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Abstract:  The performance of a walkthrough over terrain models is deeply influenced by 
the real scenario high level of details. To guarantee natural and smooth 
changes in a sequence of scenes, it is necessary to display the actual height 
field's maps at interactive frame rates. These frame rates can be accomplished 
by reducing the number of rendered geometric primitives without 
compromising the visual quality. This paper describes an optimized algorithm 
for building a triangular mesh, the terrain model, which combines an efficient 
regular grid representation with low cost memory requirements, using a 
bottom-up approach.  

Key words: Terrain mesh simplification, quadtree, digital elevation model. 

1. INTRODUCTION 

The terrain walkthrough plays an important role in the virtual reality, as it 
is observed in computer systems like: Geographic Information Systems 
(GIS), Military Mission Planning, Flight Simulation, etc. A regular grid 
sampled data, known as Digital Elevation Model (DEM), is required 
(Turner, 2000) to represent terrain altimetry. However, the relationship 
between the actual map image resolution and its associated data can easily 
exceed the capabilities of typical graphics hardware, which makes 
impossible a real-time interactive application. A 3-dimensional clipping 
approach can be considered in order to reduce the geometric rendering 
primitives.  
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On the other hand, during a natural walkthrough, at each new viewpoint, 
the observer can better see the nearest portion of the map data set.  So, 
scenes far from the viewer do not need to be rendered with a high level of 
details, such as those closer data. Thus, computer graphics methods 
associated to both view frustum culling and the view dependent continuous 
level of detail are useful to reduce rendering complexity. 

In order to compute the DEM's triangular mesh, it is usually necessary 
that, at least, one of the following properties be fulfilled, as it is described in 
(Zhao, 2001; Lindstrom, 1996; Röttger, 1998; Hoppe, 1998; Blow, 2000a, 
2000b; de Berg, 2000). A same terrain region triangulation may look 
different from each other according to the chosen properties. So, the mesh 
can: 
• be conforming: when a triangle is not allowed to have a vertex of another 

triangle in the interior of one of its edges; 
• respect the input: when the set of the resulting mesh vertex is included on 

the set of DEM's pixels coordinates; 
• be well shaped: when the angles of any mesh triangle are neither be too 

large nor too small. Usually, it is required from the triangles angles to be 
in the range from 45o to 90o; 

• be non-uniform: when it is fine near the borders of the components 
(pixels gradient values) and coarse far away from this borders. 
On this paper we assume that the well shaped constrain can be relaxed. 

Also, it is considered that the vertices triangulation does not need to respect 
the height field components' edges. By this reason, it is allowed to add to the 
mesh extra points, called Steiner points (de Berg, 2000). The non-uniform 
mesh generation method we shall describe in this paper is based on a 
quadtree structure. Our algorithm divides the DEM into smaller triangular 
regions, and then merges the redundant triangles into bigger ones. It is 
conforming although it is neither well shaped nor respects the input. 

2. RELATED WORK 

In this section main algorithms on terrain rendering are briefly 
introduced. These algorithms attempt to represent surfaces with a given 
number of vertices, or within a given geometric error metric, or even trying 
to preserve application specific critical surface features.  

Lindstrom et alii (1996) presented an algorithm for real-time level of 
detail reduction applied to high-complexity polygonal surface data. The 
algorithm uses a regular grid representation, and employs a variable screen-
space threshold to bind the maximum error of the projected image. A coarse 
level of simplification is performed to select discrete levels of detail for 
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blocks of the surface mesh. Then, further simplification is done by 
performing a repolygonalization, where individual mesh vertices are 
considered for removal. 

Duchaineauy et alii (1997) created the Real-time Optimally Adapting 
Meshes (ROAM). It is an evolution from Lindstrom's algorithm and it is 
much faster. It uses an explicit binary triangle tree structure. Although the 
ROAM is being widely used in games, Jonathan (2000a, 200b) reported a 
decline of performance for densely sample data. 

Most of the work presented on this paper is based on Röttger's algorithm 
(Röttger, 1998). Röttger introduce a geomorphing algorithm, which operates 
top down on a quadtree data structure. The great advantage of Röttger's 
algorithm over Lindstrom's one is that it eliminates a phenomenon called 
vertex popping. 

