of
the flame in the counterclockwise direction. It can be seen that the critical Damköh-
ler number is larger where the flame is closer to the droplet and smaller where
the flame is farther from the droplet. Also, the largest Damköhler number in that
case is larger than the Damköhler number for the case without convection, which
is DaE = 8.05 × 103, while the smallest Damköhler number is also smaller than
the Damköhler number for the case without convection. As Fig. (5.7) shows, this
behavior occurs for all t, and increases with time, since the effect of the convection
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Figure 5.4 - Distribution of Z for the case with convection (V = 100) at half the vapor-
ization time (t = 1/4β = 0.0986).
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Figure 5.5 - Critical Damköhler number of extinction along the flame for the case V = 100
at half the vaporization time (t = 1/4β = 0.0986).
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Figure 5.6 - Critical Damköhler number of extinction and flame radius as functions of the
angle θ for the case V = 100 at half the vaporization time (t = 1/4β = 0.0986).
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on the flame shape also increases with time. However, for small t and when the flame
is close to vanishing the critical Damköhler number behaves in a similar fashion for
all V , since the flame is closer to the droplet.

5.3 Pair of identical droplets in steady ambient

Figures (5.8) and (5.9) show the critical Damköhler number along the flame in the
moment that the flames surrounding the droplets merge into one, which happens at
t = 0.0262 and t = 0.1012 for identical droplets apart by a distance of 1 and 1.5,
respectively. It can be seen that the smallest critical Damköhler number is at the
region of merging, while the largest Damköhler number is at the extremities of the
flame.

As shown in Fig. (5.10), the gradient of Z is weaker in the region between the
droplets, as this region is well provided of fuel. Furthermore, at the moment of
merging, the gradient of Z in the flame in the region between droplets is identically
zero, since the gradient in direction r is zero (due to the axisymmetry boundary
condition at r = 0) and the gradient in direction z is also zero, since in the moment
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Figure 5.7 - Maximum critical Damköhler number as function of time for different values
of V .
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Figure 5.8 - Critical Damköhler number along the flame in the moment of merging (t =
0.0262) for identical droplets at distance 1.
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Figure 5.9 - Critical Damköhler number along the flame in the moment of merging (t =
0.1012) for identical droplets at distance 1.5.
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Figure 5.10 - Distribution of Z in the moment of merging for identical droplets at distance
1.
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of merging between the droplets the flame is parallel to the axis z and Z is constant
along the flame. Therefore, since ‖∇Z‖ = 0 in this region of the flame, DaE = 0 in
the flame between the droplets in the moment of merging, and the flame cannot be
extinguished in this region. Also, since the largest DaE is always in the extremities
of the flame, the extinction will always occur in the extremities.
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Figure 5.11 - Critical Damköhler number as function of time for the cases of a single
droplet and of two identical droplets.
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A more complete description of the effect of the interaction between droplets on the
critical Damköhler number is depicted in Fig. (5.11). It can be seen that the max-
imum Damköhler number for each case (which is at the extremities of the flame)
is identical to the Damköhler number for a single droplet during the droplet va-
porization. After the droplet is completely vaporized, the flame vanishes slower if
the droplets are close to each other, due to the larger amount of vaporized fuel left
inside the flame, and the critical Damköhler number decreases slowly. The minimum
Damköhler number, which is at the flame in the region between the droplets, is close
to the critical Damköhler number for a single droplet for small t until the flame is
affected by the other droplet, and the weaker gradient of Z makes the Damköhler
number in that region decreases until it vanishes to 0 when the flames merge.

As shown in Fig. (5.11), the interaction between droplets has no effect on the extinc-
tion, since the critical Damköhler number attains its maximum at the extremities
of the flame. The only effect of the interaction between droplets should be expected
if the flame were to be extinguished after the droplets vaporize. Since the maximum
Damköhler number decreases monotonically, the extinction can always be expected
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Figure 5.12 - Distribution of Z at half the vaporization time (t = 1/4β = 0.0986) with
V = 100 and identical droplets at distance 1.
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to occur before the complete vaporization of the droplets.

5.4 Pair of identical droplets under forced convection

Figure (5.12) shows the distribution of Z at half the vaporization time for the case
of two identical droplets at distance 1 and forced convection with V = 100. This
result is similar to the presented in Fig. (5.4) for the case of a single droplet. More
specifically, the distribution of Z in the region upstream of the leftmost droplet and
in the region downstream of the rightmost droplet are similar, since those regions
are unaffected by the other droplet.

