

NON-UNIFORM MESH SIMPLIFICATION
USING ADAPTATIVE MERGE PROCEDURES

Flávio Mello1,2, Edilberto Strauss2,3, Antônio Oliveira2, and Aline Gesualdi3
1Institute of Research and Development - IPD, Rio de Janeiro, Brazil; 2Computer Graphics
Laboratory - LCG - COPPE - UFRJ, Rio de Janeiro, Brazil; 3Department of Electronics and
Computer Engineering - DEL - POLI - UFRJ, Rio de Janeiro, Brazil

Abstract: The performance of a walkthrough over terrain models is deeply influenced by
the real scenario high level of details. To guarantee natural and smooth
changes in a sequence of scenes, it is necessary to display the actual height
field's maps at interactive frame rates. These frame rates can be accomplished
by reducing the number of rendered geometric primitives without
compromising the visual quality. This paper describes an optimized algorithm
for building a triangular mesh, the terrain model, which combines an efficient
regular grid representation with low cost memory requirements, using a
bottom-up approach.

Key words: Terrain mesh simplification, quadtree, digital elevation model.

1. INTRODUCTION

The terrain walkthrough plays an important role in the virtual reality, as it
is observed in computer systems like: Geographic Information Systems
(GIS), Military Mission Planning, Flight Simulation, etc. A regular grid
sampled data, known as Digital Elevation Model (DEM), is required
(Turner, 2000) to represent terrain altimetry. However, the relationship
between the actual map image resolution and its associated data can easily
exceed the capabilities of typical graphics hardware, which makes
impossible a real-time interactive application. A 3-dimensional clipping
approach can be considered in order to reduce the geometric rendering
primitives.

362

On the other hand, during a natural walkthrough, at each new viewpoint,
the observer can better see the nearest portion of the map data set. So,
scenes far from the viewer do not need to be rendered with a high level of
details, such as those closer data. Thus, computer graphics methods
associated to both view frustum culling and the view dependent continuous
level of detail are useful to reduce rendering complexity.

In order to compute the DEM's triangular mesh, it is usually necessary
that, at least, one of the following properties be fulfilled, as it is described in
(Zhao, 2001; Lindstrom, 1996; Röttger, 1998; Hoppe, 1998; Blow, 2000a,
2000b; de Berg, 2000). A same terrain region triangulation may look
different from each other according to the chosen properties. So, the mesh
can:
• be conforming: when a triangle is not allowed to have a vertex of another

triangle in the interior of one of its edges;
• respect the input: when the set of the resulting mesh vertex is included on

the set of DEM's pixels coordinates;
• be well shaped: when the angles of any mesh triangle are neither be too

large nor too small. Usually, it is required from the triangles angles to be
in the range from 45o to 90o;

• be non-uniform: when it is fine near the borders of the components
(pixels gradient values) and coarse far away from this borders.
On this paper we assume that the well shaped constrain can be relaxed.

Also, it is considered that the vertices triangulation does not need to respect
the height field components' edges. By this reason, it is allowed to add to the
mesh extra points, called Steiner points (de Berg, 2000). The non-uniform
mesh generation method we shall describe in this paper is based on a
quadtree structure. Our algorithm divides the DEM into smaller triangular
regions, and then merges the redundant triangles into bigger ones. It is
conforming although it is neither well shaped nor respects the input.

2. RELATED WORK

In this section main algorithms on terrain rendering are briefly
introduced. These algorithms attempt to represent surfaces with a given
number of vertices, or within a given geometric error metric, or even trying
to preserve application specific critical surface features.

Lindstrom et alii (1996) presented an algorithm for real-time level of
detail reduction applied to high-complexity polygonal surface data. The
algorithm uses a regular grid representation, and employs a variable screen-
space threshold to bind the maximum error of the projected image. A coarse
level of simplification is performed to select discrete levels of detail for

363

blocks of the surface mesh. Then, further simplification is done by
performing a repolygonalization, where individual mesh vertices are
considered for removal.

Duchaineauy et alii (1997) created the Real-time Optimally Adapting
Meshes (ROAM). It is an evolution from Lindstrom's algorithm and it is
much faster. It uses an explicit binary triangle tree structure. Although the
ROAM is being widely used in games, Jonathan (2000a, 200b) reported a
decline of performance for densely sample data.

