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Abstract. Geosensors networks are dense wireless networks of small, low-cost 

sensors, which collect and disseminate environmental data of a vast 

geographical area.  These networks hold the promise of revolutionizing 

sensing in a wide range of application. Despite the large amount of research 

in this field, little effort has been done to establish how to deal with the data 

collected by these networks. This paper examines this emerging subject and 

identifies alternatives for geosensors data analysis. 

1. Introduction 

The comprehension of the physical world is a constant concern of the human species. 

This knowledge demand has been impelling researchers to install devices capable to 

collect data about several environments including vast geographical areas.  

 Despite its frequency, phenomena monitoring in large geographical areas is still 

a costly and difficult task. The observation structures are expensive and demand 

constant maintenance. Moreover, they cannot be deployed in any place, making 

unfeasible the proper covering of the study area. Frequently, the temporal resolution of 

the collected data is not large enough to understand the phenomenon. However, a new 

technology promises to help the physical world observation:  the sensors networks. 

 Sensors are small electro-mechanical devices that can measure environmental 

characteristics like temperature, pressure, humidity and infrared light, for instance. 

Figure 1 shows two examples of sensors. These devices communicate with each other 

over a wireless network and form a sensors network. When they are deployed over a 

geographic area and collect data whose geospatial information is important, they form a 

geosensors network (Nittel and Stefanidis, 2005). The prefix geo is just to emphasize 

the geographical aspect of the network.   

 Geosensors networks have a wide range of applications (Xu, 2002). They go 

from natural disasters detection to data collection for retrospective studies, going by 

traffic organization, intelligent houses and the study of ecosystems and animal life 

sensitive to the human presence (Mainwaring et al., 2002).  

   Although it is a new research area, much work has been done, mainly in data 

routing, which is the way the data are transported along the network until the user. 

However, to the best of the author’s knowledge, there is not much concern about how to 
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analyze these data. The main goal of this paper is to identify alternatives for the analysis 

of data collected by a geosensors network considering the peculiarities of this 

instrument.  

 

 

 
 

MICA-2  Smart Dust prototype 

Figure 1 – Two examples of sensors: MICA-2 (by Intel and University of 
California- Berkeley) ;  Sensor prototype of Smart Dust Project (Kahn et al., 
1999) 

2. Geosensors  networks characteristics   

The basic functioning of a geosensors network is presented in Figure 2. Sensor nodes 

collect data on sensor field, process these data and send them to other sensor nodes or to 

a special node called sink. Then, data are sent to the gateway, which communicates with 

a base station through the Internet or a satellite. The user has access to the base station, 

which can be a desktop computer. 

 

 

Figure 2  - Schematic representation of a geosensors network (adapted  from  
Akyildiz et al., 2002) 
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 The networks currently deployed are still experimental and have some dozens of 

nodes, whose installation is made manually. However, foreseen decrease of the 

components cost will enable the deployment of thousands of nodes, which will be done 

by an airplane, for example. This will allow deploying networks in inhospitable or 

dangerous areas. Once installed, the nodes must use their self-organization ability to 

detect their neighbors and build the network topology. 

 Geosensors must know their geographical location and that is a crucial point for 

geosensors networks. According to Ratnasamy et al. (2002), a sensor network data is 

useful only if the location of its source is known. Certainly, sensors nodes can not afford 

a Global Positioning System (GPS), because it still spent a lot of power. However, some 

research has been done to design low-power GPS receivers (Meng, 1998), which will 

enable the GPS receivers to become affordable to some types of sensors nodes. 

Nowadays, if the nodes deployment is made manually, one can use the GPS to achieve 

their geographical locations. When this is not possible, the alternative can be the 

recursive trilateration/multilateration techniques as those ones described by 

Bharathidasan et al. (2003) or the algorithms proposed by Bulusu et al. (2000). They use 

the inherent radio-frequency communications capabilities of the geosensors and just 

require a set of references points with known location.  

   One of the most important characteristics of geosensors networks is their nodes 

limitation in power, computational capacities, and memory. The power limitation is the 

most critical.  

 After collect the data, the nodes have to send them to the base station using a 

multi-hop path along the network (Figure 2). This task is called data routing and 

involves communication between nodes.  According to Potie and Kaiser (2000), the 

communication task is the one that consumes more energy, much more than data 

processing.  

