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Abstract. Spatial database systems often employ spatial indices to speed up the
processing of spatial queries. In addition, modern spatial database applica-
tions are interested in exploiting the positive characteristics of flash-based Solid
State Drives (SSDs) like fast reads and writes. However, designing spatial in-
dices for SSDs (i.e., flash-aware spatial indices) has been a challenging task
because of the intrinsic characteristics of these devices. In this paper, we pro-
pose the eFIND xBR+-tree, a novel flash-aware spatial index for points. The
eFIND xBR+-tree combines the efficient indexing method of the xBR+-tree with
the sophisticated data structures and algorithms of eFIND to handle points in
SSDs efficiently. Experiments carried out considering real and synthetic spa-
tial data showed that the eFIND xBR+-tree overcame its closest competitor by
reducing the elapsed time to construct the index from 28.4% to 83.5% and to
execute spatial queries up to 34.6%.

1. Introduction
The use of a spatial index is essential for processing spatial queries because the search
space is greatly reduced [Gaede and Günther 1998]. The main assumption of several spa-
tial indices is that the spatial objects are stored in magnetic disks (i.e., Hard Disk Drives
- HDDs). Hence, they often consider the slow mechanical access and the high cost of
search and rotational delay of disks in their design. We term spatial indices designed for
magnetic disks as disk-based spatial indices.

A wide range of disk-based spatial indices has been proposed in the litera-
ture [Gaede and Günther 1998]. The R-tree and its variants, such as the R+-tree and
the R*-tree, are well-known spatial indices. The efficient indexing of multidimensional
points has been a main focus of several indices because of the use of points in real spatial
database applications [Gaede and Günther 1998]. Among the existing disk-based spatial
indices, we highlight the xBR+-tree [Roumelis et al. 2015], which provides data struc-
tures and algorithms for handling points efficiently. In fact, extensive experimental eval-
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uations [Roumelis et al. 2017] showed that the xBR+-tree outperforms variants of the
R-tree (the R*-tree and the R+-tree) when processing different types of spatial queries.

On the other hand, advanced database applications are interested in using modern
storage devices like flash-based Solid State Drives (SSDs) [Mittal and Vetter 2016]. This
includes spatial database systems that employ spatial indices to efficiently retrieve spatial
objects stored in SSDs [Carniel et al. 2017a]. The main reason of this interest is because
SSDs, in contrast to HDDs, have smaller size, lighter weight, lower power consumption,
better shock resistance, and faster reads and writes.

However, SSDs have introduced a new paradigm in data management because of
their intrinsic characteristics [Jung and Kandemir 2013, Mittal and Vetter 2016]. A well-
known characteristic is the asymmetric cost of reads and writes, where a write requires
more time and power consumption than a read. Further, SSDs are able to write data to
empty pages only, which means that updating data in previously written pages requires
an erase-before-update operation. Other factors that impact on SSD performance are
the processing of interleaved reads and writes, and the execution of reads on frequent
locations. These factors are related to the internal controls of SSDs, such as the internal
buffers and the read disturbance management [Jung and Kandemir 2013].

To deal with the intrinsic characteristics of SSDs, spatial indices specifically
designed for SSDs have been proposed in the literature. However, designing spatial
indices for SSDs, termed here as flash-aware spatial indices, has been a challenging
task. A common strategy is to mitigate the poor performance of random writes by stor-
ing index modifications in a write buffer. Whenever this buffer is full, a flushing op-
eration is performed. Among existing flash-aware spatial indices proposed in the lit-
erature (see Section 2), FAST-based indices [Sarwat et al. 2013] and eFIND-based in-
dices [Carniel et al. 2017b, Carniel et al. 2018] distinguish themselves. FAST and eFIND
are generic frameworks that transform disk-based hierarchical indices into flash-aware hi-
erarchical indices. They also provide support for data durability by using a log-structured
approach that allows to recover its write buffer after a fatal problem (e.g., power failure).
Comparing FAST to eFIND, the former does not fully exploit SSD performance because
it does not consider several intrinsic characteristics of SSDs. On the other hand, eFIND
contains managers based on a set of design goals that are developed to fully take into
account the intrinsic characteristics of SSDs. Hence, we consider eFIND as the state-of-
the-art method for porting disk-based spatial indices to SSDs.