Hoppe (1998) describes a real time fly-over by using a View Dependant 
Progressive Meshes (VDPM) to terrains. He divides the terrain into several 
blocks, as the whole terrain is too large to fit in a single data structure. For 
each of the blocks, he generates triangular irregular networks according to 
viewpoints and error threshold. Though Hoppe's algorithm achieves a high 
frame rate, it demands too much storage and it lacks generality. Also, despite 
of producing a mesh with far less triangles than a regular grid based one, it 
spend too much time on optimization. 

3. OVERVIEW 

The underlying data structure of the presented algorithm is basically a 
quadtree. For the discussion in this paper, it is assumed that the height fields 
dimensions are 2nx2m, where n and m might not be equal. The mesh 
generation presented here is will be described as a sequence of two steps. 

First, the height field is recursively divided into four quadrants. Every 
tree node is divided until a predefined and customized tree height is reached. 
Since no simplification criteria over the height field points are made, the 
resulting tree is a full divided quadtree. Every node on the tree corresponds 
to a square patch (triangle pair) of the height field. This implies that squares 
represented by tree leaves correspond to the most refined subdivision of the 
height field, called quadtree subdivision. This subdivision represents a 
regular and uniform grid of the DEM. 

The second step of the algorithm implements the merge of redundant 
triangles into bigger ones. It is performed a preorder tree walk, where only 
leaves are inserted into a triangle pair list (TPL). The merge of the redundant 
triangles occurs during the insertion into the TPL. At the end of the tree 
leaves insertion procedure, different sizes triangle pairs will compose the 
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TPL, which represents the optimized mesh. The TPL is a double linked 
ordered list, where its triangle pairs are order first by their horizontal 
dimension, and then, by their vertical dimension. 

During the insertion procedure, each leaf node may merge with a TPL 
node if they have two properties. First, nodes must have a coincident edge, 
which means that its edges should not only be adjacent, but also have the 
same side sizes. At first, it is checked if horizontal merges may occur, and 
then, if vertical direction merges may occur. Figure 1 illustrates this property 
by pointing out two patches performing a horizontal merge, and two patches 
not concluding their merge. 

 

Figure 1. Two neighbor squares may merge if their coincident edges are the same size. 

The second merge property sets that nodes must have the same topology. 
It demands that the squares represented by nodes must be at the same spatial 
plane, or with the same normal, as shown in Figure 2. So, nodes merge may 
occur only when they are coplanar patches with same size coincident edges. 

 

Figure 2. Merge may occur only with coplanar patches. 

It should be observed that the merge of two nodes might result into a new 
larger node. This new node will also be tested against the others TPL 
elements, either on horizontal, or on vertical direction. So, many merges 
might occur by inserting just one quadtree leaf node into a non-empty TPL. 

If it is not possible to perform a merge between the tree leaf node and an 
element from the TPL, then the quadtree node is inserted in the list first 
position. However, if the merge criteria are satisfied, then the list element is 
removed from the TPL and two nodes became a new one. It is important to 
observe that this new node may also be combined with other TPL elements, 
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either on the horizontal, or on the vertical direction. Thus, a node insertion 
can lead to many triangle pair merges.  

The merging behavior varies according to the component (pixel value 
gradient) position over the quadtree subdivision. Consider a node where the 
next step of the quadtree subdivision is composed by four leaves from the 
tree. The height component that pulls a vertex to a higher or lower altitude 
may be located at one of the three positions illustrated on Figure 3a. The 
component may be coincident to vertex neighboring all four patches (patches 
5-6-7-8); or coincident to the vertex neighboring just two patches (patches 5-
7), or even coincident to the corner of the quadtree subdivision (patch 7). 
These configurations for the height component implies on three primitive 
patterns of patches, created by the proposed algorithm, as shown on Figure 
3b. The Figure 3c represents the quadtree subdivision by Röttger (1998) and 
Lindstrom (1996) just before determining how should be the triangle fan 
configured in order to avoid the cracks. On the first and second cases, the 
proposed method used fewer triangles than Röttger and Lindstrom even 
before their attempt to eliminate the cracks. On the third case the method 
uses more rendering triangles than the other methods. Since the other 
methods still need to do some splitting before drawing the triangulated 
height field patch, it is expected that the presented algorithm will need less 
triangles to render the patch on this case too. 
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Figure 3. Different DEM subdivision according to the height component position, for 
components in the interior of the height map. (a) Original Subdivision; (b) Adaptative Merge 

Subdivision; (c) Röttger Subdivision. 