Figures (5.13) and (5.14) show the critical Damköhler number along the flame at the
moment of merging and at half the droplets vaporization time, respectively. Similarly
to the results obtained for the case of a single droplet with forced convection, the
largest Damköhler number is in the flame at the upstream region and, in agreement
with the results for the case of two identical droplets without forced convection, the
Damköhler number in the region between droplets is small.

The behavior of the maximum Damköhler number along time is not influenced by
the interaction between droplets until the droplets are completely vaporized, as it
was verified for the case with no forced convection. Therefore, the behavior of the
Damköhler number for t < 1/2β (i.e., before the vaporization) is identical to the
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Figure 5.13 - Critical Damköhler number along the flame in the moment of merging (t =
0.0258) with V = 100 and identical droplets at distance 1.
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depicted in Fig. (5.7).

5.5 Pair of different droplets in steady ambient

Similarly to the results presented in the previous sections, it was observed no in-
fluence of the presence of a smaller droplet on the extinction. As discussed before,
the gradient of Z, which value in the flame is relevant to the extinction, is limited
by the value of ∇Z in the boundary of the domain (where the boundary condition
addressing the droplets is applied). However, since ‖∇Z‖ ∝ λ = βa (vid. Eqs. (3.76)
and (3.27)), the critical Damköhler number in the flame around the smaller droplet
will be always smaller than the critical Damköhler number in the flame around the
larger droplet. For ilustration purposes, Fig. (5.15) shows the critical Damköhler
number along the flame for the case with a droplet 1 at z = 0 with initial nondimen-
sional radius a01 = 1 and a droplet 2 at z = 1 with initial nondimensional radius
a02 = 1/2 at the instant of complete vaporization of the smaller droplet (i.e., at
t = a2

02/2β = 0.050).

5.6 Pair of different droplets under forced convection

As observed for the case of identical droplets under forced convection, the addition
of a smaller droplet downstream of the first droplet has no effect on the extinction,
since it will happen in the flame in the upstream region of the larger droplet, as
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Figure 5.14 - Critical Damköhler number along the flame at half the vaporization time
(t = 1/4β = 0.0986) with V = 100 and identical droplets at distance 1.
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Figure 5.15 - Critical Damköhler number of extinction along the flame for two droplets
with initial nondimensional radius a01 = 1 and a02 = 1/2 at the instant of
complete vaporization of the smaller droplet (t = a2

02/2β = 0.050).
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Figure 5.16 - Critical Damköhler number of extinction along the flame for two droplets
with initial nondimensional radius a01 = 1 and a02 = 1/2 at the instant
of complete vaporization of the smaller droplet (t = a2

02/2β = 0.050) for
V = 100.
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suggested by Fig. (5.16), which shows the critical Damköhler number along the
flame for the case of two droplets with initial radius a01 = 1 and a02 = 1/2 at the
instant of complete vaporization of the smaller droplet (t = a2

02/2β = 0.050) and
with forced convection with V = 100.

If the smaller droplet is upstream of the larger droplet the largest critical Damköhler
number will not necessarily be at the flame around the largest droplet, as it was in the
cases studied in the previous sections. Figure (5.17) shows the critical Damköhler
number along the flame for a case with two droplets with nondimensional initial
radius a01 = 1/2 and a02 = 1, i.e., with the smaller droplet upstream of the larger
droplet, and with V = 150. It can be seen that the highest values of DaE occurs in
two different regions, viz., the flame in the upstream region of the smaller droplet
and in the flame the around the largest droplet. In the former, the large DaE is a
consequence of the flame being closer to the droplet due to the forced convection and,
in the latter, because the largest droplet has also a stronger gradient of Z around
it, due to its larger vaporization rate. Therefore there are two competing causes for
a large critical Damköhler number. In the absence of forced convection, the largest
Damköhler number will always be in the flame around the largest droplet, as stated
in the previous section. However, if the forced convection is strong enough and the
smaller droplet is upstream of the largest droplet, the flame in the upstream region
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Figure 5.17 - Critical Damköhler number of extinction along the flame for two droplets
with initial nondimensional radius a01 = 1/2 and a02 = 1 at t = 0.031 for
V = 150.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
z

0.00

0.25

0.50

0.75

1.00

r

0 5000 10000 15000 20000 25000
DaE

of the smaller droplet will approach it, being in a region of stronger gradient of Z
than the flame around the largest droplet.

