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Abstract. This work presents a panorama of GIS integration in Spatial Statis-
tics environments. It highlights the current needs of communities considering
such integration. Spatial Statistics is treated in a context focused on the use of
computational tools. A review of types of integration is accomplished and a new
approach is proposed integrating the statistical software R and the GIS library
TerraLib.

1. Introduction
Software technology is constantly evolving. Computers are becoming faster, and software
projects must follow the availability of resources. This scenario favors greater complexity
of software projects allowing multidisciplinary programs to combine research in several
knowledge areas, like medicine, agronomy and civil engineering, among others.

Geographic Information Systems (GIS) are an example of a multidisciplinary soft-
ware. GIS comprise knowledge in areas such as cartography, databases and software en-
gineering, among others. They are capable to manipulate several complex georeferenced
data structures. In practice, statistical analysis are often necessary to extract useful infor-
mation from the available data. For instance, methods of spatial analysis are particularly
relevant to GIS which, in general, have limited capability to perform such analysis.

On the other hand statistical softwares implement specialist algorithms for spatial
statistics needed by GIS. Typically they have a large variety of functions and provide a
friendly language for statistical programmers. However, they have limited if none at all
access to technologies found in GIS, for instance, complex geographical databases and
geoprocessing algorithms.

Integration is technique that combines software components in order to generate
more complex systems. This technique is an efficient form of software project, saving
time and resources, and it enables to use specialized tools in each area of the wider project.
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Tools for statistical analysis of spatial data and GIS are used in areas such as
health, meteorology, monitoring environmental and mineral exploration, among others
[Druck et al. 2004]. Integration between spatial statistics and Geographic Information
Systems (GIS) can increase the individual effectiveness of both sides. There is a couple
of statistical programs implementing spatial analysis without any essential component
provided by GIS. Example are robust spatial database, spatial models and plotting algo-
rithms [Krivoruchko 2003].

Software integration can be classified according to their architectural char-
acteristics [Zhao 2002], and can be divided in three approaches: the full integra-
tion, loose coupling and close coupling [Goodchild et al. 1992, Bailey and Gattrell 1995,
Fischer et al. 1996]. An important factor to be considered in an integration process is the
level of common knowledge necessary the user to accomplish his work. Integration be-
tween two tools that does not request any learning from the user is more transparent, and
therefore stronger.

In the full integration mechanism, the statistical analysis tools are incorporated
directly in the GIS. This is the case of the incorporation of the geostatistics, K function
and kernel density map in GIS SPRING [Camara et al. 1996]; and of the empirical Bayes
local and global estimates in the free software and open source TerraView1. However,
this integration is not the most promising for more sophisticated techniques of spatial
data analysis, because the inclusion of a great number of spatial statistics functions in
a GIS increases the complexity of the system for common users, and involves a large
investment in software programming and maintenance.

In the two coupling approaches, both softwares evolve independently. In loose
coupling implementations, data is exported from GIS to the statistical analysis program,
and the results are exported for GIS for visualization. Figure 1 displays this integration
type. Here, the user is responsible for the whole flow of information, and he/she needs to
know who data is manipulated in both programs, and also how to use the programs.

Figure 1. Loose coupling [Bivand and Neteler 2000]

The loose coupling model usually does not require any effort from the programs
developers, because it only requires a common data format for information exchanging.

1http://www.dpi.inpe.br/terraview/index.php

140



As example of loose coupling we can cite the integration of SPRING with SpaceStat
[Anselin 1992, Camara et al. 1996], where SPRING exports data using a vectorial format
to be used in SpaceStat. Another example is the coupling of the proprietary GIS ArcInfo
and R, the RarcInfo package, that imports and exports files following the ArcInfo for-
mat [Gómez-Rubio 2005]. However, this import/export process can generate an overhead
when we need a more complex data analysis. As many spatial queries are required during
the statistical processing, it is harder for the user to execute such analysis.

In the integration by close coupling, there is a stronger linking between the tools,
because the mechanism allows the calling of statistical procedures directly from the GIS,
and vice versa. It also involves the writing of a program to facilitate the integration pro-
cess, reducing the charge imposed to the user [Goodchild et al. 1992]. The mechanism of
close coupling is shown in Figure 2.