Considering the aforementioned state-of-the-art methods, an open question is
how to efficiently port the xBR+-tree to SSDs using eFIND. In this paper, we answer
this question by proposing the eFIND xBR+-tree, a flash-aware spatial index for points.
This novel index combines the efficient spatial organization of xBR+-trees with the
sophisticated managers of eFIND specifically designed for SSDs. That is, the eFIND
xBR+-tree is designed as an integration of the xBR+-tree’s hierarchical structure with
the eFIND’s data structures. We measure the efficiency of this porting by conducting
experimental evaluations, considering real and synthetic datasets, against the FAST
xBR+-tree, the porting of the xBR+-tree to SSDs using FAST. Our performance results
show that the eFIND xBR+-tree ports the xBR+-tree to SSDs efficiently, guaranteeing
smaller elapsed times to process insertions and intersection range queries.
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The rest of this paper is organized as follows. Section 2 surveys related work.
Section 3 presents the eFIND xBR+-tree. Section 4 discusses the conducted experiments.
Finally, Section 5 concludes the paper and presents future work.

2. Related Work
A few flash-aware spatial indices have been proposed in the literature. In this section, we
summarize the characteristics of the main flash-aware spatial indices as follows.

The RFTL [Wu et al. 2003] ports the R-tree to SSDs using a write buffer to avoid
random writes. The main problem of RFTL is the flushing operation because it flushes all
modifications stored in the write buffer, requiring high elapsed times. Another problem is
related to the data durability. This means that the modifications stored in the write buffer
are lost after a system crash or power failure.

FAST [Sarwat et al. 2013] distinguishes itself because it generalizes the write
buffer to store modifications of any hierarchical index. Hence, it transforms any disk-
based hierarchical index into a flash-aware index. Further, FAST provides a specialized
flushing algorithm that picks only a set of nodes, termed flushing unit, to be written to the
SSD instead of writing all modifications contained in the write buffer. FAST also provides
support for data durability. However, FAST faces several problems. First, its flushing al-
gorithm might pick nodes without modifications, resulting in unnecessary writes to the
SSD. This is due to the static creation of flushing units as soon as nodes are created in
the index. Second, its write buffer stores the modifications in a list possibly contain-
ing repeated entries, impacting negatively the performance of retrieving modified nodes.
Finally, FAST does not improve the performance of reads.

The FOR-tree [Jin et al. 2015] improves the flushing algorithm of FAST by dy-
namically creating flushing units containing modified nodes only. It also abolishes split-
ting operations by allowing overflowed nodes. Whenever a specific number of accesses
in an overflowed node is reached, a merge-back operation is invoked. This operation
eliminates overflowed nodes by inserting them into the parent node, growing up the tree
if needed. However, the number of accesses of an overflowed root node is never incre-
mented in an insertion operation. As a consequence, the construction of a FOR-tree,
inserting one spatial object by time, forms an overflowed root node instead of a hierarchi-
cal structure. This critical problem disallowed us to create spatial indices over large and
medium spatial datasets.

Specific flash-aware spatial indices for points have also been developed. Micro-
Hash and MicroGF [Lin et al. 2006] are data structures for flash-based sensor devices.
Due to the low processing capabilities of sensor devices, they deploy write buffers only.
The F-KDB [Li et al. 2013] employs a write buffer that stores modified entries of the K-
D-B-tree, called logging entries. Its main problem is the complex operation to retrieve
nodes because the entries of a node might be stored in different flash pages. Finally, the
Grid file for flash memory [Fevgas and Bozanis 2015] employs a buffer strategy based
on the LRU to cache modifications of the grid file. A flushing operation writes to the
SSD only those index pages that are classified as cold pages. However, the quantity of
modifications is not considered, leading to a possibly high number of flushing operations.

eFIND [Carniel et al. 2017b, Carniel et al. 2018] is a generic framework that effi-
ciently transforms any disk-based spatial index into a flash-aware spatial index. It is based
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on distinct design goals that considers the intrinsic characteristics of SSDs. eFIND em-
ploys efficient in-memory data structures to handle index modifications and a specialized
flushing operation that smartly picks a number of nodes to be written to the SSD. Further,
eFIND prevents reads on frequent locations and avoids interleaved reads and writes. Due
to its advantages, we consider eFIND as the state-of-the-art method for porting disk-based
spatial indices to SSDs. Hence, we employ eFIND to port the xBR+-tree to SSDs.

