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Abstract The paper presents the results obtained by an implementation of the in-
terval tessellation-based model for categorization of geographic regions
according to the analysis of the relief function declivity, called ICTM

(Interval Categorizer Tessellation-based Model). The analysis of the re-
lief declivity, which is embedded in the rules of the model, categorizes
each tessellation cell, with respect to the whole considered region, ac-
cording to the (positive, negative, null) sign of the declivity of the cell.
Such information is represented in the states assumed by the cells of the
model. The overall configuration of such cells allows the division of the
region into sub-regions of cells belonging to the same category, that is,
presenting the same declivity sign. In order to control the errors coming
from the discretization of the region into tessellation cells, or resulting
from numerical computations, interval techniques are used.
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1. Introduction

In (Aguiar et al., 2004a), it is presented a general tessellation-based
model for categorizer tools that are able to subdivide a certain geo-
graphic region into sub-regions presenting similar characteristics, that
is, belonging to the same range concerning a set of given observable
properties.

In that paper, we also presented the so-called 2d-lc-ICTM, which is a
bi-dimesional multi-layered ICTM to analyze the variation of declivity
of the function that maps a property of a given region, subdividing this
region into sub-regions presenting the same behavior with respect to the
declivity.

The number of the characteristics that should be studied determines
the number of layers of the model. In each layer, a probably different
analysis of the region is obtained. An appropriate projection of all layers
to the basic layer of the model leads to a meaningful subdivision of
the region and to a categorization of the sub-regions that consider the
simultaneous occurrence of all characteristics, according to some weights.
To control the errors coming from discretization and resulting from the
numerical computations, interval techniques (Moore, 1979) are used to
obtain a reliable categorization.

The tessellation-based model performs a bidimensional analysis of the
declivity, using local rules for creation and categorization of sub-regions,
giving the relative situation of each sub-region with respect the whole
area, according to the states assumed by the cells. This work evolved
directly from the analysis of the work (Coblentz et al., 2003).

The ICTM Model uses a structured mesh to constitute its tessella-
tion. A structured bidimensional mesh is often simply a square grid
deformed by some coordinate transformation. Each vertex of the mesh,
except at the boundaries, has an isomorphic local neighborhood. In three
dimensions, a structured mesh is usually a deformed cubical grid. Struc-
tured meshes are simpler than the non-structured ones, and require less
computer memory, as their coordinates can be calculated, rather than
explicitly stored. Structured meshes offer more direct control over the
sizes and shapes of elements.

An immediate application is in Geophysics, where an adequate subdi-
vision of geographic areas into segments presenting similar topographic
characteristics is often convenient. See (Forman, 1995), for other appli-
cations related to the analysis of the relief.

The data input for the model are extracted from satellite images of the
geographic region being analyzed, where the heights are given in certain
points referenced by their latitude and longitude coordinates. This geo-
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graphic region is represented by a regular tessellation that is determined
by subdividing the total area into sufficiently small rectangular subareas,
each one represented by one cell of the tessellation. This subdivision is
done according to a cell size established by the geophysics analyst and
it is directly associated to the refinement degree of the tessellation.

The categorization determined by each characteristic is performed in
one layer of the model, generating different subdivisions of the analyzed
region. For instance, a region can be analyzed according to its topogra-
phy, vegetation, demography, economic data, etc.

A global categorization can be reached from the categorization of
each layer through a projection procedure. This global categorization
will determine a more reliable and significant subdivision combining the
performed analysis in each characteristic.

There are many methods for image segmentation (Cooper, 1998; Fu
and Mui, 1981; Lisani et al., 2003; Umbaugh, 1998) and the most com-
monly used techniques can be classified into two categories: (i) region
extraction techniques, which look for maximal regions satisfying some
homogeneity criterion, and (ii) edge extraction techniques, which look for
edges occurring between regions with different characteristics. The main
problem with most of these methods is that they are heuristic and fre-
quently different methods give different results, and, therefore, it is desir-
able to produce reliable methods (see, e.g, (Aguiar et al., 2004b; Coblentz
et al., 2003; Villaverde and Kreinovich, 1993)).