Figure 2. Close coupling [Bivand and Neteler 2000]

An example of close coupling is the integration between S-PLUS (by MathSoft)
and ArcView (by ESRI), both proprietary softwares [Bao et al. 2000]. The authors imple-
ment an extension for ArcView, including two menus in the user interface. But, internally
it works as a loose coupling, except by the fact that the program loads R and sends com-
mands to it directly.

The integration of the open source GIS GRASS (Geographical Resources Analysis
Support System) and R is another example of close coupling [Bivand and Neteler 2000].
R can be loaded inside GRASS using the package called GRASS, and GRASS commands
are executed in R. One new initiative from R/GRASS coupling is that the user can use a
database for some information exchange. But the database stores only attributes, and the
user need to know how to manipulate databases.

These close integrations externally are better for the users, because they unify
two programs in one, but they still have the same problems as loose coupling: the data
exchanging. An interesting approach is proposed by Fischer [Fischer et al. 1996]: a pro-
posal that enables the access directly from a geographic database is desirable, because it
allows the softwares to share a common database, without loosing higher topologic struc-
tures, object identity, metadata and other relationships. None of the above works fit in this
description.

In this scope, this article presents an R package implementing a close coupling
between R and the geoprocessing library TerraLib, called aRT (R-TerraLib API). This
package follows the TerraLib data model, and allows to call TerraLib functions directly,
without any context exchange, because TerraLib is a dynamic library, and it is loaded
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together with the package. It also does not use an external file for information exchange,
because all data is stored in a DBMS. The package only requires from the user to know
how the TerraLib spatial/temporal model works.

This article is written in the following manner. R and TerraLib environments
and their advantages in the integration are detailed in the Sections 2 and 3, respectively.
Section 4 presents aRT package, coupling TerraLib inside of R, and Section 5 we conclude
and discuss future works.

2. R Project
The statistical program R2 is an open source tool under GPL. R is a language and en-
vironment for statistical computing and graphics, within which statistical techniques are
implemented. The R program is a command interpreter, and the interpreted language is
referred as a dialect of the award winning S language [R Development Core Team 2005].

R implements a great diversity of statistical methods, which are available in the
form of packages. The packages are developed by members of the project, as by the
community. There is a set of basic packages supplied with the R distribution and many
more are available through the CRAN family of Internet sites3, which covers a very wide
range of modern statistics. All R packages cited in this section are called recommended
or contributed, and they are available at CRAN.

Many classical and modern statistical techniques are implemented in R environ-
ment. As example of areas and their packages for spatial analysis we can cite:

Point pattern analysis: spatstat package allows to define regions of interest, and makes
extensions to marked processes and spatial covariates. Its strengths are model-
fitting and simulation. The splancs package also allows point data to be analyzed
within a polygonal region of interest, and covers many methods, including 2D
kernel densities. ash package has functions for binning points on grids.

Geostatistics: The gstat package provides a wide range of functions for univariate and
multivariate geostatistics, also for larger datasets, while geoR and geoRglm con-
tain functions for model-based geostatistics. A similar wide range of functions
can be found in the fields package.
The RandomFields package provides functions for the simulation and analysis of
random fields. For diagnostics of variograms, the vardiag package can be used.
The spatialCovariance package supports the computation of spatial covariance
matrices for data on rectangles.

Disease mapping and areal data analysis: DCluster package detects spatial clusters of
diseases. spdep package provides functions for spatial autocorrelation for areal
data like Moran’s I, and functions for fitting spatial regression models.

Ecological analysis: grasper package provides environmental prediction functions using
GAM, ade4 has exploratory and Euclidean methods in the environmental sciences,
adehabitat allows the analysis of habitat selection by animals, pastecs does the
regulation, decomposition and analysis of space-time series, and vegan provides
ordination methods and other useful functions for community and vegetation ecol-
ogists.

2http://www.r-project.org
3http://cran.r-project.org
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Among all these packages that manipulate spatial data, is important to cite the sp
initiative. sp comes to supply the lack of a common data structure for handling spatial
data in R, and provides data structures for spatial objects. It is a new initiative, and the
authors hope that packages join the initiative quickly.

R works with data stored in memory, and it can be a problem when we use large
datasets. A way to skirt this problem is using an external database access, for exam-
ple PostgreSQL or MySQL [Bivand and Neteler 2000]. There are R packages enabling
database access, as RMySQL and RPgSQL, but all of them require SQL language to work
with, because data have to be manually pushed, and the user must have a database mod-
elling knowledge for working with a large amount of tables. It becomes even harder when
working with spatial/temporal databases, when we need different tables to store attributes
and geometry, and they need to be linked in some way.