Most of the work presented on this paper is based on Röttger's algorithm
(Röttger, 1998). Röttger introduce a geomorphing algorithm, which operates
top down on a quadtree data structure. The great advantage of Röttger's
algorithm over Lindstrom's one is that it eliminates a phenomenon called
vertex popping.

Hoppe (1998) describes a real time fly-over by using a View Dependant
Progressive Meshes (VDPM) to terrains. He divides the terrain into several
blocks, as the whole terrain is too large to fit in a single data structure. For
each of the blocks, he generates triangular irregular networks according to
viewpoints and error threshold. Though Hoppe's algorithm achieves a high
frame rate, it demands too much storage and it lacks generality. Also, despite
of producing a mesh with far less triangles than a regular grid based one, it
spend too much time on optimization.

3. OVERVIEW

The underlying data structure of the presented algorithm is basically a
quadtree. For the discussion in this paper, it is assumed that the height fields
dimensions are 2nx2m, where n and m might not be equal. The mesh
generation presented here is will be described as a sequence of two steps.

First, the height field is recursively divided into four quadrants. Every
tree node is divided until a predefined and customized tree height is reached.
Since no simplification criteria over the height field points are made, the
resulting tree is a full divided quadtree. Every node on the tree corresponds
to a square patch (triangle pair) of the height field. This implies that squares
represented by tree leaves correspond to the most refined subdivision of the
height field, called quadtree subdivision. This subdivision represents a
regular and uniform grid of the DEM.

The second step of the algorithm implements the merge of redundant
triangles into bigger ones. It is performed a preorder tree walk, where only
leaves are inserted into a triangle pair list (TPL). The merge of the redundant
triangles occurs during the insertion into the TPL. At the end of the tree
leaves insertion procedure, different sizes triangle pairs will compose the

364

TPL, which represents the optimized mesh. The TPL is a double linked
ordered list, where its triangle pairs are order first by their horizontal
dimension, and then, by their vertical dimension.

During the insertion procedure, each leaf node may merge with a TPL
node if they have two properties. First, nodes must have a coincident edge,
which means that its edges should not only be adjacent, but also have the
same side sizes. At first, it is checked if horizontal merges may occur, and
then, if vertical direction merges may occur. Figure 1 illustrates this property
by pointing out two patches performing a horizontal merge, and two patches
not concluding their merge.

Figure 1. Two neighbor squares may merge if their coincident edges are the same size.

The second merge property sets that nodes must have the same topology.
It demands that the squares represented by nodes must be at the same spatial
plane, or with the same normal, as shown in Figure 2. So, nodes merge may
occur only when they are coplanar patches with same size coincident edges.

Figure 2. Merge may occur only with coplanar patches.

It should be observed that the merge of two nodes might result into a new
larger node. This new node will also be tested against the others TPL
elements, either on horizontal, or on vertical direction. So, many merges
might occur by inserting just one quadtree leaf node into a non-empty TPL.

If it is not possible to perform a merge between the tree leaf node and an
element from the TPL, then the quadtree node is inserted in the list first
position. However, if the merge criteria are satisfied, then the list element is
removed from the TPL and two nodes became a new one. It is important to
observe that this new node may also be combined with other TPL elements,

365

either on the horizontal, or on the vertical direction. Thus, a node insertion
can lead to many triangle pair merges.

The merging behavior varies according to the component (pixel value
gradient) position over the quadtree subdivision. Consider a node where the
next step of the quadtree subdivision is composed by four leaves from the
tree. The height component that pulls a vertex to a higher or lower altitude
may be located at one of the three positions illustrated on Figure 3a. The
component may be coincident to vertex neighboring all four patches (patches
5-6-7-8); or coincident to the vertex neighboring just two patches (patches 5-
7), or even coincident to the corner of the quadtree subdivision (patch 7).
These configurations for the height component implies on three primitive
patterns of patches, created by the proposed algorithm, as shown on Figure
3b. The Figure 3c represents the quadtree subdivision by Röttger (1998) and
Lindstrom (1996) just before determining how should be the triangle fan
configured in order to avoid the cracks. On the first and second cases, the
proposed method used fewer triangles than Röttger and Lindstrom even
before their attempt to eliminate the cracks. On the third case the method
uses more rendering triangles than the other methods. Since the other
methods still need to do some splitting before drawing the triangulated
height field patch, it is expected that the presented algorithm will need less
triangles to render the patch on this case too.