2. Clustering Techniques

Clustering is the unsupervised classification of patterns (observations,
data items or feature vectors) into groups (clusters). The clustering
problem has been addressed in many contexts and by researchers in many
disciplines; this reflects its usefulness as one the steps in exploratory data
analysis.

Data analysis underlies many computing applications, either in a de-
sign phase or as part of their on-line operations. Data analysis proce-
dures can be classified as either exploratory or confirmatory, based on
the availability of appropriate models for the data source. In (Berkhin,
2002), a key element in both types of procedures (whether for hypothesis
formation or decision-making) is the grouping, or classification of mea-
surements based on either (i) assumed model, or (ii) natural grouping
(clustering) revealed through analysis.

Cluster analysis is the organization of a collection of patterns usually
represented as a vector of measurements or a point in a multidimensional
space into clusters based on similarity (Jain et al., 1999). Intuitively,
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patterns within a valid cluster are more similar to each other than they
are to a pattern belonging to a different cluster. An example of clustering
is depicted in Figure 1. The input patterns are shown in Figure 1a, and
the desired clusters are shown in Figure 1b.
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Figure 1. An Example of Data clustering

The points belonging to the same cluster are given the same la-
bel. There are a variety of techniques for representing data, measur-
ing proximity (similarity) between data elements and grouping data
elements. Clustering is useful in several exploratory pattern-analysis,
grouping, decision-making, and machine-learning situations, including
data minig, document retrieval, image segmentation, and pattern classi-
fication (Berkhin, 2002). However, in many such problems, there is little
prior information (e.g., statistical models) available about the data, and
the decision-maker must make as few assumptions about the data as
possible. It is under these restrictions that clustering methodology is
particularly appropriate for the exploration of interrelationships among
the data points to make a preliminary assessment of their structure.

Typical pattern clustering activity involves the following steps (Jain
and Dubes, 1988): (i) pattern representation; (ii) definition of a pattern
proximity measure appropriate to the data domain; (iii) clustering or
grouping; (iv) data abstraction, and (v) assessment of output.

Pattern representation refers to the number of classes, the number
of available patterns, and the number, type and scale of the features
available to the clustering algorithm. Some of this information may not
be controllable by the specialist. Pattern proximity is usually measured
by a distance function defined on pairs of patterns. For example, the
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Euclidean distance can be used to reflect dissimilarity between two pat-
terns (Diday and Simon, 1976).

The grouping step can be performed in a number of ways, the output
clustering (or clusterings) can be (i) hard – the partition of the data
into groups, or (ii) fuzzy – where each patterns has a variable degree
of membership in each of the output clusters. Hierarchical clustering
algorithms produce a nested series of partitions based on a similarity
criterion for merging or splitting clusters.

Data abstraction is the process of extracting a simple and compact
representation of a data set. Often, simplicity is either from the per-
spective of automatic analysis (so that a machine can perform further
processing efficiently) or it is human-oriented (so that the representa-
tion obtained is easy to comprehend and intuitively appealing). In the
clustering context, a typical data abstraction is a compact description
of each cluster, usually in terms of cluster prototypes or representative
patterns such as the centroid (Diday and Simon, 1976).

The study of clustering tendency, wherein the input data are examined
to see if there is any merit to a cluster analysis prior to one being per-
formed, is a relatively inactive research area (Jain et al., 1999). Cluster
validity analysis, in contrast, is the assessment of a clustering proce-
dure’s output. Often this analysis uses a specific criterion of optimality.
This type of evaluation is actually an assessment of the data domain
rather than the clustering algorithm itself.

When statistical approaches to clustering are used, validation is ac-
complished by carefully applying statistical methods and testing hy-
potheses. There are three type of validation studies (Dubes, 1987;
Dubes, 1993): (i) an external assessment of validity compares the re-
covered structure to an a priori structure; (ii) an internal examination
of validity tries to determine if the structure is intrinsically appropri-
ate for the data; and, (iii) a relative test compares two structures and
measures their relative merit.