3. The eFIND xBR+-tree: An Efficient Flash-Aware Spatial Index for Points
3.1. The Tree Structure
eFIND does not change the underlying tree structure of the ported index. Hence,
the tree structure of the eFIND xBR+-tree is the same as the xBR+-tree. The
xBR+-tree is a hierarchical index based on the regular decomposition of space of
Quadtrees [Gaede and Günther 1998] able to index multidimensional points. Hence, it
is a space-driven access method. For bidimensional points, the xBR+-tree decomposes
recursively the space by 4 equal quadrants, called sub-quadrants. Figure 1a depicts an ex-
ample of an eFIND xBR+-tree that indexes 15 points (i.e., p1 to p15) and is whole stored
in the SSD. Figure 1b shows the eFIND xBR+-tree with a set of adjustments, represented
by thick lines, after the insertion of two new points, p16 and p17. These points and the
resulting adjustments are modifications stored in the main memory (Section 3.2) and are
also highlighted in the hierarchical representation of Figure 1c. We detail the structure of
this eFIND xBR+-tree as follows.

There are two types of nodes, internal nodes and leaf nodes. Internal nodes consist
of entries in the following format (p,DBR, qside, shape). Each entry of an internal node
refers to a child node that is pointed by p and represents a sub-quadrant of the original
space. DBR refers to the data bounding rectangle that minimally encompasses the points
stored in such sub-quadrant. qside stores the side length of the sub-quadrant correspond-
ing to the child node’s entry. Finally, shape is a flag that indicates if the sub-quadrant is
either a complete square or a non-complete square. The entries of an internal node are
also sorted by their addresses. Each address is calculated by using qside and DBR, and
consists of a sequence of directional digits representing a sub-quadrant. The directional
digits 0, 1, 2, and 3 respectively symbolize the NW, NE, SW, and SE sub-quadrants of a
relative space. Hence, it follows the Z-order.

Figure 1c depicts a tree with 3 internal nodes, R, I1, and I2. Each internal node
has also a header containing data about its sub-quadrant. For instance, the origin point
of the sub-quadrant of R is (0, 0) with a side length of 200. The address of each entry
of an internal node is showed in bold (but, this is not actually stored). For instance, the
right child of R that points to I2 is the NW quadrant of the original space, denoted as
0* (* is used to mark the end of the address). Further, it represents a complete square
(i.e., SQ). Its DBR consists of a minimum bounding rectangle containing the points p5 to
p8, p14, p17, p13, and p1. The left child of R represents a region derived from the spatial
difference between the original space and the region of the NW quadrant. Hence, it has
address equal to * (i.e., empty) and represents a non-complete square (i.e., nSQ). Finally,
addresses of entries of internal nodes determine a sub-quadrant in relation to the region
of their node. For instance, the address 3* (in node I2 of Figure 1c) represents the SE
sub-quadrant of the NW sub-quadrant of the original space (the region of I2, denoted by
0* in R of Figure 1c).
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Figure 1. An example of an eFIND xBR+-tree.

Leaf nodes contain entries in the format (p, id), where p is the multidimensional
point and id is a pointer to the register of p. These entries are sorted by X-axis coordinates
of the points, allowing the use of the plane sweep technique in specific spatial query types.
For instance, the leaf node L1 in Figure 1c contains the points p16, p3, and p11, which are
sorted by their X-axis coordinates depicted in Figure 1b. The pointers to the registers of
these points are omitted.

