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Abstract 
 

The aim of this work is to study the feasibility of  
stochastic algorithms to produce Cosmic Microwave 
Background Radiation Radiation (CMBR) Anisotropy 
maps. In order to evaluate the proposed method, 
simulations for time-ordered data (TOD) with up to 
O(103) and O(105) measurements were performed. In this 
method, initial constraints were not imposed and the 
initial guess for the candidate solution was taken from an 
average of one hour data acquisition, instead of the 
standard approach of using a random initial guess. It is 
shown that the use of a simulated annealing algorithm can 
produce CMBR anisotropy maps in feasible processing 
time using a distributed memory parallel and  a code 
implemented with calls to the communication library 
Message Passing Interface (MPI). 
 
Keywords:  Cosmic Microwave Background Radiation, 
simulated annealing, MPI, high performance cluster 
computing 
 
1. Introduction 
 

The process of data analysis for  map construction of 
the Cosmic Microwave Background Radiation (CMBR) is 
a convenient way to represent  distribution of the 
measured temperature of the sky[1]. The production of 
CMBR maps consists in reducing a large time-ordered 
data set (TOD) into a matrix that represents the sky 
temperature without any noise. The TOD series is 
composed by the chronological set of observations 
obtained by a CMBR experiment. Production of maps 
with high angular resolution is computationally 
challenging due to the performance requirements. Thus, 

there is a need to develop efficient algorithms for the 
CMBR map production and further data analysis[2].  

The aim of this work is to exploit a stochastic 
algorithms, the simulated annealing  (SA) [3], to reduce 
the intrinsic noise of the TOD series for the Background 
Emission Anisotropy Scanning Telescope (BEAST) 
experiment[4]. Some standard methods employs the 
average temperature of the TOD for each pixel of the sky 
in order to obtain a lower computational complexity. Such 
schemes are called bin average methods. The use of a 
stochastic algorithm allows to employ all data of the TOD, 
aiming at improving the accuracy of the produced maps. 
Successive candidate solutions are generated and the noise 
vector is expected to decrease. Iterations stop when the 
noise reaches a near zero value. In our TOD, each region 
of the sky corresponds to a one hour sampling of the sky 
temperatures. For a given sky region, each TOD contains 
hourly samplings repeated every 24 hours. During an hour 
period, each pixel is sampled s = 20,000 and the 
considered region of the sky has l = 8,000 pixels. 
Synthetic sky temperature data was generated to simulate 
one TOD for a 30-day duration.  

In a first attempt, a genetic algorithm (GA)[5] was used 
to generate an initial guess for the candidate solution. This 
solution was then further improved by a SA. The idea was 
to generate a global solution by the GA[6] and to improve 
it performing a local search by the SA. This approach 
produced a solution that was slightly better then the 
obtained with a bin average method, but with an increased 
processing time due to the GA. This lead to the use of an 
initial guess taken from  an one hour data pixel average. 
Iteration proceeds using only the SA, until convergence. 
Then, a re-annealing[7] scheme is applied to the solution 
in order to further reduce the intrinsic noise. This method 
produced good results in the CMBR map production using 



simulated TOD data in a  processing time slightly higher 
than the bin average method. It is important to emphasize  
that the proposed method obtained a better solution 
without reducing/averaging temperature data. 
Furthermore, this method was parallelized with calls to 
the Message Passing Interface (MPI) communication 
library[8] and executed in a distributed memory parallel 
machine[9], a cluster[10] of 16 PC’s interconnected by a 
Fast Ethernet network. 

This article is organized as follows. Section 2 is a brief 
description of a typical bin average method and gives a 
general idea of the mathematical formalism employed in 
CMBR map making. Section 3 describes the employed  
SA algorithm and Section 4 shows the results obtained 
with the proposed method. 
 
2. A bin average method and the CMBR map 
making formalism  
 

The production of a CMBR map from a large set of sky 
observations (TOD) allows a further analysis in order to 
estimate cosmological parameters that are of great interest 
in Cosmology. Each map is composed of a pixel pattern, 
pixels are valued according to the sky temperatures and 
are stored in a vector m that represents a possible solution 
(map). The vector of measured temperatures d is assumed 
as being linearly dependent on the sky map through a 
known pointing matrix P(2). Thus, both d and m have 
dimension l and P has dimension l x l Measured 
temperatures d can be mapped to the sky map 
temperatures m by the following equation[11]: 
 

d = P m  +  n  (1) 
 