3. The 2d-lc-ICTM Model

This section introduces the multi-layered interval categorizer tessellation-
based model, formalized in terms of matrix operations. The single-
layered ICTM was firstly presented in (Aguiar et al., 2004a). Here,
we present the generalization of the number of the layers and the corre-
sponding projection procedures.

This type of projection allows interesting analysis of the mutual de-
pendency of the analysed characteristics. Each characteristic of the
space is represented in a layer of the ICTM Model. Thus, by the in-
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Figure 2. The ICTM multi-layered

dependency of the analysis, the subdivisions in each layer also occurs
in a independently way. In the Figure 2, each bidimensional layer is
represented by a label.

Definition 1 A tessellation is a matrix M with nr rows and nc columns.
The entry at the x-th row and the y-th column is called the xy-cell of
M .

Definition 2 Considering a nc×nr tessellation M and l ∈ N, a multi-
layered tessellation L-M is the structure

L-M = (1-M, . . . , l-M)

where the entry at the l-th layer, x-th row and y-th column is denoted
by l-mxy.

3.1 The Interval Matrices

In topographic analysis, usually there are too many data, most of
which is geophysically irrelevant. We then take, for each subdivision,
the average value of the heights at the points supplied by the satellite
photos, which are the entries of the tessellation M :
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Definition 3 A layer l of this tessellation M is the nr × nc matrix
l-Mabs = [l-mabs

xy ], where the entry l-mabs
xy is the absolute value of the

average height of the points represented by the xy-cell in the layer l of
M .

We are interested in comparing the values corresponding to different
cells, so we are not interested in absolute values, only in relative ones.
To simplify the data of the matrix, we normalize them by dividing each
l-mabs

xy by the largest l-mmax of these values.

Definition 4 The relative matrix of layer l l-M rel is defined as the
nr × nc matrix given by

l-M rel =
l-Mabs

l-mmax

.

The heights are measured pretty accurately, so the only errors in the
values l-mxy come from the discretization of the area in terms of the
discrete set of tessellation cells. In other words, it is desirable to know
the values of the relief function hξυ for all ξ and υ, but only the values

hxy ≡ l-mrel
xy =

l-mabs
xy

l-mmax
for 11, . . . , 1nr, . . . , nc1, . . . , ncnr, determined by

division of the region in nrnc cells, are used in the effective calculations.
In the following, we apply Interval Mathematics techniques to control

the errors associated to the cell values. To see examples of the advantages
of using intervals in solving similar problems see, e.g., (Coblentz et al.,
2003; Kearfort and Kreinovich, 1996). For each ξυ, which is different
from xy, it is reasonable to estimate hξυ as the value l-mrel.

xy at the point
xy which is closest to ξυ, meaning that ξυ belongs to the same segment of
area as xy. For each cell xy, let ∆x and ∆y be the largest possible errors
of the corresponding approximations considering the west-east direction
and the north-south direction, respectively.

For fixed y, when ξ > x, the point xy is still the closest until we reach

the midpoint xmidy = (x + (x+1))
2 y between xy and (x+1)y. It is reason-

able to assume that the largest possible approximation error |l-mrel
xy −hξy|

for such points is attained when the distance between xy and ξy is the
largest, i.e., when ξy = xmidy. In this case, the approximation error is
equal to |hxmidy − l-mrel

xy |.

Lemma 1 For fixed y, if ξ > x, then the approximation error ε is
bounded by 0.50 · |l-mrel

(x+1)y − l-mrel
xy |.