 
The probability p1 of occurring a height component into the interior of 

the first case patch is given by 4/9. In other words, for the first case, there are 
4 possible component height positions against 9 available positions. As it 
can be observed, the proposed method represents the first case patch using 6 
triangles, while Röttger method uses 7. So, the rendering triangles drawing 
rate (RDTR) between the proposed algorithm and Röttger one, on this case, 
is given by 6/7. Therefore, the total rendering triangles drawing rate when a 
height component occurs into the interior of a patch is given by 
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 The value obtained by equation 1 indicates that the proposed algorithm 
would used 8.57% less triangles than Röttger method.  

A similar analysis can be made on the border of the height field. The 
height component can be located at one of the following position from 
Figure 4a. The component may be coincident to vertex neighboring two 
patches of two different nodes (patches 3-9); or coincident to the vertex 
neighboring just two patches of a same node (patches 1-3), or even 
coincident to the corner of the height field (patch 1). These configurations 
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for the height component implies on three border primitive patterns of 
patches, created by the proposed algorithm, as shown on Figure 4b. Again, 
the Figure 4c represents the quadtree subdivision by Röttger, just before 
determining how should be the triangle fan configured in order to avoid the 
cracks. 

 

Figure 4. Different DEM subdivision according to the height component border position, for 
components at the border of the height map. (a) Original Subdivision; (b) Adaptative Merge 

Subdivision; (c) Röttger Subdivision. 

The RDTRborder of the height field may be computed on a similar way to 
the RDTRinterior calculus. The probability p1 of occurring a height component 
into the interior of the first case patch is given by 4/16. So, for the first case 
from Figure 4, there are 4 possible component height positions against 16 
available positions. The proposed method represents the first case patch 
using 5 triangles, while Röttger method uses 4. So, the rendering triangles 
drawing rate (RDTR) between the proposed algorithm and Röttger one, on 
this case, is given by 5/4. Note that by computing the RDTRborder, it would 
reach the value of 1.3482 (see equation 2). This means that the proposed 
algorithm needs 34.82% more triangles than Röttger method, for occurrences 
of components on the height map borders. 
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Although Röttger algorithm has greater performance at the border of the 
height field, the proposed algorithm is still more efficient due to the gain 
obtained inside of the height field. It must be observed that the number of 
inner triangles grows much faster than the number of border triangles, as the 
quadtree height increases. In fact, the algorithm gets better result than 
Röttger’s one when the quadtree height increases from 4 to 5.  Real 
applications frequently uses quadtree height values between 7 and 9 (Ögren , 
2000). 

4. ADAPTATIVE MERGE ALGORITHM' 
COMPLEXITY ANALYSIS 

The Adaptative Merge Algorithm is composed by three stages: (1) the 
construction of the quadtree with a user predefined value d for the quadtree 
height; (2) the construction of an intermediate triangle pair list in order to 
avoid recursive procedures; (3) the nodes removal from the intermediate list 
and its insertion into the TPL. Once these stages describe a sequential 
algorithm, the mean time of the whole procedure is defined by the mean time 
sum of each stage 

)()()()( 321 nTnTnTnT ++=  (3) 

where the term T1(n) represents the necessary time to create all nodes 
from the full divided tree with height d, T2(n) is the time to construct the 
intermediate list, and T3(n) is the time for constructing the TPL.  

On a full divided quadtree, the first tree level has just 1 node, the second 
level has 4 nodes, the third level has 16 nodes, and so on. So, the sum S of 
all nodes created until the user predefined quadtree height (d+1 level) is 
reached can be represented by an equation of the form: 
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At the end of the quadtree construction, it is desired to obtain n leaves 
nodes, which means, 4n-1 nodes into the whole tree. So, the substitution 
4d=n, on the equation 4, gives us: 
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Therefore, according to the equation 5, the time spent to construct the full 
divided quad tree is limited to: 

)(
3

14)(1 nnnT θθ =





 −

=  (6) 

The next stage, associated to the construction of the intermediate triangle 
pair list. On this stage it is performed a preorder tree walk where just the n 
leaves nodes are inserted into the first position of an intermediate linked list. 
This tree walkthrough is executed as many times as are the tree elements. 