The ratio between the largest critical Damköhler number in the upstream region
of the smallest droplet (DaE,up.) and the largest critical Damköhler number in the
remaining of the domain (i.e., for z > 0, DaE,down.) as a function of time for different
values of V is presented in Figs. (5.18) and (5.19) for smaller droplets with initial
nondimensional radius a01 = 1/2 and a01 = 3/4, respectively. In all presented cases
the ratio increases until reaching its maximum and then decreases to zero when
the flame around the smallest droplet disappears. The curve for V = 200 in Fig.
(5.18) is truncated due to the fact that the flame in the upstream region reached
the boundary of the domain where the boundary condition for the smaller droplet
is applied due to the strong forced convection.

For both cases of a01 = 1/2 and a02 = 3/4 the ratio is smaller than 1 for small t
due to the fact that the effect of the forced convection on the flame increases with
time, since the gradient of Z is stronger for small t (and, therefore, the diffusion
was more important) and also the convection resulting from the vaporization of the
droplets. Therefore, for small t the problem is similar to the case without convection
and the Damköhler number in the flame around the largest droplet is larger. As t
increases, the flame around the largest droplet increases in size, getting farther from
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Figure 5.18 - Ratio between the critical Damköhler number at the flame in the upstream
region of the smaller droplet and in the downstream region (i.e., in the re-
maining of the domain) as a function of t for different V for the case of two
droplets with initial nondimensional radius a01 = 1/2 and a02 = 1.
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the droplet and, therefore, being in a region of weaker gradient of Z (which leads
to a smaller DaE) but the flame in the upstream region of the smaller droplet does
not get much far from the droplet, due to the effect of the forced convection, being
in a region of stronger gradient of Z (which leads to a larger DaE). Eventually the
Damköhler number in the upstream region of the smaller droplet will be larger than
the Damköhler number around the larger droplet, which is represented in the Figs.
(5.18) and (5.19) when the ratio is larger than 1. As time increases, the vaporization
of the smaller droplet gets weaker and so does the gradient of Z. Therefore, the
critical Damköhler number in the upstream region starts to decrease until the smaller
droplet vaporizes completely, and the ratio goes to 0.

Figure (5.20) shows the distribution of the critical Damköhler number along the
flame for the case of equal droplets in steady ambient (studied in Section 5.3) and
of different droplets under forced convection with V = 150 (as in Fig. (5.17)). The
depicted curves correspond to t = 0.020 and to the instant of merging for each case,

47



Figure 5.19 - Ratio between the critical Damköhler number at the flame in the upstream
region of the smaller droplet and in the downstream region (i.e., in the re-
maining of the domain) as a function of t for different V for the case of two
droplets with initial nondimensional radius a01 = 3/4 and a02 = 1.
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which is at t = 0.0258 for the case of identical droplets and at t = 0.0430 for the
case of different droplets. The monotonic behavior of the Damköhler number from
the extremity of the flame to the flame in the region between the droplets is shown
for the case of identical droplets, but the behavior of the Damköhler number for the
case of different droplets is not so simple, especially in the flame around the larger
droplet (i.e., in the rightmost part of the curves). In particular, the behavior of
the Damköhler number along the flame around the larger droplet is not monotonic,
since the upstream region of the larger dropolet is the closer to the other droplet
and, although the flame is closer to the larger droplet in that region (which should
increase the gradient of Z in the flame), the flame is in a region of weaker gradient
of Z. The Damköhler number in the flame in the downwsteam region of the larger
droplet is small because the flame is far from the droplet and, therefore, in a region
of weak gradient of Z. Simultaneously, in the flame in the upstream region of the
larger droplet is also in a region of weak gradient of Z, due to the smaller droplet
which also provides fuel to that region. Therefore, since there are two points in the
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Figure 5.20 - Comparison between the distribution of the critical Damköhler number along
the flame for the case of identical droplets in steady ambient and the case of
different droplets (with initial nondimensional radius a01 = 1/2 and a02 = 1)
under forced convection with V = 150 at t = 0.020 and at the instant of
merging.
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flame in opposite regions of the droplet with small Damköhler number, the maximum
Damköhler number in the flame around the larger droplet cannot be somewhere in
r = 0, as it is with the smaller droplet or in the other studied cases, but somewhere
else in the upstream region of the larger droplet, which is also show in Fig. (5.17).
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6 CONCLUSIONS

In this work a simplified model for droplet combustion was developed to investigate
the extinction conditions for the diffusion flame around droplets. After the intro-
duction of the Zeldovich and flamelet formulations, an expression was found for the
critical Damköhler number of extinction (Eq. (3.101)), proportional to the scalar
dissipation rate at the flame χf = 2‖∇Z‖2 and, therefore, the extinction could be
availed after the solution of the governing equation for Z for any configuration of
droplets and external flow. Although the problem was solved only for the axisym-
metric case of droplets placed over a straight line, the vectorial formulation of the
Eqs. (3.56) to (3.61) allows for the description of any configuration of droplets in
two dimensions.

