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Abstract: Machine learning techniques such as neural networks, rule induction, genetic algorithm and case-based 
reasoning are finding application in a wide variety of fields such as computer vision, econometrics and medicine, 
where human abilities have proven to be superior to those of computers. Such techniques hold the promise of being 
able to make sense of a variety of inputs of different types in producing an output. Software effort modeling has 
always appeared to be a rather hit-or-miss business where statistical methods frequently result in low accuracy of 
prediction. Some experiments using an artificial neural networks have been conducted, highlighting some of the 
problems that arise when machine learning techniques are applied to software effort modeling. These experiments 
show that, compared with conventional regression analysis, improved accuracy of prediction is possible.  
 

1. Introduction 
The continuous hardware and software development, jointly with the world economical interaction phenomenon 

has contributed to the competitiveness increase between producing and delivering companies of software product 
and services. In addition, there has been a growing need to produce low cost high quality software in a short time. 

A quality level and international productivity can be achieved through the use of effective software management 
process, focalizing people, product, process, and project. The project requires planning and accompaniment 
supported by a group of activities, among which the estimates (effort, resources, time, etc.) are fundamental, because 
they supply a guide for the other activities. The predictive process involves the set of procedures presented in the 
Figure 1 [1]. 

Software size estimates are important to determine the software project effort [2], [3,] [4], [5]. However, 
according to the last research reported by the Brazilian Ministry of Science and Technology - MCT, in 2001, only 
29% of the companies accomplished size estimates and 45,7% accomplished software effort estimate [6]. There is 
not a specific study that identifies the causes of the effort low estimates index, but the reliability level of the models 
can be a possible cause. These data presented by MCT evidences the importance to use an effort estimate alternative 
approach, through which one can have reliable estimates with simple execution model. 
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Figure 1. The predictive process [1] 

 
Predicting software development effort with high precision is still a great challenge for project managers. 

Consequently, there is an ongoing, high level activity in this research field in order to build, to evaluate, and to 
recommend prediction techniques [7], [8], [9], [10], [11], [12] [13], [14]. A large number of different predictive 
models (estimation models and predictive models are considered synonyms) have been proposed over the last years. 
They range from mathematical functions (e.g. regression analysis [11] and COCOMO [7]) to machine learning 
models - ML (e.g., estimation by analogy [9], clustering techniques [10], artificial neural artificial – ANN [14], and 
regression trees [15]). In contrast to a regression model which is defined by a mathematical formula,  ML models are 
not defined by a mathematical formula but may take on many different shapes.    

Despite the number of research activities, there is still a doubt to advise practitioners as to what prediction models 
they should select, because the studies have not converged to similar answers.  

There are a number of factors that should be considered in the selection of a prediction technique, and it is likely 
that trade-offs will need to be made in the process. Technique selection should be driven by both organizational 
needs and capability. In terms of need, the most common aim is to maximize the accuracy in prediction; however, 
other issues may also need to be considered. For instance, a technique that produces slightly less accurate but 
generally more robust models might be preferred, especially in cases where the organizations do not have access to 
locally calibrated, well-behaved data sets. While it is very positive that more sophisticated (and potentially more 
useful) techniques are being employed to build predictive models, genuine benefits will be achieved if the techniques 
are appropriately used. 

In this paper, however, the main focus is on investigating the accuracy of the predictions using ANN-based and 
regression models. A case study was performed to examine the potential of two approaches: a multi-layer perceptron 
neural network and a linear regression model, using the COCOMO database (7). 

The paper is organized as follows: Section 2 provides some background information on the different prediction 
techniques that are used as the basis for the study accomplished. It is followed by a description of the ANN and 
regression techniques (Sections 3 and 4, respectively) and the case study itself presented in the Section 5. The paper 
concludes with discussion on the significance of the results and ideas to the continuity of the research. 

 

2. The prediction techniques 
Accurate and consistent prediction of resource requirements is a crucial component in the effective management 

of software projects. In despite of extensive research over the last 20 years, the software community is still 
significantly challenged when it comes to effective resource prediction. On the whole, research efforts have focused 
on the development of techniques that are quantitatively based, in an effort to remove or reduce subjectivity in the 
estimation process. Examples of this work include the original parametric and regression-based models: Function 
Points Analysis [16], COCOMO Models [7], [17] e Ordinal Regression Model [11].  