 Therefore, in order to save energy, some routing protocols propose data 

preprocessing during its transportation to the base station. Data aggregation is an 

example of preprocessing. The aggregation consists in calculating a summary (counting, 

average, median, minimum or maximum). One of the routing protocols using data 

aggregation is called Low-Energy Adaptive Clustering Hierarchy - LEACH 

(Heinzelman et al, 2000). The LEACH´s idea is to form clusters of nodes before each 

data transmission. The components of a cluster choose a node to be the cluster head and 

send their data to it. This cluster head computes the aggregation of these data and sends 

the summary to the gateway. This reduces the number of transmissions, avoiding that 

each node has to route its data to the gateway. The data aggregation should preserve the 

location of the nodes whose data were aggregated, because the geographical information 

is important in a geosensors network.  

 Akkaya and Younis (2004) discuss other routing proposals and their mechanisms 

to save energy.  

3. Statistical analysis of geosensors networks data   

Geosensor networks open the possibility of a detailed vision of the physical world. 

However, "the overwhelming volume of observations produced by these sensors is both 
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a blessing and a curse", as Ratnasamy et al. (2002) well said about data routing. This 

statement is also valid for data analysis. How to deal with so many data? 

 Considering the application that has driven the geosensors network project, two 

types of data analysis can be identified:  instantaneous and retrospective. 

3.1 – Instantaneous analysis 

The instantaneous analysis involves immediate decision based on the results and it must 

happen as soon as the data are available. Instantaneous analyzes are necessary in the 

monitoring applications. For instance, consider the task of detecting forest fires. The 

continuous arrival of temperature data considered high in a certain area, as well data 

pointing to low humidity or smoke presence, certainly it will take to the conclusion there 

is a fire focus in that area or close to.  The instantaneous analysis can use data mining 

techniques to identify patterns and outliers values, one of the most important tasks in 

monitoring applications.  

 Mining data means to analyze them in great groups with the objective of 

summarizing them and to find hidden relationships in a comprehensible and useful way 

for the analyst (Hand et al., 2004). Data mining uses the theory of probabilities, 

algorithms of machine learning and also statistical techniques, as regression analysis and 

maximum likelihood estimation.  

 After the instantaneous analysis, one can discard the data or store them for a 

retrospective analysis. Another alternative is to keep data on the events detected to build 

a knowledge basis for the monitored phenomenon.   

3.2 – Retrospective analysis 

In retrospective studies, the main interest is the analysis of historical series, through its 

description and modeling, allowing the prediction of future observations. 

 Considering the geographical nature of the geosensors networks and that each 

geosensor is a punctual source of data, it is natural to imagine that these data can be 

treated as spatially continuous, one of the four data classes in Spatial Statistics (Bailey 

and Gatrell, 1995). The spatially continuous data are the result of random variables 

observed in points of known location in the geographical space. Formally, Z(xi,yi,t) is a 

random variable observed in the point i, which has coordinates (xi,yi), at the time period 

t.  The group of variables Z(xi,yi,t), (i=1,2,...,n) and (t=1,...,m), can be seen as a random 

field, a collection of interdependent random variables that have a spatio-temporal 

component (Guttorp, 1995).  

 A static geosensors network has points whose coordinates are fixed and known, 

that is, the points (xi,yi) are the same at each time period t.  Each measurement generates 

the realization of a two-dimensional random field, temporally correlated among them. 

These realizations can be seen as a collection of random fields or as a three-dimensional 

random field, in which the time is the third dimension. The data generated by the 

measurement are spatially continuous. 

 In dynamic networks, the geosensors must register the phenomenon data, the 

time and also its geographical location. Differently of the static networks, the points 

(xi,yi) change at each time period. The data collected by a dynamic network can be 
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considered spatially continuous, since the study interest is not the spatial pattern of the 

sensor nodes, but their measured values. In other words, the geographical position of the 

sensor node is considered known and not as a random component. Otherwise, the data 

should be analyzed as point patterns (Bailey and Gatrell, 1995). 

 The techniques used in spatially continuous data analysis are known as 

Geostatistics and kriging is the most popular of them. In the most general model, 

universal kriging, the random field Z can be described as below 

Z(xi,yi)=µ(xi,yi)+U(xi,yi)+e(xi,yi) , for a time period t, 

where  µ(xi,yi) is the mean of the process and it can be modeled with covariates; 

 U(xi,yi) is a spatially structured random effect and 

 e(xi,yi) is a white noise, that is, it has a Gaussian distribution with zero mean and 

constant variance and they are uncorrelated. It is known as nugget effect.  