366

Figure 3. Different DEM subdivision according to the height component position, for
components in the interior of the height map. (a) Original Subdivision; (b) Adaptative Merge

Subdivision; (c) Röttger Subdivision.

The probability p1 of occurring a height component into the interior of

the first case patch is given by 4/9. In other words, for the first case, there are
4 possible component height positions against 9 available positions. As it
can be observed, the proposed method represents the first case patch using 6
triangles, while Röttger method uses 7. So, the rendering triangles drawing
rate (RDTR) between the proposed algorithm and Röttger one, on this case,
is given by 6/7. Therefore, the total rendering triangles drawing rate when a
height component occurs into the interior of a patch is given by

9143.0
4
8

9
1

10
7

9
4

7
6

9
43

1
int =

 ⋅+

 ⋅+

 ⋅=⋅= ∑

=case
casecaseerior RTDRpRTDR

 (1)

 The value obtained by equation 1 indicates that the proposed algorithm
would used 8.57% less triangles than Röttger method.

A similar analysis can be made on the border of the height field. The
height component can be located at one of the following position from
Figure 4a. The component may be coincident to vertex neighboring two
patches of two different nodes (patches 3-9); or coincident to the vertex
neighboring just two patches of a same node (patches 1-3), or even
coincident to the corner of the height field (patch 1). These configurations

367

for the height component implies on three border primitive patterns of
patches, created by the proposed algorithm, as shown on Figure 4b. Again,
the Figure 4c represents the quadtree subdivision by Röttger, just before
determining how should be the triangle fan configured in order to avoid the
cracks.

Figure 4. Different DEM subdivision according to the height component border position, for
components at the border of the height map. (a) Original Subdivision; (b) Adaptative Merge

Subdivision; (c) Röttger Subdivision.

The RDTRborder of the height field may be computed on a similar way to
the RDTRinterior calculus. The probability p1 of occurring a height component
into the interior of the first case patch is given by 4/16. So, for the first case
from Figure 4, there are 4 possible component height positions against 16
available positions. The proposed method represents the first case patch
using 5 triangles, while Röttger method uses 4. So, the rendering triangles
drawing rate (RDTR) between the proposed algorithm and Röttger one, on
this case, is given by 5/4. Note that by computing the RDTRborder, it would
reach the value of 1.3482 (see equation 2). This means that the proposed
algorithm needs 34.82% more triangles than Röttger method, for occurrences
of components on the height map borders.

3482.1
1
3

16
4

7
4

16
8

4
5

16
43

1
=

 ⋅+

 ⋅+

 ⋅=⋅= ∑

=case
casecaseborder RTDRpRTDR

 (2)

368

Although Röttger algorithm has greater performance at the border of the
height field, the proposed algorithm is still more efficient due to the gain
obtained inside of the height field. It must be observed that the number of
inner triangles grows much faster than the number of border triangles, as the
quadtree height increases. In fact, the algorithm gets better result than
Röttger’s one when the quadtree height increases from 4 to 5. Real
applications frequently uses quadtree height values between 7 and 9 (Ögren ,
2000).

4. ADAPTATIVE MERGE ALGORITHM'
COMPLEXITY ANALYSIS

The Adaptative Merge Algorithm is composed by three stages: (1) the
construction of the quadtree with a user predefined value d for the quadtree
height; (2) the construction of an intermediate triangle pair list in order to
avoid recursive procedures; (3) the nodes removal from the intermediate list
and its insertion into the TPL. Once these stages describe a sequential
algorithm, the mean time of the whole procedure is defined by the mean time
sum of each stage

)()()()(321 nTnTnTnT ++= (3)

where the term T1(n) represents the necessary time to create all nodes
from the full divided tree with height d, T2(n) is the time to construct the
intermediate list, and T3(n) is the time for constructing the TPL.

On a full divided quadtree, the first tree level has just 1 node, the second
level has 4 nodes, the third level has 16 nodes, and so on. So, the sum S of
all nodes created until the user predefined quadtree height (d+1 level) is
reached can be represented by an equation of the form:

()
14

1414444
1

210

−
−

=++++=
+d

dS L (4)

At the end of the quadtree construction, it is desired to obtain n leaves
nodes, which means, 4n-1 nodes into the whole tree. So, the substitution
4d=n, on the equation 4, gives us:

() ()
3

14
14

141
14

1441 −
=

−
−×

=
−

−×
=

nnS
d

 (5)

369

Therefore, according to the equation 5, the time spent to construct the full
divided quad tree is limited to:

)(
3

14)(1 nnnT θθ =

 −

= (6)

The next stage, associated to the construction of the intermediate triangle
pair list. On this stage it is performed a preorder tree walk where just the n
leaves nodes are inserted into the first position of an intermediate linked list.
This tree walkthrough is executed as many times as are the tree elements.