When the capacity of a leaf or internal node is achieved, the quadrant encompass-
ing the overflowed node is partitioned into two sub-quadrants according to a Quadtree-
like hierarchical decomposition. Different criteria for this partitioning are conceivable,
as discussed in Roumelis et al. 2017. For instance, Figure 1b depicts the creation of a
new sub-quadrant with address 02* (i.e., node N1 in Figure 1c) resulting from a splitting
operation after inserting p17.

3.2. Employed Data Structures

eFIND provides specific data structures to fulfill its design goals [Carniel et al. 2018];
they are: (i) a write buffer, (ii) a read buffer, (iii) a log file, and (iii) read and write
queues. To deal with the xBR+-tree, we extend the eFIND’s data structures as follows:
(i) we adapt the write and read buffers to store specific data related to internal nodes, (ii)
we generalize the storage of index modifications according to the sorting properties of
internal and leaf nodes (Section 3.1), and (iii) we adjust the structure of log entries to
recover the write buffer after a system crash. We detail these extensions as follows.
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page_id h mod_count timestamp reg status mod_tree

R 2 2 18378 - MOD

I1 1 1 16654 - MOD

I2 1 2 18002 - MOD

L1 0 1 16545 - MOD

L4 0 4 17456 - NEW

N1 0 4 17956 - NEW

∅

(I1, MBR(I1), 200, nSQ)

(I2, MBR(I2), 100, SQ)
(L1, MBR(L1), 200, nSQ)

(L4, MBR(L4), 100, nSQ)

(N1, MBR(N1), 50, SQ)p16

p8

p1

p13

p14

p17

(a) Write Buffer Table

page_id reg entries

R (0,0)-200

I2 (0,0)-100

L5 -

(I1, MBRs(I1), 200, nSQ) (I2, MBRs(I2), 100, SQ) ∅
(L4, MBRs(L4), 100, nSQ) (L5, MBRs(L5), 50, SQ) ∅
p6 ∅p5 p7

I1

L1

L3

RQ WQ

L3

L2

L5

(b) Read Buffer Table (c) Temporal Control

Figure 2. Data structures to handle the eFIND xBR+-tree of Figure 1.

The write buffer is implemented as a hash table named Write Buffer Table and
stores the modifications of nodes that were not applied to the SSD yet. Its main goal
is to avoid random writes to the SSD. The key of this hash table is the identifier of a
node (page id) and its value stores modifications in the format (h, mod count, timestamp,
reg, status, mod tree). Here, h stores the height of the modified node; mod count is the
quantity of in-memory modifications; timestamp informs when the last modification was
made; reg is the sub-quadrant of a newly created internal node; and status is the type
of modification made and can be NEW, MOD, or DEL for representing newly created
nodes in the buffer, nodes stored in the SSD but with modified entries, and deleted nodes,
respectively. If status is equal to DEL, mod tree is null. Otherwise, it is a red-black tree
containing the most recent version of modified entries. Each element of this red-black
tree has the format (e, mod result), where e is the key and corresponds to the unique
identifier of an entry and mod result stores the latest version of an entry, assuming null
if e was removed. The comparison function to determine the order of the elements in the
red-black tree is defined to deal with the specific sorting of entries of internal and leaf
nodes (Section 3.1). This is important when retrieving nodes (Section 3.3).

Figure 2a shows the Write Buffer Table for the eFIND xBR+-tree of Figure 1b.
In this figure, MBR means the rectangle that encompasses all points of a sub-quadrant
considering the modifications stored in the write buffer. The elements of the mod tree
employ the same format as an entry of the underlying index. For instance, the first line of
the hash table in Figure 2a shows that R, located in the height 2, has the status MOD, and
stores 2 in-memory modifications in the mod tree. Hence, the most recent version of the
two entries of R are now the entries of the red-black tree, i.e., (I1,MBR(I1), 200, nSQ)
and (I2,MBR(I2), 100, SQ).

The read buffer is implemented as another hash table named Read Buffer Table
and caches nodes stored in the SSD that are frequently accessed. The key of this hash
table is the unique node identifier (page id) and its value stores a list of entries of the
node (entries) and its sub-quadrant, if it is an internal node (reg). Figure 2b depicts that
R, I2, and L5 are cached in the Read Buffer Table. In this figure, MBRS refers to the
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stored data bounding rectangle of a child node. For instance, the entries of the cached
version of I2 consists of two entries, even after the creation of N1.