The behavior of the critical Damköhler number for a case of a single droplet in a
steady ambient (i.e., without forced convection) was found to be the archetypal of
the extinction for the several presented cases, although a comparison to results of
previous works revealed differences that could not be totally explained (FACHINI et

al., 1999). It was found that the critical Damköhler number decreases with time,
which implies that the flame gets more stable while the droplet vaporizes and, af-
ter the complete vaporization of the droplet, while the flame regrides. Since the
Damköhler number decreases monotonically, the flame will not be extinguished if it
was ignited in the first place, unless some other phenomena cause a change in the
Damköhler number (a sudden change in the droplet configurations, for example).
However, since the model cannot describe the flame in the inner zone, the distribu-
tion of Z is not described well by the model for small t and, therefore, the behavior
of the Damköhler number may be different from the presented for small t.

It was found that the presence of forced convection increases the critical Damköhler
number, and the effect of the forced convection over the Damköhler number increases
with time until the vaporization of the droplet, and its effect starts vanishing. There-
fore, for small t and close to the vanishing of flame the behavior of the Damköhler
number is the same for any intensity of forced convection.

For the case of interacting droplets it was found that the largest Damköhler number
is always in the flame around the largest droplet in the region unaffected by the other
droplet, while the smallest Damköhler number is in the flame between the droplets,
meaning that the flame between the droplets is the most stable. Since the largest
Damköhler number is unaffected by the smaller droplet, the extinction of a single
droplet occurs in the same condition for the same single droplet accompanied by
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another droplet of the same size or smaller, i.e., the extinction of the flame around a
droplet is not affected by the addition of another droplet. The same was observed for
the cases with forced convection, unless a smaller droplet is placed in the upstream
region of the largest droplet, in which case the largest Damköhler number can be
found around the smaller droplet if the convection is strong enough.

6.1 Future work

Some of the considerations that were adopted, such as constant transport coefficients
and unitary Lewis numbers, could be suppressed without further difficulties in an
eventual expansion of the model. The most important considerations, however, are
the assumption of potential flow and the assumption that the flame is always in
the transient region. While the model could be easily adapted so that the flow
is determined by the Navier-Stokes equations, the modelling of the flame in the
quasisteady region would require further developments, if not a whole new model.

52



REFERENCES

ALMAGRO, A.; FLORES, O.; VERA, M.; LIÑÁN, A.; SÁNCHEZ, A. L.;
WILLIAMS, F. A. Effects of differential diffusion on nonpremixed-flame
temperature. Proceedings of the Combustion Institute, 2018. 16

ANNAMALAI, K.; RYAN, W. Interactive processes in gasification and
combustion. part i: liquid drop arrays and clouds. Progress in Energy and
Combustion Science, v. 18, n. 3, p. 221–295, 1992. 4

BRZUSTOWSKI, T. A.; TWARDUS, E. M.; WOJCICKI, S.; SOBIESIAK, A.
Interaction of two burning fuel droplets of arbitrary size. AIAA Journal, v. 17,
n. 11, p. 1234–1242, 1979. 4

CALDEIRA, A. B.; FACHINI, F. F. Nonunitary lewis number effects on the
combustion of a linear array of gaseous fuel pockets. Numerical Heat Transfer,
v. 58, n. 10, p. 784–801, 2010. 6

CHEATHAM, S.; MATALON, M. A general asymptotic theory of diffusion flames
with application to cellular instability. Journal of Fluid Mechanics, v. 414, p.
105–144, 2000. 16

CHIANG, C.; RAJU, M.; SIRIGNANO, W. Numerical analysis of convecting,
vaporizing fuel droplet with variable properties. International Journal of Heat
and Mass Transfer, v. 35, n. 5, p. 1307–1324, 1992. 5

CHIGIER, N.; MCCREATH, C. Combustion of droplets in sprays. Acta
Astronautica, v. 1, n. 5-6, p. 687–710, 1974. 4

