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Abstract. Climate prediction is a relevant activity for humanity and, for the suc-
cess of the climate forecast, a good historical database is necessary. However,
because of several factors, large historical data gaps are found at different me-
teorological stations, and studies to determine such missing weather values are
still scarce. This paper describes a study of a combination of several machine
learning techniques to determine missing climatic values. This study produced
a computational framework, formed by four different methods: linear regres-
sion, neural networks, support vector machines and regression bagged trees. A
statistical study is conducted to compare these four methods. The study statis-
tically demonstrated that the regression bagged trees technique was successful
in obtaining missing climatic values for the state of Minas Gerais and can be
widely used by the responsible agencies to improve their historical databases,
consequently, their climate forecasts.

1. Introduction

An important task to better study and predict weather is the storage of historical data.
The governments and industries that are affected by the weather must store time series
of climate data. This historical data can feed forecast models, increasing the accuracy
of the forecast. The measurement of time series allows the identification of cycles and
patterns repeated over time, in such a way that, if properly combined with the current
observational data, they can help in the task of predicting and validating future data.

The database division of CPTEC/INPE! has an important role in the collection
and storage of climate data. Particularly, there is a large body of observational data
[Barbosa and Carvalho 2015] such as precipitation (since 1880). On the other hand, the
historical series of these data are not always continuous and there may be momentary
interruptions caused by different reasons.

Figure 1 shows a set of data measured at the Estacdo da Luz, in Sdo Paulo city,
between the years 1888 and 2006. A significant interruption was noted in the 1940s,
1950s and 1960s. These missing data are relevant for the historical series and can be
inferred from other context-related attributes [Lakshminarayan et al. 1999].

Over time, several tools have been applied in order to identify these missing values
[Gilat and Subramaniam 2009]. Several approaches have been proposed and improved in

Thttp://www.cptec.inpe.br/
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Figure 1. Existence of precipitation data between 1888 and 2006, Station of Light
(Estacao da Luz). Source: [Barbosa and Carvalho 2015]

this context, such as algorithms based on artificial neural networks [Luengo et al. 2010,
Olcese et al. 2015, Singh 2016], decision trees [Valdiviezo and Van Aelst 2015], support
vector machines [Garcia-Laencina et al. 2015, Sapankevych and Sankar 2009], and re-
cent machine learning approaches, such as bagged trees [Hegde et al. 2015] and boosting
[Dudoit et al. 2002].

Within this perspective, this paper presents a framework for the study of several
tools and techniques of machine learning for the imputation of missing data in time series
in order to better predict the tendency data. The framework implements linear regression,
neural networks, support vector machines and regression tree models, and is applied in
the Minas Gerais state, Brazil.

The framework was made to allow a cross-validation between the models. This
validation is important for verifying the effectiveness of missing data imputation for pre-
dicting new values.

This paper is structured as follows. Section 2 presents the related works. The
Datasets are described in section 3, along with preliminary data processing and analysis.
Section 4 discusses the regression methods presented in the proposed framework. The
quality measurement of the imputed data is discussed in section 5, along with the study
design for the comparison. The results of the comparison are presented in section 6.
Finally, the conclusions are presented in section 7.

2. Related Work

In machine learning there is a sub-area that aims to study techniques and models for the
identification of missing data. [Dudoit et al. 2002] compare the performance of different
discrimination methods for the classification of tumors based on gene expression data.
The methods include nearest-neighbor classifiers, linear discriminant analysis, classifica-
tion trees and also new approaches, such as bagging and boosting. The given methods
were used for imputation of missing data of cancer genes. The results showed that di-
agonal linear discriminant analysis (DLDA) and nearest-neighbor obtained better results,
with aggregated tree predictors had performance intermediate. The work used a frame-
work to compare different methods, but it was used in time-series data.
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[Saar-Tsechansky and Provost 2007] proposed a comparison of different classifi-
cation models to handle missing values. The authors compared reduced-feature mod-
els, regression trees, reduced-feature ensemble, bagged trees and a hybrid approach that
combines reduced-feature and regression trees models. Concluding that reduced-feature
ensemble has better performance than bagged trees, although reduced-feature modeling
is significantly more expensive in terms of computation or storage, and the hybrid ap-
proach was similar to the bagged trees. [Hegde et al. 2015] showed that bagged trees and
random forest are the state of the art in prediction of new values. This work created a
framework to predict rate of penetration during drilling using trees, bagged trees and ran-
dom forest, with support of statistical comparison. Althought bagged trees and Random
Forest methods increased substantially the accuracy of predictions, only bagged tree had
the combination of computational efficiency and accuracy.