To provide data durability, all modifications are also stored in a log file. The
format of a log entry is the same as a hash entry in the Write Buffer Table to rebuild the
write buffer after a system crash. The cost of keeping the log of the modifications is very
low because it requires sequential writes only [Sarwat et al. 2013, Carniel et al. 2018].

The temporal control of eFIND remains unchanged. The read and writes queues,
named RQ and WQ, are employed to provide the temporal control of eFIND. Each queue
is a First-In-First-Out data structure. RQ stores identifiers of the nodes read from the SSD,
while WQ keeps the identifiers of the last nodes written to the SSD. Figure 2c shows that
the last read nodes are I1, L1, and L3, and the last flushed nodes are L3, L2, and L5.

3.3. Methods for Handling the Index Operations

eFIND provides generic algorithms to execute the following operations: (i) maintenance
operation, which is responsible for reorganizing the index whenever modifications are
made on the underlying spatial dataset (i.e., insertions, deletions, and updates); (ii) search
operation, which is responsible for executing spatial queries; (iii) flushing operation,
which selects a set of modifications stored in the write buffer to be written to the SSD
according to a flushing policy; and (iii) restart operation, which rebuilds the write buffer
after a fatal problem and compacts the log file. To deal with the xBR+-tree, we extend
eFIND as follows: (i) we generalize the retrieval algorithm of eFIND to return valid in-
ternal and leaf nodes, respecting their sorting properties (Section 3.1), and (ii) we detail
the management of splits, which improves the space utilization of the write buffer.

To retrieve a node N , the eFIND xBR+-tree takes two sorted lists as input: (i) the
modified entries stored in the Write Buffer Table, and (ii) the entries stored in the SSD.
The former is empty if N has not modifications, while the latter is empty if there exists a
hash entry of N in the Write Buffer Table with status equal to NEW. If one list is empty,
the other non-empty list is directly returned. The second list is always sorted because its
first flushing happens when its status in the Write Buffer Table is equal to NEW.

The following merge operation should be performed if these lists are not empty.
It is based on the classical merge operation between sorted files [Folk et al. 1997]. Let
i, j be two integer values, where i indicates the position in the first list and j indicates
the position in the second list. A loop is then processed, starting with i = j = 0. If
the element in the position i on the first list, called Ea, goes before the element in the
position j on the second list, called Eb, this means that the merge operation appends
Ea to N and increments i by 1 since an element of the first list has been processed. If
the inverse happens, i.e., Eb goes before Ea, the merge operation appends Eb to N and
increments j by 1. Evaluating the order of two node entries requires the execution of
the same comparison function employed by the red-black trees (Section 3.1). If Ea and
Eb point to the same entry (i.e., their unique identifier are equal), the merge operation
appends only Ea to N if its value (i.e., mod result in the mod tree) is different to null and
increment both i and j by 1. This is done because the result should only maintain the
latest version of the entry and non-null entries. The loop is finished if i (j) is equal to the
number of entries in the first (second) list. Finally, the entries that were not evaluated by
the loop are appended to N , which is returned as the final step of the merge operation.
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The merge operation requires a cost of O(n + m), where n is the number of
elements in the first list and m is the number of elements in the second list. The use
of a red-black tree for storing modified entries is essential for the merge operation and
represents a main advantage compared to FAST. First, it guarantees the order between
the entries stored in the write buffer. Hence, the resulting node is valid. Second, it has
an amortized cost of inserting and updating entries stored in the main memory. Finally,
the space allocated in the main memory is better managed because it does not allow
repeated elements. All these factors combined to the other eFIND’s managers lead to a
better performance compared to porting the xBR+-tree using FAST, as reported in our
experiments (Section 4).