However, other techniques for the exploratory data analysis, such as clustering, case-based reasoning and ANN 
have been effective as a means of predicting software project effort. Zhong et al. [10] describe the use of clustering 
to predict software quality. A case-based approach called ESTOR was developed for software effort estimation [18]. 
Vicinanza et al. have shown that ESTOR was comparable to a specialist and it performs significantly better than 
COCOMO and Function Points on restricted samples of problems. Karunanithi et al. [19] reports the use of neural 
networks for predicting software reliability, including experiments with both feedforward and Jordan networks with 
a cascade correlation learning algorithm. Wittig and Finnie [20] describe their use of back propagation learning 
algorithms on a multilayer perceptron in order to predict development effort. An overall error rate (MMRE) obtained 
which compares favorably with other methods.  

Another study by Samson et al. [14] uses an Albus multiplayer perceptron in order to predict software effort. 
They use Boehm’s COCOMO dataset. The work compares linear regression with a neural networks approach using 
the COCOMO dataset. But, both approaches seem to perform badly with MMRE of 520,7% and 428,1%, 
respectively. 

Srinivasan and Fisher [14] also report the use of a neural network with a back propagation learning algorithm. 
They found that the neural network outperformed other techniques and gave results de MMRE= 70%. However, it is 
not clear how the dataset was divided for training and validation purposes.  

Khoshgoftaar et al. [21] presented a case study considering real time software to predict the testability of each 
module from source code static measures. They consider ANNs as promising techniques to build predictive models, 
because they are capable of modeling non linear relationships. 
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Finally, in the last years, a great interest on the use of ANNs has grown. ANNs have been successfully applied to 
several problem domains, in areas such as medicine, engineering, geology, and physics, in general to design 
solutions for estimate problems, classification, control, etc. They can be used as predictive models because they are 
modeling techniques capable of modeling complex functions. 

In this work, the artificial neural networks methodology is used to predicting software development effort (in 
man-hour) from the project size (given by the amount of source code lines). A comparative analysis was 
accomplished between a regression model and an ANN model that were calibrated and tested in this study. 

 

3. Artificial neural networks 
ANNs are massively parallel systems inspired by the architecture of biological neural networks, comprising 

simple interconnected units (artificial neurons). The neuron computes a weighted sum of its inputs and generates an 
output if the sum exceeds a certain threshold. This output then becomes an excitatory (positive) or inhibitory 
(negative) input to other neurons in the network. The process continues until one or more outputs are generated. 

Figure 2 shows an artificial neuron that computes the weighted sum of its n inputs, and generates an output of y. 
The neural network results from the arrangement of such units in layers, which are interconnected one to another. 
The resulting architectures solve problems by learning the characteristics of the available data of related to the 
problem. There exist many different learning algorithms. Feed-forward Multilayer Perceptrons are the most 
commonly used form of ANN, although many more sophisticated neural networks have been proposed. Multi-layer 
architectures are mostly trained by the error back propagation algorithm that requires a differentiable activation 
function.  

 
 
 
 
 
 
 
 

Figure 2. A McCulloch and Pitts neuron 
 
The ANN is initialized with random weights and gradually learns the relationships implicit in a training data set 

by adjusting its weights when presented to these data. Among the several available training algorithms the error back 
propagation is the most used by software metrics researchers. 

In general the studies concerned with the use of ANNs to predict software development effort have focused 
mostly on the accuracy comparison of algorithmic models rather than on the suitability of the approach for building 
software effort prediction systems. An example is the work of Witting and Finnie [22]. They explore the use of a 
multilayer neural network on the Desharnais and Australian Software Metrics Association (ASMA) data sets. For the 
Desharnais data set they randomly split the projects three times between 10 test and 71 training (a procedure we 
largely follow in our analysis). The results from three validations sets are aggregated and yield a high level of 
accuracy (Desharnais MMRE = 27% and ASMA MMRE = 17%) although some outlier values are excluded. 
However, other factors such as exploratory value and configurability are equally important and also need to be 
investigated. 
 

4. Linear regression 
Linear regression attempts at finding linear relationship between one or more predictor parameters and a 

dependent variable, minimizing the mean  square of the error across the range of observations in the data set. Some 
researchers have tried building simple local models, e.g. Kok et al. [23], using this type of approach. The philosophy 
is essentially one of solving local prediction problems before attempting at constructing universal models. The 
resulting prediction systems take the form:  

 

nnext XXY βββ ,...,110 +=                                              (1) 
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Where Yest is the estimated value and X1, …, Xn are independent variables, for example project size (in source code 
lines), that the estimator has found to significantly contribute to the prediction of effort. A disadvantage with this 
technique is its vulnerability to extreme outlier values although robust regression techniques, that are less sensitivity 
to such problems, have been successfully used [5]. Another potential problem is the impact of co-linearity – the 
tendency of independent variables to be strongly correlated with one another – upon the stability of a regression type 
prediction system.   
 