Where n is a vector that expresses the random noise. 
The use of the BEAST experiment data (3) implies in a 
particular arrangement for the P matrix.  The i-th row of P 
represents a scan and has only one non zero element in a 
given j-th column with a value of 1, that corresponds to 
the observed pixel: 
 

Pij = δPi,j   (2) 
 

 In the equation above, δ is the Kroenecker delta 
function and the subscript p denotes the temporal 
sequence of observed pixels. The map making technique 
usually employs the generalized least square approach. 
The best candidate solution (map) must minimize the 
following quantity: 
 

 χ2 = nt N-1 n = ( ) ( )PmdNPmd ttt −− −1  (3) 
     
The desired map[11] is then given by  the following linear 
estimator: 

( ) dNPPNPm tt 111
~
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The noise inverse covariance matrix N-1 is estimated 
from the observed data. Given the large amount of data, 
the inversion of the system in Eq. (4) is computationally 
heavy [2].  

Once the noise vector is considered to have zero mean, 
the bin average method is used to produce the desired 
temperature vector without requiring the inversion of the 
noise covariance matrix[12]. This method averages the 
temperatures obtained at each pixel, then averages are 
applied at each one-hour set of data for every pixel. The 
obtained vector of temperatures is averaged continuously 
considering weekly intervals for a total year. The resulting 
vector is then plotted as a CMBR map.  

The bin average method employed and applied to the 
simulation data of the BEAST experiment, as  in this 
work, requires the computation of the mean and the 
standard deviation of the s measurements for each of the l 
pixels of a particular TOD. For a given one-hour set of 
data that corresponds to the same sky coverage region, the 
bin average is performed as a weighted sum with using the 
standard deviation[13] for each pixel: 
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Were µ is the resulting average,   is the average of 
the temperature vector  at each pixel i and σ is the 
standard deviation for each pixel i. 

_
x

The proposed method uses the above bin average 
estimation as an initial guess for the SA. This initial 
candidate solution is considered to be a global solution 
that is further refined by means of a local search 
performed by the SA. This process is described in the 
following section. 
 
3. The employed simulated annealing based 
method 
 

Simulate Annealing is a heuristic approach for  
optimization problems. The name derived from a 
metallurgy technique involving the heating of a material 
followed by its controlled cooling in order to achieve 
molecular stability. The heat causes the molecules to 
move from their position through states of  energy. The 
slow cooling increase the probability of reaching a more 
stable, lower energy state in comparison to the initial 
state. 

 The SA algorithm associates an energy to each point 
of the search space according to its fitness and try to reach 
a minimum energy point. It starts at an arbitrary point of 
the search space. At every step, it randomly chooses a 
neighboring point and moves to that point according to a 
certain probability. This probability is a function of the 
energy difference between the two points and a global 
time-dependent parameter defined as the temperature of 
the system.  



The pseudo-code below performs the simulated 
annealing algorithm[14] starting from an initial state S0  
and initial temperature T0. The newstate function provides 
a move to a new state Si  with a new temperature Ti. The 
objective function then computes the new energy Ei. for 
the state Si. The fitprob function returns a probability at 
which a transition to a state of higher energy  takes place. 
The schedule function returns a new temperature at each 
iteration provided by a counter of the annealing schedule. 
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solution, the standard deviation of the final solution is 
evaluated and employed to correct it. This standard 
deviation is given by: 
 

iii x µα −=   were  ii x=µ  (7) 

Where x represents the  temperature vector sampled 
(candidate solution)  for each pixel i. The resultant vector 
η for each pixel i is then corrected by an empirical  factor 
(in this work, taken as 0.4) : 
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The stop_condition in a SA algorithm can be given by 

a limit number of iterations or when the error decreases 
below a given threshold. This is the case of the current 
implementation. In addition, the algorithm was 
parallelized by means of calls to the Message Passing 
Interface (MPI) communication library in order to be 
executed in a distributed memory parallel machine.  

The proposed SA employs an initial guess given by the 
bin average method was tested using a set of simulated 
data and its results are shown in the next section. 
 

