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Abstract. The answers to current our planet’s problems could be hidden in gi-
gabytes of satellite imagery of the last 40 years, but scientists lack the means
for processing such amount of data. To answer this challenge, we are build-
ing a scientific platform for handling big Earth observation data. We organized
decades of satellite images into data cubes in order to put together data and
analysis. Our platform allows to scale-up analysis to larger areas and longer
periods of time. However, we need to provide scientists with tools and mecha-
nisms to test and refine their routines before interacting with the Big data hosted
in our platform.
We believe that web services along collaborative analysis environments fit the
hypothesis-test pattern followed by researchers while writing scientific computer
code. Web services enable us to embed our platform’s data and algorithms into
collaborative analysis environments such as Jupyter notebooks.
To make our case, we prepared a Jupyter notebook where Earth observation
scientists can interact with our platform through web services and the analytic
capabilities of the programming language Python.

Resumo. As respostas aos problemas globais atuais podem estar ocultas em
gigabytes de imagens de satélite de observação da Terra adquiridas nos últimos
40 anos, mas nem sempre os cientistas possuem os meios para processá-las e
transformá-las em informação. Para responder a esse desafio, estamos cons-
truindo uma plataforma cientı́fica para processar grandes volumes de dados
de observação da Terra. Para isso, nós organizamos décadas de imagens de
satélite em cubos de dados, a fim de juntar dados e análises. Nossa plata-
forma, está sendo concebida para permitir a anĺise de grandes ŕeas com dados
de longos perı́odos de tempo mais longos. No entanto, precisamos fornecer aos
cientistas ferramentas e mecanismos para testar e refinar suas rotinas antes de
interagir com os dados hospedados em nossa plataforma.
Acreditamos que os serviços Web e os ambientes de análise colaborativos encai-
xam com o padrão de hipótese-teste seguido pelos pesquisadores. Os serviços

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p 7-16.

7



da Web nos permitem incorporar os dados e algoritmos da nossa plataforma em
ambientes de análise colaborativa, como os Jupyter notebooks.
Para testar nossa hipótese, nós preparamos um Jupyter notebook onde cientis-
tas da observaço da Terra podem interagir com a nossa plataforma através de
serviços web e as capacidades analı́ticas da linguagem de programação Python.

1. Introduction
Earth observation scientist are unable to use all the available images in their analy-
ses because processing such volume of data demands large hardware resources, new
software tools, and sound analysis techniques. These issues and requirements asso-
ciated to large amounts of data are commonly addressed as the data deluge or big
data [Bell et al. 2009, Boyd and Crawford 2012, Li et al. 2016]. Besides, the current
satellite image distribution model is based on files. These files have their own formats and
access interfaces. This distribution model had led to problems such as data duplication and
the inability to track the files used or required for each analysis. The data used for Earth
Observation analysis are either unavailable or just too large for independent result valida-
tion which in turn, boosts the scientific reproducibility crisis [Baker 2016, Nature 2016].
For these reasons, we are putting together data and analysis by means of a platform for
handling big geospatial data. We are using our platform to research land use and land
cover change.

As the amount of data increases, it is more efficient to move the algorithms to the
data than the other way around [Borthakur 2007]. However, the conditions and mecha-
nisms by which scientists move their algorithms to our platform is unknown; we would
like scientist to focus on analysis and to forget about data structures and computing scal-
ability.

We acknowledge how troublesome is the process of writing computerized scien-
tific analysis routines and we are committed to make easier for scientists to scale up their
analysis from the desktop to our platform. We believe the best moment to make our data
and analysis available to scientist is at the earliest stages of their analysis. This approach
can diminish the amount of rework implied while scaling up analysis.

Unfortunately, each scientist writes analysis routines on its own way. However,
it is known they keep notebooks with descriptions, data and results of their experiments.
Apart from this, Donald Knuth introduced literate programming as a way to develop, doc-
ument, and publish scientific algorithms relying in both natural and machine language.
Furthermore, Jim Gray proposed Overlay Journals as means to share, manage, and im-
proved scientists’ notebooks [Knuth 1984, Gray 2009]. These ideas are being taken to the
web in the form of electronic scientific notebooks which are on-line, collaborative docu-
ments that mix code, data, descriptions, and tables to summarize the results of scientific
research[Pérez and Granger 2007].