It is considered that each tree node can be visited within a constant time 
complexity. As the tree leaf nodes are inserted at the intermediate linked list 
head. It is reasonable to consider that the insertion on this list can also be 
computed within a constant time complexity. Using equation 5 it is possible 
to conclude that the total amount of preorder visited nodes is given by (4n-
1)/3. Similarly to T1(n) time, the T2(n) time spent on this stage is θ(n), as it is 
widely known on the literature (Markenzon, 1994; Cormen, 1997). 
Therefore, the equation 3 can be rewritten as: 

)()()()( 3 nTnnnT ++= θθ  (7) 

The TPL containing the triangle pairs, is represented by a chaining hash 
table L, with a hash function h, as it is described on Figure 5. The number of 
slots from L is defined by m. 

 

Figure 5. The chaining hash table schema for the Triangle Pair List (TPL). 
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The worst case analysis for a chaining hash table is given when all n 
entries from the L table are mapped into the same slot, creating a linked list 
of size n (Cormen, 1997).  Fortunately, this is an impossible case for the 
adaptative merge algorithm because the hash table slots represent uniform 
distributed regions of a regular grid placed over the height map. No region 
overlap is allowed. So, the hash table loading factor is defined by α=n/m, 
which represents the average list size of the chaining hash table (Cormen, 
1997). 

For an entry k, that is, a triangle pair k, it is considered that the hashing 
value h(k) might be algebraically computed in O(1). So, once computed the 
hash table slot where the triangle pair must be inserted, it is necessary to find 
out if it is possible to merge the triangle pair k with an L[h(k)] element. The 
time spent to fetch an element in order to merge it with the entry k depends 
linearly on the size of the list associated to the slot L[h(k)]. There are two 
fetch cases that must be considered: (1) an unsuccessful fetch, where there 
are no possible merges with k; (2) a successful fetch, where there is a list 
element that might merge with k. 

Consider the first case. The hashing value h(k) can be computed in O(1), 
and the entry k can be placed into any of the m cells list. As a result, the 
average time for an unsuccessful search is the time spent to get in the end of 
one of the m slots' linked list. As the average size of a chained hash table 
linked list is defined by its loading factor α=n/m, it is possible to assert that 
the average time for an unsuccessful search, including the h(k) calculus, is 
given by: 

)()1()( αθαθ =+=kt f  (8) 

Then, consider a successful search. The linked list chained hash table 
element might be on the ith list position of one of the m table's slot. In order 
to search for the element i, it is necessary walk through i list elements. So the 
average time of a successful search is given by: 
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The mean time for a successful search ts, including the h(k) calculus, is 
given by: 
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Consequently, at the worst case, the equations 8 and 10 point out that the 
average time for searching operation, inside of one of the m list from the L 
hash table, is not dependant on a successful or unsuccessful search. Both 
tf(k) and ts(k) depends on α, i.e., it is conditioned to the size of the list. This 
is a well-known result that can be better studied on Markenzon (1994) and 
Cormen (1997). 

The time complexity of just one chained hash table insertion T3(n)/n is 
represented by the form: 
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where: pf is the probability of not finding any node to merge with k 
during the insertion on the α sized list; ps is the probability of finding a node 
that can perform a merge with k; tf is the time for an unsuccessful search of 
an element; and ts if the time for a successful search. 

On the previous section, it was defined that the merge of a list element 
with a triangle pair k might occur only when the polygons are coplanar with 
coincident edges. By the time this condition is satisfied, the chained hash 
table linked list element is removed from the data structure, and then the two 
triangle pairs are merged, resulting on a new triangle pair k` with bigger 
dimensions. This new triangle pair k`, during its insertion on the list, might 
also be merged with another chained hash table linked list element. 