CRESPO, A.; LIÑÁN, A. Unsteady effects in droplet evaporation and combustion.
Combustion Science and Technology, v. 11, n. 1-2, p. 9–18, 1975. 5, 8, 9, 13,
29

FACHINI, F.; LIÑÁN, A.; WILLIAMS, F. A. Theory of flame histories in droplet
combustion at small stoichiometric fuel–air ratios. AIAA, v. 37, p. 1426–1435,
1999. 3, 13, 15, 17, 30, 33, 35, 51

FACHINI, F. F. The effects of the acoustic field on droplet extinction processes.
Combustion Science and Technology, v. 120, n. 1-6, p. 237–253, 1996. 3

. Transient effects in the droplet combustion process in an acoustically
perturbed high temperature environment. Combustion Science and
Technology, v. 139, n. 1, p. 173–189, 1998. 3

53



. An analytical solution for the quasi-steady droplet combustion.
Combustion and Flame, v. 116, n. 1, p. 302–306, 1999. 3

FACHINI, F. F.; LIÑÁN, A. Transient effects in droplet ignition phenomenon.
Combustion and Flame, v. 109, n. 3, p. 303–313, 1997. 3

FAETH, G. M. Current status of droplet and liquid combustion. Progress in
Energy and Combustion Science, n. 3, p. 191–224, 1977. 4

. Evaporation and combustion of sprays. Progress in Energy and
Combustion Science, v. 9, n. 1-2, p. 1–76, 1983. 4

FRANZELLI, B.; VIÉ, A.; IHME, M. On the generalisation of the mixture fraction
to a monotonic mixing-describing variable for the flamelet formulation of spray
flames. Combustion Theory and Modelling, v. 19, n. 6, p. 773–806, 2015. 6

GODSAVE, G. A. E. Studies of the combustion of drops in a fuel spray—the
burning of single drops of fuel. Symposium (International) on Combustion,
v. 4, n. 1, p. 818–830, 1953. 12

HINDMARSH, A. C.; GRESHO, P. M.; GRIFFITHS, D. F. The stability of
explicit euler time-integration for certain finite difference approximations of the
multi-dimensional advection–diffusion equation. International Journal for
Numerical Methods in Fluids, v. 4, n. 9, p. 853–897, 1984. 27

KUMAGAI, S.; ISODA, H. Combustion of fuel droplets in a falling chamber.
Symposium (International) on Combustion, v. 6, n. 1, p. 726–731, 1957. 3

KUNDU, P. K.; COHEN, I. M. Fluid mechanics. [S.l.: s.n.], 2004. 19, 20

LABOWSKY, M. The effects of nearest neighbor interactions on the evaporation
rate of cloud particles. Chemical Engineering Science, v. 31, n. 9, p. 803–813,
1976. 4

. A formalism for calculating the evaporation rates of rapidly evaporating
interacting particles. Combustion Science and Technology, v. 18, n. 3-4, p.
145–151, 1978. 4

LAW, C. Recent advances in droplet vaporization and combustion. Progress in
Energy and Combustion Science, v. 8, n. 3, p. 171–201, 1982. 4

LAW, C. K. Combustion physics. [S.l.]: Cambridge University Press, 2006. 11

54



LIÑÁN, A. The structure of diffusion flames. In: Fluid dynamical aspects of
combustion theory. [S.l.]: Longman Scientific and Technical. 15, 16

. The asymptotic structure of counterflow diffusion flames for large activation
energies. Acta Astronautica, v. 1, n. 7-8, p. 1007–1039, 1974. 16, 22, 63

. Diffusion-controlled combustion. In: AREF, H.; PHILIPS, J. (Ed.).
Mechanics for a new millenium. [S.l.]: Kluwer Academic Publishers, 2001. p.
487–502. 15

LIÑÁN, A.; MARTINEZ-RUIZ, D.; SÁNCHEZ, A. L.; URZAY, J. Regimes of
spray vaporization and combustion in counterflow configurations. Combustion
Science and Technology, v. 187, n. 1-2, p. 103–131, 2015. 6

LIÑÁN, A.; MARTÍNEZ-RUIZ, D.; VERA, M.; SÁNCHEZ, A. L. The
large-activation-energy analysis of extinction of counterflow diffusion flames with
non-unity lewis numbers of the fuel. Combustion and Flame, v. 175, p. 91–106,
2017. 16

LIÑÁN, A.; WILLIAMS, F. A. Fundamental aspects of combustion. [S.l.]:
Oxford University Press, 1993. 15