5. The case study 
The analysis undertaken in this study deals with a set of measures taken from COCOMO dataset [7]. The aim of 

the case study was to compare two different prediction techniques: ANN and regression models.  
In this section, we describe the data set used in our analysis, summarize the data preparation activities, and 

explain the approach followed in to build the  models and application, and discusses the results.  
 

5.1. The data set  
The dataset used in this work is COCOMO a public available data set consisting of a total of 63 projects at the 

time of this study. It was used for describing and testing one of the most important effort estimative methods: the 
COCOMO model, implemented by Boehm [7]. Furthermore, various methods have been already applied on it [11]. 
The variables that describe each project are presented in [7]. The effort is represented by the variable EsforcoIT (the 
amount of man-hour for the software integration and test phase). The systems are mainly written using the 
programming languages COBOL, PLI, HMI and FORTRAN. The area types are mainly business, scientific and 
system software.  

 
5.2. Independent variables preparation  

All of the 63 completed projects were used in our analysis. The dataset doesn't include effort measures for 
development phase, but the total effort is given by the variable MMACT. However, the objective is to generate a 
model that allows predicting effort for each development phase. Thus, we calculated the effort for the requirements 
specification, product design, detailed design, code and unit test, and integration and test phases, based on the 
MMACT and in the effort indicators given in [7]. The effort IT was considered to be the dependent variable. 

The choice of the independent variables was accomplished using the General Regression Models -GRM module, 
implemented by the software package STATISTICA. It was implemented the best-subset model-building technique 
for finding the "best" model from a number of possible models. The subset adjusted R-square statistic allowed direct 
comparisons and choice of the “best" subset between ten models. The independent variables that compose this model 
are RELY, ACAP, AEXP, MODP, and TOTKDSI.  

We performed a stepwise regression for the COCOMO projects using the variables presented above. The stepwise 
regression builds a prediction model by adding to the model, at each stage, the variable with the highest partial 
correlation to the response variable, taking into account all variables currently in the model. Its aim is to find the set 
of predictors that maximize F. F accesses whether the regressors, taken together, are significantly associated with the 
response variable. The criteria used to add a variable is whether it increases the F value for the regression by some 
specified amount k. When a variable reduces F, also by some specified amount w, it is removed from the model.  

The stepwise regression results show that only the variable TOTKDSI present a beta value significant (beta = 
0,671) and F = 14,85257. When we use only the variable TOTOKSI, the F-value (used as an overall F-test of the 
relationship between the dependent variable and the set in independent variables) is more strong: F = 50,05215. 

Consequently, in this work only TOTKDSI is used to build the ANN and regression model. Future works will 
involve the COCOMO cost drivers and modes. Likewise, Boehm [7] has shown that the most important predictor for 
these projects is TOTKDSI – thousands of delivered source instructions.  

 
5.3. Training and evaluation 

Estimates of the accuracy of prediction obtained from the training data set are always optimistic. To get a more 
realistic estimate of the accuracy of prediction we followed the similar procedure as in [11]. Based on this process, 
we omitted a subset of projects (the test dataset), we next developed a model with the remaining projects (the 
learning data set), and finally we assessed the predictive accuracy of the model on the test dataset. In this way, we 
constructed the learning dataset by removing every sixth project starting from the sixth project.  
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Thus, the learning dataset was constructed by removing the projects 6, 12,18,24,30,36,42,48,54 and 60. Since we 
used all 63 projects of the COCOMO database in order to build our models, the learning dataset contained 53 
projects.  

It is to be noticed that each system imposes a set of constraints on data representation. When there are several 
variables with nominal values in the project database, the data are normalized to fit the interval [0,1]. No 
normalization was required for the regression analysis. 

The neural network was implemented with 1 input, 9 units in the first hidden layer, 4 units in the second layer, 
and 1 output neuron, using the logistic function. The input variable was TOTKDSI and the neural network was 
trained to estimate effort IT. The training phase was repeated 15 times, in a search for the best network to solve the 
problem. Besides, different neural network architectures were tried. But, the results presented in this paper 
correspond to the neural network with the best generalization performance.  
     The linear regression model was calibrated using stepwise backward method. After a number of experiments, we 
achieved a final regression model.  