Thus, just one merging operation can result into several others merging 
operations. In fact, when a successful search is detected, it is necessary to 
remove the element from the α sized list and merge it with the k entry. This 
procedure is recursively activated, gradually reducing the list size until an 
unsuccessful search is reached. Hence, ts α can be rewritten as: 
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Therefore, considering the worst case, the list might indefinitely be 
operated (insertion, removal and merge) until it becomes empty. The time 
progression ts i(k) associated to the successful searches into the table L might 
be described as follows: 
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Now, recompiling the values ts i(k) according to the results obtained on 
equation 13 we have: 
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Performing the appropriated substitution of equation 14 until the iteration 
from the equation 11, we obtain: 
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So, according to equation 15 the time for constructing the whole triangle 
pair list is given by: 
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Finally, through equation 7 it is possible to affirm that the average time 
for computing the TPL (not for rendering it) is given by: 

)()()()()( 22 nnnnnT θθθθ =++=  (17) 

5. RESULTS 

All screen shots have been taken from the application running on an 
ordinary PC with a 1GHz processor and a GeForce 2 MX 400 video board. 

The 1024x1024 grid of Figure 6a represents actual elevation data of Salt 
Lake City West, taken from the United States Geological Survey (USGS). 
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The elevation at each grid vertex is given as an integer in the range 0-255, 
where one unit represents 8.125 meters. Figure 6b represents a 2048x2048 
grid extracted from Rio de Janeiro City height field. It was taken from 
Instituto Militar de Engenharia (IME) and represents Urca, Botafogo, Leme 
and Copacabana neighborhoods. One unit elevation from this grid vertex 
represents 0.418 meters. 

 

Figure 6. Height field used for examples: (a) Salt Lake City West 1024x1024 grid; (b) Rio de 
Janeiro City Neighborhoods 2048x2048 grid. 

A regular grid, from Figure 6a region, generated by a quadtree 
subdivision would take 524.288 triangles, since the quadtree height was set 
to 9. By applying the merge techniques described on this paper, the proposed 
method generates a rendering list with 384.146 triangles, while Röttger 
method (Röttger, 2004) takes 461.104 triangles. It represents a 26,73% of 
optimization when compared to the regular grid, and 16,69% of optimization 
when compared to Röttger method (Röttger, 2004).  

Considering the Figure 6b case, the regular grid generated by a quadtree 
subdivision would also take 524.288 triangles, because the quadtree height is 
the same for both examples. The proposed method generates a rendering list 
with just 313.052 triangles, while Röttger method (Röttger, 2004) takes 
378.036 triangles. It represents a 40,29% of optimization when compared to 
the regular grid, and 17,19% of optimization when compared to Röttger 
method (Röttger, 2004). 

The region presented on Figure 7 corresponds to the Salt Lake City mesh 
created by the proposed algorithm, while Figure 8 corresponds to Rio de 
Janeiro neighborhoods mesh. At these examples, the quadtree height was set 
to 6 for both regions because values greater than this one produce too 
overcrowded figures. 
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Figure 7. Top view from Salt Lake City West generated mesh. 

 

Figure 8. Top view from Rio de Janeiro City Neighborhoods generated mesh. 
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Finally, it is illustrated two typical valley views from each DEM sample. 
Figure 9 shows the Salt Lake City West mesh covered by a pseudo-color 
texture image, using a syntetic sky for day light representation. The Figure 
10 shows Rio de Janeiro mesh texturized with an Ikonos satellite image, 
provided by Instituto Militar de Engenharia. 

 

Figure 9. Snapshot from a Salt Lake City West valley view. The mesh is covered by a 
pseudo-color texture image and the day light sky was synthetically generated. 

 

Figure 10. Snapshot from a Rio de Janeiro City Neighborhoods valley view. The mesh is 
covered by an Ikonos satellite image and the night sky was synthetically generated. 

6. CONCLUSION 

It was presented a bottom-up algorithm for optimizing terrain mesh 
triangulations. The method has been implemented and provides high quality 
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triangulations with thousands of geometric primitives. The generated mesh is 
conforming, although it is neither well shaped nor respects the input. The 
coherence between frames has not been exploited yet, but it has achieved 
good frame rates on PC platforms, such as 47 fps. Critical future issues 
include level of detail rendering and efficient paging mechanism, which will 
allow rendering height fields that do not entirely fit into RAM. 
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