MAIONCHI, D.; FACHINI, F. A simple spray–flamelet model: influence of
ambient temperature and fuel concentration, vaporisation source and fuel injection
position. Combustion Theory and Modelling, v. 17, p. 522–542, 2013. 6

MARBERRY, M.; RAY, A.; LEUNG, K. Effect of multiple particle interactions on
burning droplets. Combustion and Flame, v. 57, n. 3, p. 237–245, 1984. 4

MIKAMI, M.; KATO, H.; SATO, J.; KONO, M. Interactive combustion of two
droplets in microgravity. Symposium (International) on Combustion, v. 25,
n. 1, p. 431–438, 1994. 6

MIKAMI, M.; KONO, M.; SATO, J.; DIETRICH, D. L. Interactive effects in
two-droplet combustion of miscible binary fuels at high pressure. Symposium
(International) on Combustion, v. 27, n. 2, p. 2643–2649, 1998. 6

MIYASAKA, K.; LAW, C. K. Combustion of strongly-interacting linear droplet
arrays. Symposium (International) on Combustion, v. 18, n. 1, p. 283–292,
1981. 6

NAYAGAM, V.; HAGGARD, J.; COLANTONIO, R.; MARCHESE, A.; DRYER,
F.; ZHANG, B.; WILLIAMS, F. A. Microgravity n-heptane droplet combustion in

55



oxygen-helium mixtures at atmospheric pressure. AIAA, v. 36, n. 8, p. 1369–1378,
1998. 3

PETERS, N. Local quenching due to flame stretch and non-premixed turbulent
combustion. Combustion Science and Technology, v. 30, n. 1-6, p. 1–17, 1983.
16, 21, 22, 34

. Laminar diffusion flamelet models in non-premixed turbulent combustion.
Progress in Energy and Combustion Science, v. 10, p. 319–339, 1984. 21

PROTTER, M. H.; WEINBERGER, H. F. Maximum principles in
differential equations. [S.l.]: Springer Science & Business Media, 2012. 17

SÁNCHEZ, A. L.; URZAY, J.; LIÑÁN, A. The role of separation of scales in the
description of spray combustion. Proceedings of the Combustion Institute,
v. 35, n. 2, p. 1549–1577, 2015. 4

SANGIOVANNI, J.; KESTEN, A. Effect of droplet interaction on ignition in
monodispersed droplet streams. Symposium (International) on Combustion,
v. 16, n. 1, p. 577–592, 1977. 6

SANGIOVANNI, J.; LABOWSKY, M. Burning times of linear fuel droplet arrays:
a comparison of experiment and theory. Combustion and Flame, v. 47, p.
15–30, 1982. 5

SAZHIN, S. Advanced models of fuel droplet heating and evaporation. Progress
in Energy and Combustion Science, v. 32, n. 2, p. 162–214, 2006. 6

SILVERMAN, I.; SIRIGNANO, W. Multi-droplet interaction effects in dense
sprays. International Journal of Multiphase Flow, v. 20, n. 1, p. 99–116,
1994. 5

SIRIGNANO, W. A. Fuel droplet vaporization and spray combustion theory.
Progress in Energy and Combustion Science, v. 9, n. 4, p. 291–322, 1983. 4

. Advances in droplet array combustion theory and modeling. Progress in
Energy and Combustion Science, v. 42, p. 54–86, 2014. 4, 5

SPALDING, D. B. The combustion of liquid fuels. Symposium (International)
on Combustion, v. 4, n. 1, p. 847–864, 1953. 12

STRUK, P. M.; DIETRICH, D. L.; IKEGAMI, M.; XU, G. Interacting droplet
combustion under conditions of extinction. Proceedings of the Combustion
Institute, v. 29, n. 1, p. 609–615, 2002. 6

56



TSAI, J.; STERLING, A. M. The combustion of a linear droplet array in a
convective, coaxial potential flow. Combustion and Flame, v. 86, n. 3, p.
189–202, 1991. 5, 6

. The combustion of linear droplet arrays. Symposium (International)
on Combustion, v. 23, n. 1, p. 1405–1411, 1991. 5

TWARDUS, E. M.; BRZUSTOWSKI, T. A. The interaction between two burning
fuel droplets. Archiwum Termodynamiki i Spalania, v. 8, n. 3, p. 347–358,
1977. 4

UMEMURA, A. Interactive droplet vaporization and combustion: approach from
asymptotics. Progress in Energy and Combustion Science, v. 20, n. 4, p.
325–372, 1994. 5