3. The TerraLib Library
TerraLib is a library of C++ classes that offers functions and data structures for build-
ing customized geographical applications. TerraLib is an open source and free software,
and its main objective is to provide a powerful environment for GIS development in a
new generation of GIS, once it incorporates space-time support to conventional Database
Management Systems (DBMS).

The philosophy of TerraLib development is to use the current mechanisms of
the C++ language, for example Standard Template Library (STL), parameterized classes
and multi-paradigm programming (generic programming, object orientation and design
patterns) [Vinhas et al. 2002]. The geographical data model of TerraLib is a conceptual
model of geographical database in which the processing algorithms are written.

A TerraLib database is a repository of information that contemplates the geograph-
ical data and their organizational model. TerraLib supports some commercial and public
domain DBMS. A DBMS need only to have the capacity to store long binary fields, or an
own extension supporting abstract spatial types, for supporting TerraLib. The access to a
TerraLib database is implemented in a virtual class called TeDatabase. It contains meth-
ods for creating, populating and querying a database. Concrete classes, called drivers,
specialize TeDatabase, and each class implements the inherent features needed by one
DBMS to support TerraLib functionality. Therefore, TerraLib enables using its geopro-
cessing functions without care about which DBMS is storing the data. A class diagram of
TerraLib supported DBMS’s is shown in Figure 3.

Figure 3. Class Diagram ([Casanova et al. 2005])

The conceptual model of a TerraLib database is composed by several entities.
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Here we describe some of them [Casanova et al. 2005]:
Layer: a collection of spatial information located on the same geographical area and

sharing attributes. Each layer may contain any type of geometry, and all objects
have the same spatial projection. Layers does not store attributes directly, but they
can have attribute tables. Examples of layers are thematic maps, cadastral maps
of geographical objects and raster data.

Attribute Table: a collection of non-geographical data. There is several kinds of at-
tribute tables in TerraLib. Each record of a static table refers to one spatial object.
External tables store information not linked to any geometry. Temporal tables
manipulate information where attributes and (or) geometry can change with the
time.

Theme: built from a layer data, a theme can contain all the layer, or a subset of the layer
objects, selected by a temporal, spatial or attribute restriction. It can select one or
more layer tables, joining them. Themes are also used in TerraLib-based GIS for
visualize and classify the data, and for temporal slicing.

View: a container of themes. It has an associated projection, and then theme data with
different projections are converted to the view’s projection before drawing. There-
fore a view indicates that there is no projection problems when drawing all its
themes in a same plotting. Each theme is associated to one, and only one, view.
TerraLib also allows to execute database queries in a proxy way, retrieving the

content of a layer or theme in parts, instead of all objects once. This queries can be
executed using themes, and therefore they use the temporal/spatial/attribute restrictions
of the theme.

4. aRT
aRT (R-TerraLib API4) is an R package for integrating R to TerraLib. It implements some
classes encapsulating TerraLib objects and functions into R objects, and its main objective
is to enable the access to the TerraLib entities in a easy and transparent way to R users.
The actual aRT version (0.4-1) implements seven classes, described as follows:
aRTconn: represents a virtual DBMA connection. It can perform some database admin-

istration tasks, and manipulates aRTdb objects.
aRTdb: stores a real connection to a DBMA database, and can open/create aRTlayers.

Only this object can remove TerraLib objects from the database.
aRTlayer: represents an information layer inside a database. In aRT, each layer ma-

nipulates only one type of geometry, and it is capable to execute spatial queries
as metrics and relations. Although it cannot manipulate attributes, following the
TerraLib model, it can open/create aRTtables, aRTthemes and aRTqueriers.

aRTtable: stores a database table, and data is manipulated using data.frames. Each ta-
ble has one specific type, following the types established in the TerraLib model.
Tables retrieve data to an R user without any attribute restriction.

aRTtheme: created from an aRTlayer, it joins the selected tables, and choose attribute
restrictions. It can also create aRTquerier objects.

aRTquerier: encapsulates a database query. If it is created from a temporal theme, then
a temporal slicing can be defined. It retrieves data one by one, slide by slide (if
temporal), instead of all attributes/geometry once, as layers and tables.