We believe that web services along collaborative analysis environments fit the
hypothesis-test pattern followed by researchers while writing scientific computer code.
Web services enable us to embed our platform’s data and algorithms into collaborative
analysis environments which are electronic approximations to the scientists’ notebooks
and laboratory journals.
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In this paper, we examine how our platform can be integrated into the analysis
workflow of Earth observation data. To achieve this, we briefly introduce our computing
platform and its web services(section 2 and 3). Then, we describe analysis environments
and how the into into the scientists’ workflow (section 4). Finally, we test our approach by
setting up Jupyter notebook — a collaborative analysis environment — in which we mix-
ture the web services provided by our platform and the analysis analytical tools provided
by the Python programming language.

2. The e-sensing platform

The e-sensing 1 project aims to build a platform for handling big geospatial data in order
to help scientists to research land use and land cover change. We are organizing decades
of satellite images into cubes — tridimensional space-time arrays —- inside our platform
and finding the best way to put together data and analysis. The e-sensing project is ran by
the Brazilian National Institute for Space Research (INPE).

The main requirements to these platforms are analytical scaling, software reuse,
collaborative work, and replication. Analytical scaling is about allowing users to move
their data and code between platforms of increasing processing capacities with little or
no modifications at all. Software reuse means the platform must be able to use code
from different origins. Collaborative work and replication are about enabling scientists
to share and replicate their results [Câmara et al. 2016, Stonebraker et al. 2009]. We are
addressing the software reuse, collaborative work, and replication by using open source
and open access software and data. For example, inside our platform, we are only using
open source software and open access data provided by NASA. But in this document we
are addressing only the first step in the analytical scaling requirement.

Our platform is hosting an array database with both MODIS and LANDSAT im-
ages. We have been classifying time series of vegetation indexes of the Amazon forest
into classes of Land Use and Land Cover Change (LUCC). In post-processing stages,
we analyze the trajectories of LUCC over time [Assis et al. 2016, Camara et al. 2016,
Lu et al. 2016, Maciel et al. 2017, Maus et al. 2016]. But the data workflow inside our
platform relies on a mixture of technologies such as scripting languages (R, Python,
Bash), distributed storage (SciDB, Hadoop), and operating system tools. As a result, it is
hard for scientists to reproduce our results or to run their own [Câmara et al. 2016]. As
mentioned earlier, we chose web services as the way to expose our platform computing
capabilities while hiding its internal complexities.

On the other hand, the CEOS Data Cube Platform (CEOS-ODC) is a platform
for storing, accessing, and managing metadata of remotely sensed data. CEOS-ODC is
build on top of the Australian Geoscience Data Cube. Both platforms — e-sensing and
CEOS-ODC — are interested in processing large amounts of satellite imagery and using
open source tools. However, they use different type of analysis and architectures. While
e-sensing is focused on time series analysis, the analysis supported by CEOS-ODC puts
spatial before temporal analysis. Regarding architectures, e-sensing is built on top of array
databases while CEOS-ODC is built around the programming language python and data
files; this difference is subtle but important since databases are independent of program-

1e-sensing project http://www.esensing.org/
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ming languages. As a consequence, the e-sensing platform is able to run analysis written
in different languages while CEOS-ODC is constrained to python scripts [CEOS 2016].

3. A web service for retrieving time series
Sharing and re-using computer resources has been important since the 90s because writing
software is error-prone and high performance hardware is expensive. Nowadays, Web ser-
vices are the most common way to address this matter. Web services are the standardized
way to access software and data over the World Wide Web independently of operating
systems and programming languages. Through them, scientists can access the data and
algorithms available in our platform and at the same time, web services hide complexities
— such as mixed technologies, and distributed storage — behind an uniform interface.

The Web Time Series Service (WTSS) retrieves time series of Earth Observation
data for specific locations. WTSS reduces the gap between data and remote-sensing time-
series clients through a simple JSON representation. Traditionally, assembling time series
of Earth Observation imagery is a time-consuming task because users need to sequentially
open several image files, extract some pixels, and then store them. Instead, WTSS con-
nects to an multidimensional array database and makes temporal queries on behalf of
the client. WTSS exposes three main operations list coverages, describe coverage, and
time series. list coverages returns a JSON list of the available coverages in the service.
describe coverage retrieves metadata of a specific coverage. Finally, the time series oper-
ation retrieves specific time series [Vinhas et al. 2016]. WTSS implementation is publicly
available on-line 2.