UMEMURA, A.; OGAWA, S.; OSHIMA, N. Analysis of the interaction between
two burning droplets. Combustion and Flame, v. 41, p. 45–55, 1981. 4

WALDMAN, C. H. Theory of non-steady state droplet combustion. Symposium
(International) on Combustion, v. 15, p. 429–441, 1975. 13

WILLIAMS, F. A. On the assumptions underlying droplet vaporization and
combustion theories. Journal of Chemical Physics, v. 33, p. 133–144, 1960. 6

. Combustion theory. [S.l.]: The Benjamin/Cummings, 1985. 11

57





APPENDIX A - AN ALTERNATIVE DERIVATION OF THE BOUND-
ARY CONDITIONS AT THE DROPLET SURFACE

In order to obtain the boundary conditions at the droplet surface, the equations
need to be integrated in the region 0 < R ≤ a, in which a is the nondimensional
droplet radius. To account for the transient variation due to phase change in the
droplet surface, the generic property Φ is written as

Φ(R, t) = (Φg − Φl)H(R− a(t)) + Φl, 0 < R ≤ a, (A.1)

in which Φg and Φl are the values of Φ in the gaseous and liquid phases, respectively,
and H is the Heaviside step function, here defined as

H(R) :=

0, R < 0,

1, R ≥ 0.
(A.2)

The derivative of Φ in relation to time can be obtained with the chain rule as

∂Φ
∂t

= −(Φg − Φl)
da

dt
δ(R− a(t)) 0 < R ≤ a, (A.3)

in which δ is the Dirac delta function. From the sifting property of the Dirac delta
function, one has

∫ a

0

∂Φ
∂t
R2dR = −(Φg − Φl)a2da

dt
= λ(Φg − Φl), (A.4)

in which λ = −a2da/dt is the nondimensional vaporization rate. This identity can
be applied to each conservation equation to obtain the boundary conditions.

Integrating the continuity equation in 0 < R ≤ a, one has

ε
∫ a

0

∂ρ

∂t
R2dR + (R2ρU)a0 = 0. (A.5)

From Eq. (A.4), using Φ = ρ, Φl = ε and Φg = ρ, the first term is λ(ε − 1) ≈ −λ,
since ε� 1, leading finally to

U = λ

ρa2 , R = a. (A.6)
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Applying the same procedure to the energy conservation equation, one has

ε
∫ a

0

∂(ρcpT )
∂t

R2dR + λT = a2 ∂T

∂R
, (A.7)

which leads to
λ((ε+ 1)T − cplTb) = a2 ∂T

∂R
. (A.8)

The left-hand side term, which is approximately λ(T − cplTb), is the difference be-
tween the specific heat of the gaseous and the liquid phase, which is λl, being
l = l̂/ĉp∞T̂∞ the nondimensional latent heat of vaporization, which leads to

a2 ∂T

∂R
= λl, R = a. (A.9)

Similarly, for the fuel conservation equation,

ε
∫ a

0

∂(ρYF )
∂t

R2 dR + λYF = 1
LeF

a2∂YF
∂R

. (A.10)

Using YF = 1 inside the droplet,

1
LeF

a2∂YF
∂R
− λYF = (εYF − 1)λ, (A.11)

which can be approximated as

1
LeF

a2∂YF
∂R
− λYF = −λ, R = a. (A.12)
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APPENDIX B - THE ASYMPTOTIC STRUCTURE OF DIFFUSION
FLAMES

The conservation equations in the flame are

d2T

dZ2 = −q 2
χf
DayOyF exp

[
Ta
Tf

(
1− Tf

T

)]
, (3.88)

d2yO
dZ2 = sZ

2
χf
DayOyF exp

[
Ta
Tf

(
1− Tf

T

)]
, (3.89)

d2yF
dZ2 = 2

χf
DayOyF exp

[
Ta
Tf

(
1− Tf

T

)]
. (3.90)

The variables are expanded in a perturbation series around their values at the flame
as

Z = 1 + ε
Aζ
δ1/3 ζ, (B.1)

T = Tf − ε
1
δ1/3 (θ + γζ) +O(ε2), (B.2)

yO = 0 + ε
Aζ
δ1/3 ΨO +O(ε2), (B.3)

yF = 0 + ε
Aζ
δ1/3 ΨF +O(ε2), (B.4)

in which ζ is the independent variable in the flame scale, δ is the reduced Damköhler
number, ε is the perturbation parameter (unrelated to the ratio between densities ε),
Aζ and γ are constants and θ, ΨF and ΨO are the perturbations in the temperature
and fuel and oxidizer concentrations, respectively. The role of the term γζ in the
expansion of the temperature is to normalize the gradients of the perturbation θ.