It is considered that each tree node can be visited within a constant time
complexity. As the tree leaf nodes are inserted at the intermediate linked list
head. It is reasonable to consider that the insertion on this list can also be
computed within a constant time complexity. Using equation 5 it is possible
to conclude that the total amount of preorder visited nodes is given by (4n-
1)/3. Similarly to T1(n) time, the T2(n) time spent on this stage is θ(n), as it is
widely known on the literature (Markenzon, 1994; Cormen, 1997).
Therefore, the equation 3 can be rewritten as:

)()()()(3 nTnnnT ++= θθ (7)

The TPL containing the triangle pairs, is represented by a chaining hash
table L, with a hash function h, as it is described on Figure 5. The number of
slots from L is defined by m.

Figure 5. The chaining hash table schema for the Triangle Pair List (TPL).

370

The worst case analysis for a chaining hash table is given when all n
entries from the L table are mapped into the same slot, creating a linked list
of size n (Cormen, 1997). Fortunately, this is an impossible case for the
adaptative merge algorithm because the hash table slots represent uniform
distributed regions of a regular grid placed over the height map. No region
overlap is allowed. So, the hash table loading factor is defined by α=n/m,
which represents the average list size of the chaining hash table (Cormen,
1997).

For an entry k, that is, a triangle pair k, it is considered that the hashing
value h(k) might be algebraically computed in O(1). So, once computed the
hash table slot where the triangle pair must be inserted, it is necessary to find
out if it is possible to merge the triangle pair k with an L[h(k)] element. The
time spent to fetch an element in order to merge it with the entry k depends
linearly on the size of the list associated to the slot L[h(k)]. There are two
fetch cases that must be considered: (1) an unsuccessful fetch, where there
are no possible merges with k; (2) a successful fetch, where there is a list
element that might merge with k.

Consider the first case. The hashing value h(k) can be computed in O(1),
and the entry k can be placed into any of the m cells list. As a result, the
average time for an unsuccessful search is the time spent to get in the end of
one of the m slots' linked list. As the average size of a chained hash table
linked list is defined by its loading factor α=n/m, it is possible to assert that
the average time for an unsuccessful search, including the h(k) calculus, is
given by:

)()1()(αθαθ =+=kt f (8)

Then, consider a successful search. The linked list chained hash table
element might be on the ith list position of one of the m table's slot. In order
to search for the element i, it is necessary walk through i list elements. So the
average time of a successful search is given by:

mmmm
nnn

nm
i

nmm
i

n

n

i

n

i 2
1

22
1

22
)1(111

11
+=+=

+
== ∑∑

==

α
 (9)

The mean time for a successful search ts, including the h(k) calculus, is
given by:

()αθαθ =

 ++=

m
kts 2

1
2

1)((10)

371

Consequently, at the worst case, the equations 8 and 10 point out that the
average time for searching operation, inside of one of the m list from the L
hash table, is not dependant on a successful or unsuccessful search. Both
tf(k) and ts(k) depends on α, i.e., it is conditioned to the size of the list. This
is a well-known result that can be better studied on Markenzon (1994) and
Cormen (1997).

The time complexity of just one chained hash table insertion T3(n)/n is
represented by the form:

)(
1

)(
1

1)()()(3 ktktktpktp
n
nT

sfssff αα α
α

α +
+

+
=+= (11)

where: pf is the probability of not finding any node to merge with k
during the insertion on the α sized list; ps is the probability of finding a node
that can perform a merge with k; tf is the time for an unsuccessful search of
an element; and ts if the time for a successful search.

On the previous section, it was defined that the merge of a list element
with a triangle pair k might occur only when the polygons are coplanar with
coincident edges. By the time this condition is satisfied, the chained hash
table linked list element is removed from the data structure, and then the two
triangle pairs are merged, resulting on a new triangle pair k` with bigger
dimensions. This new triangle pair k`, during its insertion on the list, might
also be merged with another chained hash table linked list element.