Moreover, WTSS has clients for the QGIS software and for the scripting languages
R and Python. These WTSS clients enable scientists to access our data from on-line
analysis environments.

4. Interactive and collaborative analysis environments
Literate programming is an style of coding software in which programs are treated as
pieces of literature. That is, natural and machine languages are weaved together into
a document where thought order prevails over code optimizations. Its goal is to create
programs easier to understand and maintain and to achieve this, literate programming
makes explicit the reasoning behind the code [Knuth 1984].

Note how literate programming fits the way scientists analyses their data. Once
data is collected, scientists make research questions, then formulate hypotheses for later
testing them on the data. The question making and hypothesis formulating is better de-
scribed using natural language while data processing and hypothesis testing are automated
using code.

The modern realization of literate programming are the on-line analysis envi-
ronments. Using modern technologies, they add collaboration and interactivity to the
traditional scientific notebooks and laboratory journals. Some examples are the R3 and
Jupyter4 notebooks. It is worth noticing that R notebooks are focused in R while Jupyter

2e-sensing code repository https://github.com/e-sensing/
3R Notebooks http://rmarkdown.rstudio.com/r_notebooks.html
4The Jupyter Notebook https://ipython.org/notebook.html
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notebooks support various programming languages. For this reason, we preferred the
latter in this paper.

Statistical data analysis is crucial to science. From the computing perspective, the
most popular and powerful computing tools for statistical analysis are R and Python. R is a
computing environment designed for statistical analysis while Python is a general purpose
programming language focused on readability and extensibility. Both support numerical
processing, statistical data structures; the former natively while the latter trough code
libraries such as SciPy [Ihaka 1998, Jones et al. 01 , OGrady 2016]. Both R and Python
are supported by large communities of users coming from either the field of statistics or
computer science. In this paper we preferred python because most of the author come
from computer science field.

IPython adds facilities to Python for scientific computing. IPython has an interac-
tive command with tailor-made features for scientists, such as code completion, plotting,
and parallel and distributed processing. These characteristics are taken to the web in the
form of Jupyter notebooks [Kluyver et al. 2016]. For example, the data and algorithms
regarding the recent astronomic discovery of gravitational waves are available as Jupyter
notebooks [Dal Canton et al. 2014, Usman et al. 2016, Nitz et al. 2017].

5. Analysis of time series of vegetation indexes
To test our approach, we setup up a Jupyter notebook for the exploratory analysis of
time series of vegetation indexes. The time series are provided through a WTSS server
attached to a cube hosted in the e-sensing platform. Our notebook is publicly available5.
In this notebook, we mix the web services provided by our platform and the analysis
analytical tools provided by the Python programming language. Our notebook presents
three common jobs regarding time series of vegetation indexes: Exploratory analysis,
filtering or smoothing, and classification. Figure 1 is an screen-shot of our notebook
running on a web browser.

In the exploratory analysis, we get the data and then plot the time series and its
location on a map. Figure 2 shows how to retrieve MODIS data into a data frame which
is a table-like data structure.

Once the time series is formated as a data frame, it is simple to apply on it
functions that receive and return data frame’s columns as parameters. In this way, we
smoothed our time series using the Kalman filter, the Fourier decomposition and the
Whittaker smoother. The Kalman filter is well known in aeronautics while Fourier and
Whitaker are known as good estimators of vegetation phenology [Atkinson et al. 2012,
Grewal and Andrews 2010]. For example, Figure 1 shows the code and the application
the Whitaker smoother to time series of vegetation indexes in a web browser.

The last example in our Jupyter notebook is classification. We used Dynamic Time
Warping (DTW) to classify time series of vegetation indexes [Berndt and Clifford 1994].
DTW is an algorithm that computes a similarity measure — a distance — between two
time series. Given a set of time series of known land coverages (the patterns), we compute
the DTW distances to a time series of an unknown land cover (the samples). The samples

5Python for Data Science in Earth Observation Analysis http://github.com/e-sensing/
wgiss-py-webinar
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Figure 1. An on-line analysis environment for time series of Earth observation
data. This environment displays a textual description of the Whitaker smoother
along its Python implementation and its results when applied to a time series of
vegetation indexes.

are assigned to the labels of the patterns with the shortest DTW distance.