Substituting the expansions in Eqs. (3.88), (3.89) and (3.90) and neglecting higher
order terms leads to

d2θ

dζ2 = q

sZ

d2ΨO

dζ2 = q
d2ΨF

dζ2 =

2
χf
q
A3
ζε

3

δ
DaΨOΨF exp

Ta
Tf

(
1 + Tf

ε 1
δ1/3 (θ + γζ)

)−1
 (B.5)

Expanding the argument of the exponential as a Taylor series around ε = 0 and
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neglecting the higher order terms leads to

d2θ

dζ2 = q

S

d2ΨO

dζ2 = q
d2ΨF

dζ2 =

2
χf
q
A3
ζε

3

δ
DaΨOΨF exp

[
−Ta
T 2
f

ε

δ1/3 (θ + γζ)
]
.

(B.6)

This expression suggests that ε = T 2
f /Ta is the suitable choice for the perturbation

parameter to address the influence of the activation temperature and the flame
temperature over the extinction. Therefore, one has

d2θ

dζ2 = q

sZ

d2ΨO

dζ2 = q
d2ΨF

dζ2 =
(

2
χf
q
A3
ζε

3

δ
Da

)
ΨOΨF exp

(
−θ + γζ

δ1/3

)
. (B.7)

The solution in the Burke-Schumann region is utilized to provide the boundary
conditions to the inner solution through the fluxes of the properties in the flame,
i.e.,

T ′+ := dT

dZ

∣∣∣∣∣
Z=1+

= −δ
1/3

εAζ

ε

δ1/3
d

dζ
(θ + γζ)

∣∣∣∣∣
∞

= − 1
Aζ

(
dθ

dζ

∣∣∣∣∣
∞

+ γ

)
, (B.8)

T ′− := dT

dZ

∣∣∣∣∣
Z=1−

= −δ
1/3

εAζ

ε

δ1/3
d

dζ
(θ + γζ)

∣∣∣∣∣
−∞

= − 1
Aζ

(
dθ

dζ

∣∣∣∣∣
−∞

+ γ

)
, (B.9)

In order to set dθ/dζ|∞ = 1 and dθ/dζ|−∞ = −1, for simplicity, one has

γ + AζT
′− = 1, (B.10)

γ + AζT
′+ = −1, (B.11)

which is satisfied by

γ = T ′+ + T ′−

T ′+ − T ′−
, Aζ = − 2

T ′+ − T ′−
. (B.12)

Subtracting the conservation equations from each other leads to the following rela-
tion

qAζ
d2ΨF

dζ2 −
d2θ

dζ2 = 0, qAζ
sZ

d2ΨO

dζ2 −
d2θ

dζ2 = 0, (B.13)
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that, integrated once, leads to

qAζ
dΨF

dζ
− dθ

dζ
= C1,

qAζ
sZ

dΨO

dζ
− dθ

dζ
= C2. (B.14)

Using the conditions at ζ → −∞ and ζ → ∞, respectively, provide C1 = −1 and
C2 = 1. Integrating again, one has

qAζΨF − θ = −ζ, qAζ
sZ

ΨO − θ = ζ, (B.15)

which allows ΨF and ΨO to be written as

ΨF = 1
qAζ

(θ − ζ), ΨO = sZ
qAζ

(θ + ζ). (B.16)

Thus, defining
δ := 4

χf

ε3sZDa

q(T ′− − T ′+) , (B.17)

the Eq. (3.88) can be written as

d2θ

dζ2 = (θ + ζ)(θ − ζ) exp
(
−θ + γζ

δ1/3

)
, (B.18)

with boundary conditions

dθ

dζ

∣∣∣∣∣
∞

= 1, dθ

dζ

∣∣∣∣∣
−∞

= −1. (B.19)

This form of the energy conservation equation is known as canonical form, and was
originally studied by Liñán in the analysis of diffusion flame extinction (LIÑÁN,
1974). It was shown that, for given γ, there is a δ for which below it there is no
valid solution to the equation, which represents the extinction of the flame. An
approximated expression for this critical value of δ as a function of γ is (LIÑÁN,
1974)

δE = e[(1− |γ|)− (1− |γ|)2 + 0.26(1− |γ|)3 + 0.055(1− |γ|)4]. (B.20)
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