[Olcese et al. 2015] proposed a study using neural networks (NN) as a machine
learning tool to identify missing values, using historical values at two stations, air mass
trajectories passing through both of them and NN calculations to process all the informa-
tion. This work made a comparison of several neural networks with different topologies,
number of hidden layers and methods of propagation of the error and used the coefficient
of determination 72 to compare measured and calculated values. The result is a model
capable of generating missing values and a great tool to predict values in several condi-
tions. The result of the work was a model capable of generating missing values, with a
10% error in relation to the real data.

[Xiao et al. 2015] proposed a framework for consistent estimation of multiple
land-surface parameters from time-series surface reflectance data. The framework was
built combining pre-processing methods, such as Kalman filter and a two-layer canopy
reflectance model (ACRM). The work showed that the proposed framework was success-
ful to input missing and noisy data. Although this work used time-series data, it did not
compared different models, such as neural network, support vector machines (SVM) or
bagged trees.

The present work aims to study of several tools to estimate new climatic data.
Although the related works presented before had great results in the study of methods
to identify missing values of different sources, some gaps in the previous works were
considered by the current paper, such as the study of correlation between the time and the
missing climate values.

3. Datasets and Data Preprocessing Analysis
3.1. Datasets

There are 48 meteorological automatic stations in the state of Minas Gerais, Brazil, whose
data are available at the National Institute of Meteorology (INMET) website?. For this
research, time-series daily data were used from 11 meteorological stations distributed
around the state. The datasets used were composed by the following parameters: pre-
cipitation, maximum temperature, minimum temperature, insolation, evaporation rate,
average relative humidity, average compensated temperature, and average wind speed
time-series. Since the meteorological stations were built in different dates, the time-series

Zhttp://www.inmet.gov.br/
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datasets also have different start dates. Each station collects automatically climatic data
during the day and save them at midday (composed by data collected during the morning)
and midnight (with the average data of the day). Due the highly noise data from midday
values, just midnight values were considered in the study. For space restrictions, from this
point of the article, all information generated based on the Belo Horizonte station will be
detailed. Data from the other stations will be summarized at the end of this paper.

3.2. Data Preprocessing Analysis

The first approach was to analyze the time-series dataset to acquire better understanding
of the correlation between the variables, in order to improve the study. The maximum
temperature of the Belo Horizonte station can be seen in the Figure 2, showing that there
is a large gap of missing data between 1980 and 1981, 1983 to 1986, 1987 to 1988, among
other minor gaps. Such missing values represent about 13% of the total amount of values.

1961 1966 1971 1976 1981 1986 1991 1996 2001 2006 2011

Figure 2. Maximum temperature data series of Belo Horizonte station.

As the climate undergoes great changes throughout the year, it was necessary to
evaluate which components of the date variable provided the greatest changes in climate
data. Due to this, the date information has been separated between day, month and year,
since each of them retains different information about the climate data, such as maximum
temperature. Pearson correlation method [Pearson 1992] was used to verify correlation
between the variables date and maximum temperature.

Figure 3 shows the relationship between day, month and year values. We can
see that the p-value of the month and year are extremely small, showing that both
variables are statistically significant to generate the maximum temperature response
[Carrano et al. 2011]. The p-value of the day is considered high (above 0.05%), showing
that this variable has no great influence on the response [Wasserstein and Lazar 2016].

In Figure 4 is possible to visualize how the variables influence the response. It is
possible to visualize that the month and day contribute inversely to the temperature. While
the year contributes directly to the maximum temperature of Belo Horizonte, showing
that, since 1961, the temperature has been increasing in the capital of Minas Gerais during
the studied period. Therefore, it was proven that the date variable has highly correlation
with the climate data and it was used as input into regression models.