We prepared a set of pattern time series corresponding to the land covers cerrado
and forest. We also collected a set of sample points from which we know the latitude, the
longitude and the land cover over a specific time interval; then we retrieved the time series
of these points using WTSS. Figure 3 shows the time series of both pattern and samples.
Figure 4 shows the code required to read the prepared files, retrieve the time series and to
do the classification.

In summary, we joined data and analysis environments in order to plot, filter,
and classify time series of Earth observation data by means of Jupyter notebooks and
web services. This approach is flexible as users can use the same data and web services
over different programming languages and analysis environments. For example, we setup
another notebook using R, which is an statistical programming language. We do not
describe this R notebook here because of lack of room, but the code is available on-line. 6

6e-Sensing: Big Earth observation data analytics for land use and land cover change information
https://github.com/e-sensing/SITS_R_notebook
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import pandas as pd
from wtss import wtss
from tsmap import *
w = wtss("http://www.dpi.inpe.br/tws")
latitude = -14.919100049
longitude = -59.11781088
ts = w.time_series("mod13q1_512", ("ndvi", "evi"), \

latitude, longitude)
ndvi = pd.Series(ts["ndvi"], index = ts.timeline) * \

cv_scheme[’attributes’][’ndvi’][’scale_factor’]
evi = pd.Series(ts["evi"], index = ts.timeline) * \

cv_scheme[’attributes’][’evi’][’scale_factor’]
vidf = pd.DataFrame({’ndvi’: ndvi, ’evi’: evi})

Figure 2. Get a time series into a Python pandas data frame.

Figure 3. Patterns (top) and samples (bottom) of NDVI time series for classifica-
tion.

from dtw import *
from tools import *
patterns_ts = pd.read_json("examples/patterns.json", orient=’records’)
patterns_ts["timeline"] = pd.to_datetime(patterns_ts["timeline"])
samples = pd.read_csv("examples/samples.csv")
samples_ts = wtss_get_time_series(samples)
classification = classifier_1nn(patterns_ts, samples_ts)

Figure 4. Python code for classifying time series using Dynamic Time Warping.
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6. Conclusions

In this paper, we discussed how literate programming is being taking to the Web as inter-
active and collaborative analysis environments. We also showed how this environments
are enhanced with web services and how both — environments and services —-help sci-
entists to prepare their analysis routines. We set up a Jupyter notebook in which we
analyzed data retrieved by the Web Time Series Service. In this way, we showed how to
display, filter, smooth and classify time series of vegetation indexes. This is a convenient
for scientists not only to interact with time series of Earth observation data but also to pre-
pare their analysis routines before running them on big Earth observation data platforms
such as e-sensing.

Web services close the gap between big Earth observation data and analysis tools
by means of collaborative environments for small amounts of data. As the amount of data
to be processed increases, it is better to send the analysis routine to the data which is an
ongoing effort at the e-sensing project.

Finally, we would like to remark that the aforementioned the Jupyter notebook,
the Web Time Series Service, and the analysis routine are available on-line to everyone at
http://github.com/e-sensing/wgiss-py-webinar.
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Câmara, G., Assis, L. F., Ribeiro, G., Ferreira, K. R., Llapa, E., and Vinhas, L. (2016).
Big earth observation data analytics: matching requirements to system architectures.
In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for
Big Geospatial Data, pages 1–6, Burlingname, CA, USA. ACM.

Camara, G., Maciel, A., Maus, V., Vinhas, L., and Sanchez, A. (2016). Using dynamic
geospatial ontologies to support information extraction from big earth observation
data sets. In Ninth International Conference on Geographic Information Science (GI-
Science 2016), Montreal, CA. AAG.

CEOS (2016). The CEOS Data Cube. Three-year work plan 2016-2018.

Dal Canton, T. et al. (2014). Implementing a search for aligned-spin neutron star-black
hole systems with advanced ground based gravitational wave detectors. Phys. Rev.,
D90(8):082004.

Gray, J. (2009). Jim gray on escience: A transformed scientific method. The fourth
paradigm: Data-intensive scientific discovery, 1.

Grewal, M. and Andrews, A. (2010). Applications of Kalman Filtering in Aerospace 1960
to the Present [Historical Perspectives. IEEE Control Systems Magazine, 30(3):69–78.

Ihaka, R. (1998). R: Past and future history. Computing Science and Statistics, 392396.

Jones, E., Oliphant, T., Peterson, P., et al. (2001–). SciPy: Open source scientific tools for
Python. [Online; accessed 2011/11/09].
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