Initialize(S0,T0) 
 
E := objective(S0) 
i := 0 
 
while not stop_condition  

Si  := newstate(S,T) 
Ei  := objective(Si) 

       If [Ei < E] or [random() < fitprob(E , T)] 
  S := Si 
  E := Ei 
  T := schedule(T , i) 
  i : i + 1 

  end while 
  end program 
Figure 1. Pseudo-code of the SA Figure 1. Pseudo-code of the SA 
  

seudo-code presented in figure 1 denotes an initial 
y state E0 at temperature T0 . A random perturbation 
plied altering its energy state to E1. If this energy 
is lower the transition is accepted. If it is higher, it 
t be accepted or not according to a probability 
ion. The change of energy from E0 to E1 is performed 
e fitprop function and the probability of acceptance 
e new state is given by the  Boltzmann probability 
bution[15]: 

seudo-code presented in figure 1 denotes an initial 
y state E0 at temperature T0 . A random perturbation 
plied altering its energy state to E1. If this energy 
is lower the transition is accepted. If it is higher, it 
t be accepted or not according to a probability 
ion. The change of energy from E0 to E1 is performed 
e fitprop function and the probability of acceptance 
e new state is given by the  Boltzmann probability 
bution[15]: 

[ ]TE[ ]TE κ/exp ∆−=  (6) 

random number in the range [0 < r < 1] is generated 
e random function and compared to p. If it is greater, 
ew state is accepted. In the current work, the above 
bution was replaced by a Cauchy-Lorentz 
bution. This is known as the fast simulated annealing 
ithm[16].  
 algorithms may be improved by including a re-
ling phase. This phase occurs when the evaluation of 
bjective function remains unchanged for a chosen 
er of iterations. In that case, the standard deviation 
 current candidate solution is evaluated and used as a 

ction factor to all elements of this solution. The 
sed SA implementation employs re-annealing.  
 additional improvement is used in the current SA. 
e algorithm stabilizes, i.e. converges to an optimal 

4. Numerical results with simulated data 
 

In order to generate the simulated data, a full sky map 
was created using the SYNFAST routine of the HEALPIX 
package [17]. A smaller patch with 8,000 pixels was 
selected for the tests and corrupted with white Gaussian 
noise in a way to obtain a signal-to-noise ratio of 0.1. 
Each simulated TOD series is composed of 20,000 
temperature values for each pixel, representing an one 
hour data acquisition. Figure 1 shows the first 50 values of 
temperatures of a TOD for a given pixel with and without 
noise. 

 

 



Figure 1. Temperature values with and without noise. Figure 4  shows a comparison of the standard 
deviations of the solution vector obtained for the two 
methods (the standard bin average method and the 
proposed SA method), for the first 100 pixels. However, 
this comparison is similar for the rest of the 8,000 pixels. 

 
Initially, the SA method was tested for map making 

using a random initial guess solution. Figure 2 shows  the 
convergence of the SA for this case using a set of 30 
TODs in order to represent a 30-day acquisition period of 
a given region of the sky. It can be noted that more than 
100 iterations of the SA were required. 

 

 

On the other hand, Figure 3 shows the convergence 
when the bin average method was employed to generate 
the initial guess solution. The number of required 
iterations was about 40. It is interesting to note that it is 
faster to use this scheme to generate the initial guess 
solution than using a randomly generated one. 

 

 

 
Figure 4. Standard deviation of the solution vector for 

the proposed and the bin average methods. 
  

Test of the proposed parallel SA were executed  in a 
distributed memory parallel machine, a cluster of 16 PC’s 
with Pentium III 800 MHz and 256 MB of memory per 
node interconnected by a Fast Ethernet network. 
 
5. Conclusions  

Figure 2. Convergence using a random vector as initial 
guess  

 
A new method for CMBR map production is proposed 

using a stochastic algorithm, the SA. Numerical results 
were compared with a standard bin average method for 
simulated data that corresponds to a particular TOD series 
for a  30 day period. The proposed method is applied to 
the data analysis of the BEAST experiment. 

 

 

White noise with a signal-to-noise ratio of 0.1 was 
applied to the simulated data in order to generate the 
TOD.  

The use of the bin average method as a initial guess 
solution for the SA causes a faster convergence of the SA. 
Numerical results show a standard deviation lower (at 
least 35% for over 95% of the pixels) than the obtained by 
the standard bin average method. The Pearson 
correlation[12] of the solution with the initial simulated 
data is 0.999.  

Although the time execution of the proposed method is 
slightly higher than that of the bin average method, the 
obtained solution is better. These simulations show that 
the proposed method solves the CMBR map making 
problem within a reasonable processing time using the SA 
algorithm in a parallel environment 

Figure 3. Convergence of SA using a data vector as 
initial guess 

 
The inflexion at the 40th iteration shown in Figure 3  is 

caused by the re-annealing phase in the SA process after 
10 iterations with no improvement of the solution.  
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