Thus, just one merging operation can result into several others merging
operations. In fact, when a successful search is detected, it is necessary to
remove the element from the α sized list and merge it with the k entry. This
procedure is recursively activated, gradually reducing the list size until an
unsuccessful search is reached. Hence, ts α can be rewritten as:

1

1

111

1)(1

)(
1)1(

1)(
1)1(

1
)()()(

−

−

−−−

−
+=

+−
−

+
+−

=

+=

α

α

αααα

α
α

α

α
α

α

sf

sf

ssffs

tkt

ktkt

ktpktpkt

 (12)

Therefore, considering the worst case, the list might indefinitely be
operated (insertion, removal and merge) until it becomes empty. The time
progression ts i(k) associated to the successful searches into the table L might
be described as follows:

372

0

000
1
1

)()()(

)(
2
1)(

2
1

)(
11

1)(
11

1
)()()(

)(
3
2)(

3
1

)(
12

2)(
12

1
)()()(

)(
1
2)(

1
1

)(
1)2(

2)(
1)2(

1
)()()(

0001

1

1

1112

2

2

2223

2

2

2221

=

×+×=

+=

+=

+
+

+
=

+=

+=

+
+

+
=

+=

−
−

+
−

=

+−
−

+
+−

=

+=

−

−

−−−−

ktpktpkt

ktkt

ktkt

ktpktpkt

ktkt

ktkt

ktpktpkt

ktkt

ktkt

ktpktpkt

ssffs

sf

sf

ssffs

sf

sf

ssffs

sf

sf

ssffs

MMM

α

α

αααα

α
α

α

α
α

α

 (13)

Now, recompiling the values ts i(k) according to the results obtained on
equation 13 we have:

373

MMM

2
1

3
2

4
3

5
4

3
2

4
3

5
4

4
3

5
4

5
4

2
1

3
2

4
3

3
2

4
3

4
3

5
44

5
1)(

2
1

3
2

4
3

3
2

4
3

3
2

2
1

3
2

3
2

4
33

4
1)(

2
1

3
2

3
2

2
1

3
22

3
1)(

2
1

0
2
11

2
1)(

5

4

3

2

+++=

 +++⋅=

++=

 ++⋅=

+=

⋅+⋅=

=

⋅+⋅=

kt

kt

kt

kt

s

s

s

s

 (14)

Performing the appropriated substitution of equation 14 until the iteration
from the equation 11, we obtain:

374

22
)1(

1
1

1
1

1
1

1
3

1
2

1
1

1

2
1

3
2

4
3

5
4

2
3

1
21

1

2
3

1
21

1

1
21

1

1
1

1
)(

1

3

ααα
α

α

αα
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α
α

α

=
+

+
=

+
=

+
++

+
−

+
+
−

+
+
−

+
+

=

−
−

−
−−

+

++

−
−

−
−−

+

+

−
−−

+

+

 −

+

+

+
=

∑ =i
i

n
nT

L

L

L

 (15)

So, according to equation 15 the time for constructing the whole triangle
pair list is given by:

)()(
222

)(2
3

2

3 nnT
m

n
m
nnnnT θα

=⇒=== (16)

Finally, through equation 7 it is possible to affirm that the average time
for computing the TPL (not for rendering it) is given by:

)()()()()(22 nnnnnT θθθθ =++= (17)

5. RESULTS

All screen shots have been taken from the application running on an
ordinary PC with a 1GHz processor and a GeForce 2 MX 400 video board.

The 1024x1024 grid of Figure 6a represents actual elevation data of Salt
Lake City West, taken from the United States Geological Survey (USGS).

375

The elevation at each grid vertex is given as an integer in the range 0-255,
where one unit represents 8.125 meters. Figure 6b represents a 2048x2048
grid extracted from Rio de Janeiro City height field. It was taken from
Instituto Militar de Engenharia (IME) and represents Urca, Botafogo, Leme
and Copacabana neighborhoods. One unit elevation from this grid vertex
represents 0.418 meters.

Figure 6. Height field used for examples: (a) Salt Lake City West 1024x1024 grid; (b) Rio de
Janeiro City Neighborhoods 2048x2048 grid.

A regular grid, from Figure 6a region, generated by a quadtree
subdivision would take 524.288 triangles, since the quadtree height was set
to 9. By applying the merge techniques described on this paper, the proposed
method generates a rendering list with 384.146 triangles, while Röttger
method (Röttger, 2004) takes 461.104 triangles. It represents a 26,73% of
optimization when compared to the regular grid, and 16,69% of optimization
when compared to Röttger method (Röttger, 2004).