4http://www.est.ufpr.br/aRT
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aRTvisual: defines a colors and style configuration to be used in aRTthemes. It is useful
when using aRT with other TerraLib based software to visualize the results stored
in a database.

aRT implements the data exchange to the database using the sp format, to facil-
itate using data analysis from other packages. Actually, aRT is available in Linux and
Windows, and it supports connections only to MySQL.

We illustrate the usage of aRT performing a geostatistical analysis on data stored
on a database. The database contains a data set with calcium content measured in soil
samples taken from the 0-20cm layer at 178 locations within a certain study area divided
in three sub-areas. The elevation at each location was also recorded. The first region is
typically flooded during the rain season and not used as an experimental area. The calcium
levels would represent the natural content in the region. The second region has received
fertilizers a while ago and is typically occupied by rice fields. The third region has re-
ceived fertilizers recently and is frequently used as an experimental area [Capeche 1997].

First a connection with a MySQL DBMS is established at the localhost and user
”pedro”. With the DBMS connection, we can open the database, called ca20.

> conn = openConn(user = "pedro", host = "localhost")

Trying to connect ... yes

> db = openDb(conn, "ca20")

Connecting with database ’ca20’ ... yes
Loading layer set of database ’ca20’ ... yes
Loading view set of database ’ca20’ ... yes

When the connection is established, some metadata about the layer and view sets are
loaded in the TerraLib object. Note that the R object does not need to have the same name
of the database. There are two geometric entities (points and regions) stored in two layers
which can be listed and opened using db.

> showLayers(db)

[1] "lpoints" "lpolygons"

> lpoints = openLayer(db, "lpoints")

Opening layer ’lpoints’ ... yes

> lpols = openLayer(db, "lpolygons")

Opening layer ’lpolygons’ ... yes

Plotting of this data is shown in Figure 4 and generated by the following commands:

> plot(lpols)
> plot(lpoints, add = T)

The first layer contains 178 points and an attribute table (taltitude) with measure-
ments of calcium content and the elevation of each point. The second stores three poly-
gons, representing the sub-regions. To get the data from the table we need to open it from
the layer.
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Figure 4. Visualization of the data from the database ca20

> lpoints

Object of class aRTlayer

Layer: "lpoints"
Number of polygons: 0
Number of lines: 0
Number of points: 178
Layer does not have raster data
Projection Name: "NoProjection"
Projection Datum: "Spherical"
Projection Longitude: 0
Projection Latitude: 0
Tables:

"taltitude": static

> tpoints = openTable(lpoints, "taltitude")

Opening table ’taltitude’ from layer ’lpoints’ ... yes

> tpoints

Object of class aRTtable

Table: "taltitude"
Type: static
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Layer: "lpoints"
Rows: 178
Attributes:

id: string[16] (key)
data: real
altitude: real

To load the data inside R we use the layers to get the geometry and choose the table
to get the attributes. As we do not want to get any attribute from the layer of polygons,
we can read the data using only the layer as argument.

> data = getPoints(lpoints, tpoints)
> pols = getPolygons(lpols)

As an example of aRT functionalities of spatial queries, we calculate to which
polygon each point belongs to. This will be used as a covariate in the data analysis.

> pointsid = getID(data)
> polsid = getID(pols)
> areas <- vector("integer", length(pointsid))
> for (i in 1:length(polsid)) {
+ y = getRelation(lpoints, "within", lpols,
+ id = polsid[i])
+ for (j in 1:length(y)) areas[which(pointsid ==
+ y[j])] = polsid[i]
+ }

Calculating a spatial relation on layer ’lpoints’ ... yes
Calculating a spatial relation on layer ’lpoints’ ... yes
Calculating a spatial relation on layer ’lpoints’ ... yes

This data can be added to the database as a new column of the static table:

> newdata = data.frame(cbind(id = pointsid, area = areas))
> updateColumns(tpoints, newdata)

Checking for column ’area’ in table ’taltitude’ ... no
Creating column ’area’ in table ’taltitude’ ... yes
Converting 2 attributes to TerraLib format ... yes
Converting 178 rows to TerraLib format ... yes
Updating columns of table ’taltitude’ ... yes

> tpoints

Object of class aRTtable

Table: "taltitude"
Type: static
Layer: "lpoints"
Rows: 178
Attributes:

id: string[16] (key)
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data: real
altitude: real
area: string[1]

As the data consists of three polygons we now create a polygon representing the
borders of the area which results from the union of the three original polygons using the
function getSetOperation.