Proof. If the points xy and (x + 1)y belong to the same segment of
area, then the dependence of nξy on ξy should be reasonably smooth for
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ξ ∈ [x, (x+1)]. On a narrow interval [x, (x+1)], we can, with reasonable
accuracy, ignore the quadratic and higher terms in the expansion of
h(ξ+∆ξ)y and approximate hξy by a linear function. For a linear function

ξ 7→ hξy, the difference hxmidy−l-mrel
xy is equal to the half of the difference

l-mrel
(x+1)y − l-mrel

xy . On the other hand, if the points xy and (x + 1)y

belong to different segments, then the dependence hξy should exhibit
some non-smoothness, and it is reasonable to expect that the difference
l-mrel

(x+1)y − l-mrel
xy is much higher than the approximation error. In both

cases, the approximation error ε is bounded by 0.50·|l-mrel
(x+1)y−l-mrel

xy |.�

Lemma 2 For fixed y, if ξ < x, then the approximation error ε is
bounded by 0.50 · |l-mrel

xy − l-mrel
(x−1)y|.

Proposition 1 For the approximation error εx,

εx ≤ ∆x = 0.5 · min
“

|l-mrel
xy − l-m

rel
(x−1)y|, |l-m

rel
(x+1)y − l-m

rel
xy |

”

.

Proof. It follows from Lemmas 1 and 2.�
As a result, considering a given y, besides of the central values l-mrel

xy ,

for each x, we get intervals mx[ ]

xy containing all the possible values of hξy,

for x − 1
2 ≤ ξ ≤ x + 1

2 .

Corollary 1 Considering a fixed y, for each x, if x − 1
2 ≤ ξ ≤ x + 1

2 ,

then hξy ∈ l-mx[ ]

xy =
[

l-mx−

xy , l-mx+

xy

]

, where l-mx−

xy = l-mrel
xy − ∆x and

l-mx+

xy = l-mrel
xy + ∆x.

Using an analogous argumentation, for a fixed x, it follows that:

Proposition 2 For the approximation error εy,

εy ≤ ∆y = 0.5 · min
“

|l-mrel
xy − l-m

rel
x(y−1)|, |l-m

rel
x(y+1) − l-m

rel
xy |

”

.

Corollary 2 Considering a fixed x, for each y, if y − 1
2 ≤ υ ≤ y + 1

2 ,

hxυ ∈ l-my[ ]

xy =
[

l-my−

xy , l-my+

xw

]

, where l-my−

xy = l-mrel
xy − ∆y, l-my+

xy =

l-mrel
xy + ∆y.

Definition 5 If l-mx±

xy = l-mrel
xy ± ∆i and l-my±

xy = l-mrel
xy ± ∆j, the

interval matrices l-Mx[ ]
and l-M y[ ]

, associated with the relative matrix
l-M rel, are defined by the nr × nc interval matrices

l-Mx[ ]
=

[

l-mx[ ]

xy

]

=
[[

l-mx−

xy , l-mx+

xy

]]

and

l-My[ ]
=

[

l-my[ ]

xy

]

=
[[

l-my−

xy , l-my+

xy

]]

.
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3.2 The Declivity Registers and the State
Matrix

We proceed to a declivity categorization inspired by (Coblentz et al.,
2003). We assume from the start that the relief approximation functions
introduced by the tessellation-based model are piecewise linear functions.
We cast the whole process as a kind of constraint satisfaction problem,
where the tessellation-based model is in charge of finding a piecewise lin-
ear relief approximation function (and corresponding set of limit points
between the resulting sub-regions) that fits the constraints imposed by
the interval matrix. To narrow the solution space to a minimum, we
take a qualitative approach to the relief approximation functions, clus-
tering them in equivalence classes according to the sign of their decliv-
ity (positive, negative, null), thus making the tessellation-based model
build a single qualitative solution to that constraint satisfaction prob-
lem, namely, the class of approximation functions compatible with the
constraints of the interval matrix. We proceed as follows:

Proposition 3 Let l-Mx[ ]
and l-M y[ ]

be interval matrices of layer l.
For a given xy, if:

(i) l-mx+

xy ≥ l-mx−

(x+1)y, then there exists a non-increasing relief approx-

imation function between xy and (x + 1)y (direction west-east).

(ii) l-mx−

(x−1)y ≤ l-mx+

xy , then there exist a non-decreasing relief approx-

imation function between (x − 1)y and xy (direction west-east).

(iii) l-my+

xy ≥ l-my−

x(y+1), then there exists a non-increasing relief approx-

imation function between xy and x(y + 1) (direction north-south).