Considering the Figure 6b case, the regular grid generated by a quadtree
subdivision would also take 524.288 triangles, because the quadtree height is
the same for both examples. The proposed method generates a rendering list
with just 313.052 triangles, while Röttger method (Röttger, 2004) takes
378.036 triangles. It represents a 40,29% of optimization when compared to
the regular grid, and 17,19% of optimization when compared to Röttger
method (Röttger, 2004).

The region presented on Figure 7 corresponds to the Salt Lake City mesh
created by the proposed algorithm, while Figure 8 corresponds to Rio de
Janeiro neighborhoods mesh. At these examples, the quadtree height was set
to 6 for both regions because values greater than this one produce too
overcrowded figures.

376

Figure 7. Top view from Salt Lake City West generated mesh.

Figure 8. Top view from Rio de Janeiro City Neighborhoods generated mesh.

377

Finally, it is illustrated two typical valley views from each DEM sample.
Figure 9 shows the Salt Lake City West mesh covered by a pseudo-color
texture image, using a syntetic sky for day light representation. The Figure
10 shows Rio de Janeiro mesh texturized with an Ikonos satellite image,
provided by Instituto Militar de Engenharia.

Figure 9. Snapshot from a Salt Lake City West valley view. The mesh is covered by a
pseudo-color texture image and the day light sky was synthetically generated.

Figure 10. Snapshot from a Rio de Janeiro City Neighborhoods valley view. The mesh is
covered by an Ikonos satellite image and the night sky was synthetically generated.

6. CONCLUSION

It was presented a bottom-up algorithm for optimizing terrain mesh
triangulations. The method has been implemented and provides high quality

378

triangulations with thousands of geometric primitives. The generated mesh is
conforming, although it is neither well shaped nor respects the input. The
coherence between frames has not been exploited yet, but it has achieved
good frame rates on PC platforms, such as 47 fps. Critical future issues
include level of detail rendering and efficient paging mechanism, which will
allow rendering height fields that do not entirely fit into RAM.

REFERENCES

Blow, Jonathan. (2000). Terrain Rendering at High Levels of Detail, Paper for the Game
Developers' Conference 2000, San Jose, California, USA.

Blow, Jonathan. (2000). Terrain Rendering Research for Games, Slides for Siggraph 2000
Course 39.

Cormen, Thomas H., Charles Leiserson, Ronald Rivest. (1997). Introduction to Algorithms,
MIT Press, 18ed., p.221-243.

de Berg, Mark, et alii. (2000). Computional Geometry - Algorithms and Applications, 2ed.,
Berlin, Springer, c.14.

Duchaineauy, Mark, Murray Wolinsky, et alii. (1997). ROAMing Terrain: Real-time
Optimally Adapting Meshes, IEEE Visualization '97 Proceedings.

Hoppe, H. (1998). Smooth View Dependant Level-of-Detail Control and its Application to
Terrain Rendering, Technical Report, Microsoft Research.

Lindstrom, P., D. Koller, et alli. (1996). Real-time continuous level of detail rendering of
height fields, Computer Graphics, SIGGRAPH '96 Proceedings, p.109-118.

Markenzon, Lilian, Jayme Luiz Szwarcfiter. (1994). Data Structures and its Algorithms,
Livros Técnicos e Científicos. (in portuguese)

Ögren, A. (2000). Continuous Level od Detail in Real-Time Terrain Rendering, MSc.
Dissertation, University of Umea, January, 2000.

Röttger, S., W. Heidrich, P. Slasallek and H. Seidel. (1998). Real-Time Generation of
Continuous Levels of Detail for Height Fields, WSCG '98 Proceedings, p. 315-322.

Röttger, S. (2004). Terrain LOD Implementations - libMini, http://www.vterrain.org/
LOD/Implementations/. [capture on 26/03/04]

Turner, Bryan. (2000). Real-Time Dynamic Level of Detail Terrain Rendering with ROAM.
(www.gamasutra.com/features/20000403/turner_01.htm)

Zhao, Youbing, Ji Zhou, Jiaoying Shi and Zhigeng Pan. (2001). A Fast Algorithm For Large
Scale Terrain Walkthrough, CAD/Graphics.