> border = getSetOperation(lpolygons, "union",
+ id = polsid)

From the data recovered from the database we build an object of the class geodata
called ca20 which is convenient for using functions in the geoR package for geostatistical
analysis.

> ca20 = as.geodata(data, data.col = 2, covar.col = 3)
> ca20$covariate$area = factor(areas)

> ml3 <- likfit(ca20, ini = c(100, 500), trend = ˜area)
> border = border@polygons[[1]]@Polygons[[1]]@coords
> border = as.data.frame(border)
> loc0 <- pred_grid(border, by = 10)
> loc.area <- rep(NA, nrow(loc0))
> f = function(x) pols@polygons[[x]]@Polygons[[1]]@coords
> l = lapply(1:3, f)
> loc.area[.geoR_inout(loc0, as.data.frame(l[[1]]))] <- 1
> loc.area[.geoR_inout(loc0, as.data.frame(l[[2]]))] <- 2
> loc.area[.geoR_inout(loc0, as.data.frame(l[[3]]))] <- 3
> loc.area <- as.factor(loc.area)
> KC <- krige.control(trend.d = ˜area, trend.l = ˜loc.area,
+ obj = ml3)
> kc <- krige.conv(ca20, loc = loc0, krige = KC,
+ bor = border)
> georpred <- .prepare.graph.kriging(locations = loc0,
+ borders = border, values = kc$pred)

The prediction by kriging methods results in a raster which can be stored in the database.

> lraster = createLayer(db, "lraster")

Building projection to layer ’lraster’ ... yes
Creating layer ’lraster’ ... yes

> addRaster(lraster, georpred)

Initializing the raster ... yes
Adding raster data to layer ’lraster’ ... yes
Reloading tables of layer ’lraster’ ... yes

Finally, we create some themes allowing for direct visualization from TerraView.
Views are not important to aRT, therefore there is not a class to encapsulate it, and we
only use a name when building a theme.

148



> thpoints = createTheme(lpoints, "points", view = "view")

Checking for theme ’points’ in layer ’ca20’ ... no
Creating theme ’points’ on layer ’lpoints’ ... yes
Checking for view ’view’ in database ’ca20’ ... no
Creating view ’view’ ... yes
Inserting view ’view’ in database ’ca20’ ... yes
Checking tables of theme ’points’ ... yes
Saving theme ’points’ ... yes
Building collection of theme ’points’ ... yes

> thpols = createTheme(lpols, "polygons", view = "view")

Checking for theme ’polygons’ in layer ’ca20’ ... no
Creating theme ’polygons’ on layer ’lpolygons’ ... yes
Checking for view ’view’ in database ’ca20’ ... yes
Checking tables of theme ’polygons’ ... yes
Saving theme ’polygons’ ... yes
Building collection of theme ’polygons’ ... yes

> setVisual(thpols, visualPolygons(color = "black",
+ transp = "100"))
> thraster = createTheme(lraster, "raster", view = "view")

Checking for theme ’raster’ in layer ’ca20’ ... no
Creating theme ’raster’ on layer ’lraster’ ... yes
Checking for view ’view’ in database ’ca20’ ... yes
Checking tables of theme ’raster’ ... yes
Saving theme ’raster’ ... yes

> setVisual(thraster, visualRaster(terrain.colors(15)),
+ mode = "raster")

The generated visualization is shown in Figure 5. We can see the static table with
the new attribute in the bottom of the Figure.

5. Conclusions and Future Work
This article discuss the need for integration between statistical softwares and GIS. Joining
this two technologies strengthens both sides and increases their individual and common
effectiveness. The integration can be implemented using full integration or through mech-
anisms of loose coupling and close coupling.

A new integration model based in a geographic database is implemented. The
access is executed through TerraLib with TerraLib components being used directly as R
objects. This way we can access the database in a easy manner and execute geoprocessing
functions while reading data from the database. The integration increases the robustness
of both technologies allowing for execution of more complex tasks and improving the
quality of the results.

Being TerraLib an ongoing project, as soon as it presents new geoprocessing mod-
els and algorithms access to them can be implemented in aRT keeping the package users
up-to-dated with the advances in geoprocessing.
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Figure 5. Visualization of the result using TerraView
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