(iv) l-my−

x(y−1) ≤ m
y+

xy , then there exists a non-decreasing relief approx-

imation function between x(y − 1) and xy (direction north-south).

Proof. A sketch of the proof is given. In (i), take, for example,

µxy = l-mx+

xy , µ(x+1)y = l-mx−

(x+1)y and use a linear interpolation to define

the values µky for x < k < x + 1. The proofs of (ii)-(iv) are similar.�
For each cell, four directed declivity registers1 – reg.e (east), reg.w

(west), reg.s (south) and reg.n (north) – are defined, indicating the
admissible declivity sign of the function that approximates the relief
function in any of these directions, taking into account the values of the
neighbor cells. The analysis of declivity is done according of Prop. 3.

Definition 6 A declivity register of an xy-cell is a tuple

reg = (reg.e, reg.w, reg.s, reg.n),
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where the values of the directed declivity registers are given by:

(a) For non border cells, considering the conditions given by Prop. 3:
reg.e = 0, if (i) holds; reg.w = 0, if (ii) holds; reg.s = 0, if
(iii) holds; reg.n = 0, if (iv) holds; reg.e, reg.w, reg.s, reg.n = 1,
otherwise.

(b) For east, west, south and north border cells: reg.e = 0, reg.w = 0,
reg.s = 0 and reg.n = 0, respectively2. The other directed declivity
registers of border cells are also determined according to item (a).

Definition 7 The declivity register matrix of the layer l is defined as
an nr×nc matrix l-M reg = [l-mreg

xy ], where the entry at the x-th row and
the y-th column is the value of the declivity register of the corresponding
cell.

Corollary 3 Considering the west-east direction, any relief approxi-
mation function l-mxy is either (i) strictly increasing between xy and
(x + 1)y if l-mreg.e

xy = 1 (in this case, l-mreg.w

(x+1)y = 0); or (ii) strictly

decreasing between xy and (x + 1)y if l-mreg.w

(x+1)y = 1 (in this case,

l-mreg.e
xy = 0); or (iii) constant between xy and (x + 1)y if l-mreg.e

xy = 0
and l-mreg.w

(x+1)y = 0. Similar results hold for the north-south direction.

Definition 8 Let wreg.e = 1, wreg.s = 2, wreg.w = 4 and wreg.n = 8
be weights to be associated to the directed declivity registers. The state
matrix is defined as an nr × nc matrix given by l-M state =

[

l-mstate
xy

]

,
where the entry at the x-th row and the y-th column is the value of the
corresponding cell state, calculated as the value of the binary encoding
of the corresponding directed declivity registers, given as

l-mstate
xy = wreg.e × l-mreg.e

xy + wreg.s × l-mreg.s
xy

+wreg.w × l-mreg.w
xy + wreg.n × l-mreg.n

xy .

Thus, for given xy, the correspondent cell can assume one and only
one state represented by the value l-mstate

xy = 0..15.

3.3 The Limit Matrix and the
Constant-Declivity Sub-Regions

A limit cell is defined as the one where the relief function changes its
declivity, presenting critical points (maximum, minimum or inflection
points). To identify such limit cells, we use a limit register associated to
each cell. The border cells are assumed to be limit cells.
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Table 1. Conditions of non limiting cells xy

Id Conditions

1 l-mreg.e

(x−1)y = l-mreg.e
xy = 1

2 l-mreg.w
xy = l-mreg.w

(x+1)y
= 1

3 l-mreg.e

(x−1)y
= l-mreg.e

xy = l-mreg.w
xy = l mbox−m

reg.w

(x+1)y
= 0

4 l-mreg.s

x(y−1)
= l-mreg.s

xy = 1

5 l-mreg.n
xy = l-mreg.n

x(y+1)
= 1

6 l-mreg.s

x(y−1) = l-mreg.s
xy = l-mreg.n

xy = l mbox−m
reg.n

x(y+1) = 0

Definition 9 The limit matrix of the layer l is defined as the nr ×
nc matrix given by l-M limit =

[

l-mlimit
xy

]

, where the entry at the x-th

row and the y-th column is determined as l-mlimit
xy = 0, if one of the

conditions listed in Table 1 holds, and l-mlimit
xy = 1, otherwise.