4. The Proposed Framework

The framework was composed by four machine learning regression models: linear re-
gression, neural network, support vector machine and bagged regression trees. Regres-
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Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 10.12 2.7336 3.702 0.00021457
Day -0.0013698 0.0025714 -0.5327 0.59424
Month -0.079877 0.0065357 -12.222 3.287e-34
Year 0.0088304 0.001374 6.4268 1.3366e-10

Number of observations: 17478, Error degrees of freedom: 17474
Root Mean Squared Error: 2.99

R-squared: 0.0111, Adjusted R-Squared 0.0109

F-statistic vs. constant model: €5.4, p-value = 4.98e-42

Figure 3. Pearson correlation method.
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Figure 4. Prediction slice plots.

sion models involve the following variables: unknown parameters, denoted as £, the in-
dependent variables, X, and the dependent variables Y. A regression model relates Y
to a function of X and § as Y ~ f(X, /). The approximation is usually formalized
as (E | X) = f(X,pB). The form of the function f is based on the machine learn-
ing technique. For all regression models, the result is a solution for unknown param-
eters [ that will, for example, minimize the distance between the measured and pre-
dicted values of the dependent variable Y, also based on the machine learning technique
[Draper and Smith 2014]. The following will be detailed each used algorithm for the in-
put of the missing data.

4.1. Linear Regression

Linear regression is one of the simplest methods in statistics and machine learning tech-
niques and when the attributes are numeric, is a natural technique to consider. Given a
data set X = {y;, %1, ..., ;p } 1, of n units, a linear regression tries to map the output y;
onto a continuous expected result function y; = 0y + 6gz;1 + ... + 0,24,. Often written as
a matrix form Y,, ; = X, .01, where Y is the array of n dependent variables, X is the
matrix of m arrays of n independents variables and 6 is a m + 1 dimensional parameter
vector, called weight. 6y is the offset term [Witten et al. 2011]. The weight € can be found
by measuring the cost function .J (6o, 61) = 1/2m+Y " (he(x;) —y;)? until it reaches the
lowest value, where hy is the hypothesis function of the linear model. The cost function is
otherwise called Mean Squared Error and it represents, graphically, the smallest distance
between the independent variables and the regression line [Seber and Lee 2012].
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In the proposed framework, X3, was the matrix of date variable. The lines rep-
resent the 3 inputs: day, month and year. The columns represent the size of the dataset
collected, varying according to the meteorological stations data storage. The Cost Func-
tion was able to find the most suitable curve that represents the missing climate data
(Figure 5).
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Figure 5. Imputed data (in orange line) using linear regression model with multi-
ple variables.

4.2. Neural Networks

The neural networks model implements a structure analogous to a neuronal cell. These
cells can be linked as a network, using different layers, simulating the communication
between the neurons [Ripley 2007]. In this work, the input layer represents the climatic
data matrix, created from the data of day, month and year of operation of the station.
While the output layer represents the output vector formed by the data to be analyzed. The
number of hidden layers is parameterizable. Few hidden layers can generate a simplistic
neural network model, unable to encompass the complexity of prediction. On the other
hand, many hidden layers can generate good results for the trained data, however it can
generate an overfitted model. The neural network training method used in this study was
Bayesian backpropagation [Ripley 2007].

Several neural networks with different hidden layers were tested to find the layer
value that predicts the data with the minimum error. The number of hidden layers found,
which made the model computationally feasible to perform the calculations and with
minimum error, was 10. The network model was assembled to estimate all missing data
weather from the stations studied. With the neural network model it was possible to find
values to replace the missing values with most similarity to the real values, as indicated
in Figure 6.

4.3. Support Vector Machine

The SVM is known as a non-probabilistic binary linear classifier, since it, given different
inputs, selects which of two classes the inputs belong to, finding a frontier of separation
between these two classes, known as a hyperplane [Cristianini and Shawe-Taylor 2000].
The main characteristic of SVM algorithms is the kernel function, used to reduce the
computational complexity. Kernel functions are any functions K(x,y) if it can be written
as K (z,y) = ®(z)- P(y), where @ is a function that maps an instance into a feature space
[Scholkopf et al. 1999].
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Figure 6. Imputed data (in orange line) using neural networks regression model.