The predictions obtained from the ANN and the regression model (after training on the COCOMO data) using the 
test dataset are shown in Table 1. 

 
Table 1. Regression and ANN estimates 

EsforçoITact Regression ANN 
6,753 26,026 26,5586 
59,3 93,678 52,37 
3705 673,847 859,7053 
120,05 202,332 165,4667 
1,12 21,885 25,5485 
12,93 48,577 33,0107 
10,58 111,104 63,0066 
375,24 969,057 638,4523 
3,5 26,846 26,7646 
9,98 31,561 27,9878 

 
Different error measurements have been used by various researchers, but for this project the main measure for 

model accuracy is the Mean Magnitude of Relative Error (MMRE) and R2. MMRE is the mean of absolute 
percentage errors:  

                                              
n

M
MM

MMRE

n

i act

actest
⎟
⎟
⎠
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⎜
⎝

⎛ −

=
∑
=

100*
1                                                      (2) 

 
where there are n projects; Mact is the actual effort; and Mest is the predicted effort.  

Others researchers have used the adjusted R squared or the coefficient of determination to indicate the percentage 
of variation in the dependent variable that is “explained” in terms of the independent variables. In this paper, we have 
decided to adopt the MMRE and the adjusted squared R as prediction performance indicators since these are widely 
used. 

We performed a linear regression/correlation analysis to “calibrate” the predictions, with Mest treated as the 
independent variable and Mact treated as the dependent variable. The R2 value indicates the amount of variation in the 
actual values accounted for by a linear relationship with the estimated values. R2 values close to 1.0 suggest a strong 
linear relationship and those close to 0.0 suggest no such relationship.   

Table 2 summarizes the MRE and R2 values resulting from a linear regression of Mest  and Mact  values for the 
stepwise backward regression and the ANN models, and results obtained by Kemerer [24] with COCOMO-Basic, 
Function Points and SLIM models. These results indicate that stepwise regression’s and ANN’s predictions show a 
strong linear relationship with the actual development effort values for the ten test projects. On this dimension, the 
performance of the ANN model is less then SLIM’s performance in Kemerer’s experiments, but better than the 
stepwise regression models. In terms of MMRE, the ANN performs strikingly well compared to the other 
approaches, and regression model.  

Table 2. The predictive accuracy 

 Regress. Eq. R- square MMRE 
ANN -1,68+1,676*x 0,85 420 
Regression  -1,71+1,623*x 0,83 462 
FPA -37 +0,96x 0,58 103 
COCOMO 27,7 + 0,156x 0,70 610 

INPE ePrint: sid.inpe.br/ePrint@80/2006/12.20.23.38 v1 2006-12-21

5



SLIM 49,9 +0,082x 0,89 772 
 
This experiment illustrates two points. In an absolute sense, none of the models perform particularly well at 

estimating software development effort, particularly along the MMRE dimension, but in a relative sense ANN 
approach is competitive with traditional models. In general, even though MMRE is high in the case of all models, a 
high R2 suggests that by “calibrating” a model’s prediction in a new environment, the adjusted model prediction can 
be reliably used. Along the R2 dimension, the ANN method provides significant fits to the data.  

 

6. Conclusion and future works 
This paper has compared the neural network method to traditional approaches for software effort estimation. A 

neural network and a stepwise regression analysis were applied to Boehm’s COCOMO dataset in order to predict 
effort from size. The results of the ANN prediction compare favorably with those obtained from linear regression.  

The neural network performed better than linear regression on this data set and we can see why. As illustrated in 
Figure 3, in this dataset there is one observation with very large efforts that are out of all proportions to their sizes, as 
well as one with a small effort for its size, and a linear function of size will not be very successful at predicting these. 
On the other hand, an attempt to solve these outliers could influence negatively in the accuarcy regression in 
accomplishing prediction for other observations. Once the ANN not is limited to a linear function, it can deal more 
successfully with observations that lie far from the best straight line.  
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Figure 3. The COCOMO dataset – effort vs. size 

 
A more homogeneous dataset with no outliers would show the regression method to better advantage. ANN 

would also perform better on such a dataset. 
Although ANN has demonstrated significant advantages in certain circumstances, it does not replace regression 

and should be regarded as another powerful tool to be used in the calibration of software effort models. 
Consequently, new experiments are being led in order to combine the ANN and regression techniques to training and 
testing a software effort prediction, on other datasets.   
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