Handling splitting operations in the write buffer is performed as follows. Let A be
an overflowed node. First, if A has a hash entry in the Write Buffer Table, it assumes status
equal to DEL, deleting previous modifications of A and thus freeing some space in the
write buffer. Otherwise, a new hash entry, with status equal to DEL, in the Write Buffer
Table is created. Then, after completing the splitting operation in the main memory, A has
a new set of entries and a new node, called B, is created. Hence, the hash entry of A in
the Write Buffer Table becomes NEW and the entries of A are added in its corresponding
mod tree. A similar procedure for B is employed. This strategy for handling splitting
operations is important because of the management of the write buffer space. An example
of handling of a splitting operation is depicted in Figure 1c, after inserting p17. As a
result, L4 has 4 modifications (fifth line in the Write Buffer Table of Figure 2a), where
one modification is related to its deletion, another modification for its creation, and then
two modifications for inserting its two entries. Further, N1 is newly created in the write
buffer (last line in the Write Buffer Table of Figure 2a).

4. Experimental Evaluation
4.1. Experimental Setup

Datasets. We used two spatial datasets. The first one is a real spatial dataset, called
brazil points2017, containing 770,842 points that represent geographical locations of
Brazil like public telephones, ATMs, and towers. This dataset was extracted from the
OpenStreetMap and its statistical description can be found in Carniel et al. 2017c. The
second one is a synthetic dataset containing 1,000,000 points equally distributed in 125
clusters uniformly distributed in the range [0, 1]2. The points in each cluster (i.e., 8,000
points) were located around the center of each cluster, according to Gaussian distribution.

Configurations. We compared two configurations: (i) the FAST xBR+-tree, which is
our closest competitor (Section 2), and (ii) the eFIND xBR+-tree, which is our proposed
index. We created the FAST xBR+-tree by extending FAST in an analogous way to the
extensions we performed to eFIND. However, due to space limitations, this extension is
not presented here. Both configurations had a buffer of 512KB, log capacity of 10MB, and
employed index page sizes (i.e., node sizes) from 4KB to 32KB. For the FAST xBR+-tree,
we used the FAST* flushing policy, which provided the best results according to Sarwat
et al. 2013. For the eFIND xBR+-tree, we employed the best parameter values according
to our experiments [Carniel et al. 2018]: the use of 60% of the oldest modified nodes to
create flushing units, a flushing policy using the height of nodes as weight to choose one
flushing unit to be written, and the allocation of 20% of the buffer for the read buffer.
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Figure 3. The eFIND xBR+-tree showed the fastest elapsed times when building
spatial indices over both spatial datasets.

Finally, both configurations employed the flushing unit size equal to 5 since this value
commonly provide good results for FAST and eFIND [Carniel et al. 2018].

Workloads. We executed two workloads: (i) index construction, and (ii) execution of
300 intersection range queries (IRQs). An IRQ retrieves the points contained in a given
rectangular query window, including its borders. Three different sets of query windows
were used, representing respectively 100 rectangles with 0.001%, 0.01%, and 0.1% of
the area of the total extent of the dataset being used by the workload. We generated
different query windows for each dataset using the algorithms described in Carniel et al.
2017c. This method allows us to measure the performance of spatial queries with distinct
selectivity levels. We consider the selectivity of a spatial query as the ratio of the number
of returned objects and the total objects; thus, the three sets of query windows built IRQs
with low, medium, and high selectivity, respectively. We executed the workloads as a
sequence, that is, the index construction followed by the execution of IRQs. For each
configuration and dataset, this sequence was executed 5 times. We avoided the page
caching of the system by using direct I/O. For the first workload, we collected the average
elapsed time. For the second workload, we calculated the average elapsed time to execute
each set of query windows.

Running Environment. We employed a server equipped with an Intel Corer i7-4770
with a frequency of 3.40GHz, 32GB of main memory, and the SSD Kingston V300 of
480GB. The operating system used was Ubuntu Server 14.04 64 bits.

4.2. Performance Results

Index Construction. Figure 3 depicts that the eFIND xBR+-tree overcame the FAST
xBR+-tree for both spatial datasets. The performance gains of the eFIND xBR+-tree
ranged from 68.1% to 83.5% for the real spatial dataset (Figure 3a) and from 28.4% to
46.5% for the synthetic spatial dataset (Figure 3b). A performance gain shows how much
a configuration reduced the elapsed time from another configuration.