The concept of hyperplane is only applied to classification. However, support
vector machine was also developed to work with numerical prediction. Using the bi-
nary classification methodology, a model is produced that can usually be expressed
in terms of some support vector machines and can be applied, using kernel functions
[Witten et al. 2011]. For each model, the 10 folds cross-validation were performed to
find the most suitable kernel function. The loss function for each sample was analyzed to
test which model obtained the best result. The Gaussian kernel function model obtained
better response, with loss function equal to 7.35 versus 8.96 of the loss function of the
kernel model with linear function. With the SVM model, it was possible to find values to
replace the time-series missing data (Figure 7), similar to those obtained using NN model.
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Figure 7. Estimated data (in orange line) using the support vector machine
model.

4.4. Regression Tree and Bagged Trees

Regression Tree is a variation of the Classification Tree, designed to approximate real-
valued functions. Classification trees are constructed by repeated splits of subsets (nodes)
of the input values X, into two descendant subsets, starting with X itself. Each terminal
subset is assigned as belonging to a class, and the resulting partition of X corresponds to
the classifier, called the leaf node [Breiman et al. 1984]. When the decision tree is used to
predict numerical values, rather than predicting categories, the tree is called a regression
tree. The leaves of a regression tree represent the expected mean values of the response.

[Breiman 1998] showed that gains in accuracy could be obtained by aggregating
predictors from perturbed version of the learning set. Bagging can improve performance
of good unstable methods by replicating the original learning set £ with small changes, k
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times. Predictors are built for each % perturbed dataset and aggregated. Classification and
Regression Trees (CART) and neural networks are unstable, whereas k-nearest neighbor
methods are stable [Breiman et al. 1996]. Since neural nets progress much slower and
replications require many days of computing, just bagged regression trees were used in
this work.

In the proposed framework, 100 bootstrap replications of the climate time-series
dataset were used, in order to extract the missing data from the stations under study. The
bagged trees model did much better than the previous models, since it was able to work
with data that had a great temporal variation and, at the same time, it was not overloaded
and could estimate with very low error the missing values, as shown in Figure 8.
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Figure 8. Temperature data estimated (in blue line) with bagged trees model.

5. Validation of Missing Data Estimation Methods

In the absence of a method that compares the efficiency of imputed missing data when
trying to predict new climate data, a model cross-validation method was designed to han-
dle this comparison. To compare the regression models, the method implements a k-folds
cross-validation among all the machine learning techniques used in this research, using
non-imputed data and data imputed by previous methods. It was selected 70% of the
dataset to train the models, and 30% of the dataset to validate the models, ensuring that
no training data were reused in the validation phase, avoiding overfitted prediction mod-
els. 20 models were created: 4 different methods, each method with 5 different imputa-
tion approaches: (1) no imputation; imputed data using: (2) linear regression, (3) neural
networks, (4) support vector machine and (5) bagged trees. In addition, the data of the
studied stations were reduced to 5 years, taking 1 year to simulate the missing data which
corresponds to 25% of the dataset of each station.

For the quality measurement of the imputed data was used the normalized root
mean square error - NRMSE (Equation 1). NRMSE is a parameter validation, that can be
used when it is necessary to compare the performance of a model with other predictive
models and it is being used in meteorology to see how effectively a mathematical model
predicts the behavior of the atmosphere [Hyndman and Koehler 2006]. Given the mean
square error (MSE) Y7 | (Xobsi — Xmoder,i)? /1, Where X ; is the vector of observed
values corresponding to the inputs, and X,,,04¢1,; 1S the vector of i predictions, the RMSE
of a model with respect to the estimated variable X4 is defined by the square root of
the MSE, normalized by the reach of the observed data (X ops maz — Xobs,min)» Which is the
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difference between the maximum X ps 1mq, and minimum X s i, values of the vector of
observed values.