Analyzing the limit matrix it is easy to detect the existence of known
relief configurations. The presence of limit cells allows the subdivision
of the whole area into declivity categories.

Definition 10 The constant declivity sub-region associated to the non
limiting cell xy, denoted l-SRxy, is inductively defined as follows: (i)
xy ∈ l-SRxy; (ii) If x′y′ ∈ l-SRxy, then all its neighbor cells that are
not limiting cells also belong to l-SRxy.

Observe that l-SRxy = l-SRx′y′ if and only if x′y′ ∈ l-SRxy (resp.,
xy ∈ l-SRx′y′ ). Definition 10 leads to a recursive algorithm similar to
the ones commonly used to fill polygons in computer graphics.

3.4 The Base Layer

The π-M limit layer of the ICTM model is used to receive the projection
of the limiting cells of a set of layers. This projection is useful for the
identification of interesting information, such as: (i) the cells which are
limits in all layers; (ii) the projection of all sub-areas; (iii) the certainty
degree of a cell to be limiting, etc.

Firstly, for this type of the analysis we propose two projection algo-
rithms. In the first algorithm (type I), if the cell is a limit cell just in one
layer then it will be projected in the base layer as limit cell. Thus, this
projection method (Fig. 3) obtains all sub-regions found in all layers.

Definition 11 Each layer l of the n-dimensional tessellation M has
associated a weigth 0 ≤ wi ≤ 1, for i = 1, . . . , l.
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In this algorithm, wi = 1 (wi = 0) indicates that the i-M layer is (is
not) selected for the projection.

Definition 12 Considering a bidimensional tessellation M with l-layers,
the π-M limit

xy projection (type I) denoting all limit cells of selected layers
over the base layer is

π-M limit
xy =

l
∨

i=1

i-M limit
xy × wi,∀xy ∈ M.

In the second projection method (type II), each layer may present
different degrees of participation in the determination of the projection
(Fig. 4). This degree of participation should be set by an especialist.
Moreover, the layers can have non-normalized weights3 since their sum
may not be 1 (or 100%).

Definition 13 Considering the weights 0 ≤ wi ≤ 1 associated to l

layers of the tessellation M , the normalization of these weights denoted
by wi is given by:

wi =
wi

l
∑

j=1
wj

, for i = 1, . . . , l.

Definition 14 Considering a bidimensional tessellation M with l lay-
ers and the normalized weights wi associated to each layer, the π-M limit

xy

projection (type II) of the l layers over the base layer is given by:

π-M limit
xy =

l
∑

i=1

i-M limit
xy × wi,∀xy ∈ M.
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In this projection method (Fig. 4), the limit cells in π-M layer also
indicates the certainty degree of these cells being limits according to the
weights stipulated. The limit register π-M limit

xy will take values between
0 and 1. If the layer has weight wi = 0 then this layer isn’t selected for
the projection.

4. Some practical results

This section presents some results that this work has already reached
and also some notes for future works. Up to the moment, the model of
parallel processing that is being implemented creates independent pro-
cesses for each analyzed property, each one of these processes performing
sequentially all the ICTM steps (presented in the sections 3.1– 3.4).

However, it is also possible to expect for an increase of performance
when the steps of the ICTM model are processed in parallel. Besides, the
tessellation can be divided to be processed separately using an algorithm
(i.e. the Schwarz algorithm (Chan and Mathew, 1994)) for overlapping
domain decomposition. Domain decomposition methods are techniques
for solving partial differential equations based on a decomposition of the
spatial domain of the problem into several subdomains.