The eFIND xBR+-tree exploited the benefits of the SSD because it leverages spe-
cific data structures and sophisticated methods that take into account the intrinsic charac-
teristics of SSDs. We highlight three main contributions. First, the use of the read buffer
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Figure 4. Performance results when processing IRQs on the real spatial dataset.
The eFIND xBR+-tree outperformed the FAST xBR+-tree for all selectivity levels,
showing expressive performance gains.
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Figure 5. Performance results when processing IRQs on the synthetic spatial
dataset. The eFIND xBR+-tree showed better elapsed time than the FAST xBR+-
tree for all selectivity levels.

avoided several reads on frequent locations of the SSD, even using a small portion of
the whole buffer size. Second, the merge operation accelerated the retrieval of the most
recent version of modified nodes. This operation also naturally guaranteed the order of
node entries. Finally, the eFIND xBR+-tree avoided interleaved reads and writes.

Building spatial indices over the synthetic spatial dataset required more time be-
cause it is larger than the real spatial dataset. In both spatial datasets, the eFIND xBR+-
tree provided the best elapsed time by using the page size equal to 8KB. The use of
larger page sizes faced the problem of writing big flushing units [Sarwat et al. 2013,
Carniel et al. 2018], while the use of smaller page sizes introduced the management of
a high number of nodes.

Spatial Query Processing. Figures 4 and 5 depict that the eFIND xBR+-tree always
provided the best performance results when processing all selectivity levels of IRQs. For
the real spatial dataset (Figure 4), the eFIND xBR+-tree showed performance gains up to
29.4%, 27.2%, and 28.5% for the high, medium, and high selectivity levels, respectively.
For the synthetic spatial dataset (Figure 5), it showed performance gains up to 34.6%,
28.6%, and 20.2% for the high, medium, and high selectivity levels, respectively. Sim-
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ilarly to our previous discussions, these performance gains were obtained thanks to the
effective use of the merge operation and read buffer.

Processing IRQs over the synthetic dataset required much less time than process-
ing IRQs over the real dataset because of its specific spatial distribution. In most of the
cases, better elapsed times were obtained by using large page sizes (i.e., 16KB and 32KB)
because more entries are loaded into the main memory with a few reads. IRQs returning
more points (i.e., with high selectivity) exhibited higher elapsed times. This is due to
the traversal of multiple large nodes in the main memory, requiring more CPU time than
queries with low selectivity. This fact also contributed to a similar time among the con-
figurations when processing IRQs with high selectivity using the page size of 32KB.

5. Conclusions and Future Work
This paper proposes the eFIND xBR+-tree, a novel flash-aware spatial index for points.
eFIND allowed to efficiently port the xBR+-tree to SSDs because its data structures fit
well the properties and spatial organization of the xBR+-tree. To accomplish this porting,
eFIND has been generalized to deal with the sorting properties of nodes and to efficiently
handle modifications produced by the xBR+-tree.

The eFIND xBR+-tree has empirically evaluated against the FAST xBR+-tree,
which employed FAST to port the xBR+-tree to SSDs. The eFIND xBR+-tree provided
performance gains from 28.4% to 83.5% when building spatial indices and up to 34.6%
when processing IRQs. In general, the page size of 16KB was the best configuration.
Although this page size required more time to build an index compared to smaller page
sizes, it provided the best results to execute the IRQs. Hence, the cost of its construction
can be suppressed by its efficiency when processing spatial queries.

The efficiency of the eFIND xBR+-tree is obtained mainly because of two reasons.
First, the internal structure of the xBR+-tree was completely integrated to eFIND, guar-
anteeing all the properties of the xBR+-tree that offer good spatial indexing performance.
Second, eFIND is based on distinct design goals that fully exploit SSD performance.

Our future work includes to evaluate the eFIND xBR+-tree against
other spatial organizations, such as the data partitioning strategy of eFIND R-
trees [Carniel et al. 2018]. Another future work is to extend our experiments to consider
workloads that mix insertions and other types of queries, such as point queries.
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