Zn (Xobs,i=Xmodel,i)?
=1 n

NRMSE =
(Xobs,maz - Xobs,min)

(1)

The 20-folds cross-validation method is executed 30 times in order to generate an
array of NRMSE values, to be studied statistically. The method used to perform the statis-
tical analysis was proposed in [Carrano et al. 2011], which consists of making a bootstrap
of the data sent from each method to build a probabilistic distribution function of the mean
of the NRMSE values. Such functions are compared using ANOVA [Fisher 1919] and
Tukey’s multiple comparison test. This test returns an ordered sequence of the validated
models, using permutation. In addition to the ANOVA and Tukey’s tests, the models were
ordered according to a statistical analysis based on the p-value of 5%, to evaluate if one
model is superior to another. If the analysis indicates that model A is higher than model
B with p-value less than 5%, we consider that A is ahead of B; Otherwise we say that the
models are tied.

6. Results

Figure 9 shows the comparison between models for each meteorological station, ordered
by ANOVA and Tukey’s tests. The p-values show the significance between the models. It
is possible to notice in Figure 9(a) that, although the predicted model of bagged trees with
values imputed by the SVM model (Bt,,,) is in front of the sequence, it has p-value greater
than 5% in relation to the Bt,, models (values imputed with bagged tree method) and Bt,,
(values imputed using the neural network method). Only in relation to the Bt model
(values imputed with linear regression method) that the Bt,,,, model stands out, with a
p-value of 3.1%. This demonstrates that the Bt,,, Bty, and Bt,, models are statistically
similar and are tied. The Bt;, model has a p-value of 0% in relation to Bt,; (prediction with
values not estimated), and it can be concluded that, statistically, the prediction model of
new values obtained better results with the imputed data than without imputation of data.
The tied models are grouped by dashed lines, that is, at the Belo Horizonte station, the
Btem, Bty and Bt,, models are tied, while the Bt,, and Bt,, and Bt, models are also
statistically similar, while the Bt,; model is not relevant in comparison to any of the other
data forecast models. As may be noted, the statistical comparison is not transitive, e.g.,
Bt and Bty are tied as Bty and Bt;, are tied, but Bt,,,,, and Bt;, are not tied. For more
details about statistics comparison see [Carrano et al. 2011].

Figure 9 also shows the analysis obtained for the remaining 10 other stations. It is
possible to notice that in all the stations analyzed in this work, the models with the highest
performance in the prediction of new values were the models of grouped trees (bagged
trees). The prediction of new climate values had better performance with estimated miss-
ing values using bagged trees methods, as is shown in nine of eleven stations (Araguai,
Divinépolis, Janatba, Lambari, Lavras, Montes Claros, Salinas, Sdo Lourenco and Sete
Lagoas). [Dudoit et al. 2002] and [Saar-Tsechansky and Provost 2007] also showed bet-
ter results using bagged trees method to estimate missing values.

The final observation that Figure 9 provides is that when comparing the meteo-
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Figure 9. Sequence of the most significant models and their p-values of the
studied meteorological stations

rological station results, in none of them, the model that use data without previous esti-
mation had similar or better results to the other models. Therefore we conclude that pre
estimation of climatic missing values had improved models to predict new values.

7. Conclusions

Climate prediction is a relevant activity for humanity, since its beginnings. The various
companies and public agencies have equipment capable of performing climate measure-
ments as well as acting in the arduous task of predicting the climate for the short future.
Time-series climate data have a great relevance in this task, since they can feed predictive
models, and the lack of them can result in worse predictions. This paper showed that
predictions of new climatic data have an increase in accuracy when the input data, that
has considerable amount of missing values, is previous filled with data through machine
learning techniques.

With the analysis of the imputed data and the final forecast of new values, it was
possible to conclude that the imputed data allowed the forecast of new data to have a
better performance. When there is a large amount of missing temporal data over a long
period of time, it becomes difficult for machine learning models to deal with this lack of
data. The final statistical analyzes were important to show the discrepancy between the
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forecast models with imputed data and the models without imputed data. Particularly, call
attention the forecast model of regression bagged trees with imputation, which presented
good performance in all data series.

The missing data imputation models created in this article can be widely used
by diverse responsible companies and public agencies for improving their historical
databases, hence their predictions. In a future work, a previous spatial analysis can be
used within the framework, such as data triangulation between meteorological stations, in
order to improve the forecast models.
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