The implementation of the model is naturally parallel since the analy-
sis is performed on the basis of local rules. Considering that the evalua-
tion of each cell (a work unit) is independent of the others, this problem
maps very well into the Single Program Multiple Data (SPMD) class
of parallel applications. Our implementation, taking advantage of such
characteristic, uses the MPI standard on top of a distributed processing
cluster.
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Figure 5. Graphic representation of DEM of 1000m

The results below use Digital Elevation Models of resolutions 1000
and 500 meters whose coordinates4 are (i) Upper-left corner at (X =
427559m, Y = 6637852m) and (ii) Lower-right corner at (X = 480339m,
Y = 6614507m).

The Fig. 5 represents the DEM of 1000m, including 24 rows and 53
columns, and was obtained from the digitalization of topographic maps
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Figure 6. Graphic representation of DEM of 500m

at 1:1.000.000 scale. The Fig. 6 represents the DEM of 500m, with
49 rows and 106 columns, and was obtained from the interpolation of
digitalized topographic maps at 1:1.000.000 scale.

Table 2. Number of Categories

Radius DEM1000m DEM500m

1 76 230
2 62 197
5 36 143
10 22 125
20 18 108
40 18 83

Some practical results are presented in Table 2. It can be observed
that the number of categories obtained by the ICTM analysis is in-
versely proportional to the neighborhood radius. Moreover, it can be
noted that for the resolution of 500m where each point has an smaller
area (approx. four times) than the corresponding point in the DEM of
resolution 1000m, the number of categories also follow (approx.) this
factor. In this case, the DEM of 500m of resolution (of this region) does
not present new sub-areas to be categorized, it just shows the sub-areas
in more detail. However, if the region has bigger declivity variations
then probably this factor cannot be verified anymore.

In plain areas, bigger neighborhood radius generate good approxima-
tions for the categories. For example, for the region A in the Fig. 7, its
representations with bigger radius (Figs. 9 and 8) indicate reasonable
approximations for this declivity degree. However, regions with bigger
declivity variations obtained better aproximations with smaller radius.

Regions with bigger number of categories (i.e. region B, Fig. 7) are
indicative that an analysis more detailed must be done (observe the same
region in Fig. 10). The ICTM Model is regulated by two aspects: (i)
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Figure 7. DEM of 1000m and radius = 1
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Figure 8. DEM of 1000m and radius = 20

by the spacial resolution of the digital elevation model, and (ii) by the
neighborhood radius of the cell.

Thus, regions with an agglomeration of limit cells can be studied with
more details by just augmenting the resolution of the altimetry data,
or by reducing the neighborhood radius. In the ICTM model, the state
of a cell in relation to its neighbors in declivity terms can be verified
instantaneously, contrasting with the usual analyses (See Fig. 11).

In such type of information (countour lines) the cell has a status
globally defined and in some cases just allowing a matching with dis-
tant cells. In the ICTM model, the information is punctual, associating
all properties at the same point. Moreover, the size of the area, the
DEM’s resolution and the degree of variation of the declivity are the
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Figure 9. DEM of 1000m and radius = 5
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Figure 10. DEM of 500m and radius = 1

most important properties in the determination of a more appropriate
neighborhood radius for a significant categorization.
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Figure 11. Contour lines – DEM of 1000m
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The results obtained up to here indicate that regions with lesser varia-
tion of declivity are receptive to the ICTM model with bigger radius. In
contrast, regions with great variations of declivity suggest radius smaller.
The Fig. 12 indicates an classification according to the degree of declivity
of the DEM with resolution of 1000 meters.
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Figure 12. Slope Degree – DEM of 1000m

Evidently, small regions hold only lesser radius, therefore bigger radius
of neighborhood tend to smooth a very great area of the cell in question.

Notes

1. This paper uses the dot notation of the object-oriented programming languages to
represent the components of a data structure ( e.g., reg.e denotes the component e of the
data structure reg).

2. This is consistent with the relief function being a constant in the border cells.

3. The weights are naturally complementary when the analist have a clean perception of
the importance of each layer for the process. If this correlation isn’t possible a priori, then
this feature may be an useful tool.

4. These coordinates are UTM 22S (South Hemisphere) and Datum SAD69 (South Amer-
ica Datum)
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