 In the ordinary kriging, µ(xi,yi) is considered constant for the whole region. The 

objective of kriging is to estimate Z in an unobserved point s=(xs,ys), in other words, 

Z(xs,ys). 

 In Classical Statistics approach, the covariance matrix of U(xi,yi) is modeled. 

Usually, a function of the Matèrn family is adopted. Using this model, one can calculate 

the estimates for the covariance between the observed points and a point s=(xs,ys) for 

which one want to estimate Z. These estimates, the covariance matrix and µ(xi,yi) 

estimates allow the estimation of Z(xs,ys) (Isaaks and Srivastava, 1990).  

 Bayesian Statistics considers the parameters as random variables and makes 

inferences about them by using a posterior probability distribution (Carlin and Louis, 

1996). One calculates this posterior distribution by combining a prior knowledge and 

the sample information through the Bayes theorem. A probability distribution expresses 

this prior knowledge (the parameter prior distribution) and the likelihood function 

expresses the sample information.  

 In the Bayesian approach for kriging, the covariance matrix of U(xi,yi) is 

modeled jointly with the other parameters, resulting in the posterior distribution of these 

parameters (Diggle et al., 1998). The prediction of Z for unobserved points is made by 

predictive distributions. They are calculated from the posterior distribution of the 

parameters in the Z model. The punctual estimate of the Z value is given by a summary 

of the predictive distribution, for instance, the average. Kitanidis (1986) showed that the 

classical approach for kriging is a special case of the Bayesian approach in which there 

is a prior ignorance on the trend  surface parameters.                   

3.2.1 – Incorporating the time into the data analysis   

The temporal component is still a challenge in the spatially continuous data analysis 

(Schmidt et al., 2002). The problem is to find out a covariance structure that describes 

the spatial correlation between two localizations for each instant of time.  

 The simplest proposal is to obtain the covariance structure multiplying the 

spatial covariance by the temporal covariance,    

Cov[Z(xi,yi,1),Z(xj,yj,2)] = Cov[Z(xi,yi),Z(xj,yj)] x Cov[Z(1),Z(2)]. 
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When this type of covariance structure holds, the process Z(xi,yi,t) is said to be 

separable. Likewise in the case of spatial covariance, suitable forms for the functions of 

spatial and temporal covariance can be adopted (Matèrn family, for instance). However, 

this separable form for the spatio-temporal covariance structure demands the 

supposition that Cov[Z(xi,yi,1),Z(xj,yj,2)] = Cov[Z(xj,yj,1),Z(xi,yi,2)], what doesn't seem 

reasonable for most of the studied phenomena. Suppose, for instance, that Z is the 

atmospheric temperature and the points i=(xi,yi) e j=(xj,yj) belong to the path usually 

made by the cold fronts coming from Argentina. If the front goes from i to j, it is 

reasonable to think that a temperature decrease in i at time 1 will be related to a 

temperature decrease in j at time 2.  However, this won't implicate that a temperature 

decrease in j at time 1 will be related to a temperature decrease in i at time 2. 

 Some authors proposed non-separable spatio-temporal covariance functions that 

are useful for modeling. Gneiting (2002), for example, developed a class of non-

separable covariance functions. 

 An alternative to spatio-temporal data analysis is the space-time Kalman filter 

(Cressie and Wikle, 2002). Writing Zt = [Z(x1,y1,t), Z(x2,y2,t), …, Z(xn,yn,t)], the 

column vector that contains the data for the n areas in the time t, one can express the 

process Zt as below 

 Zt = F’tββββt + εεεεt    ,                εεεεt    ~ Gaussian (0,Vt)                                                   (1) 

 ββββt = Gtββββt-1  + ωωωωt ,             ωωωωt    ~ Gaussian (0,Wt)  , t = 1,2,3,…. T.                    (2) 

The equations (1) e (2) compose the space-state model. The observation equation (1) 

relates the data Zt to an unobserved state vector ββββt with p elements. The evolution 

equation (2) links the states over time. The vectors εεεεt    and ωωωωt     have n and p elements, 

respectively, and represent the error terms in each model equation, with covariance 

matrices Vt and Wt. The matrices Ft and Gt are the design and evolution matrices, 

respectively. A simple approach sets Ft = In , Gt = In, Vt = In and puts the spatial 

covariance structure in Wt . The space-state model can be cast in the bayesian 

framework. Adopting the Gaussian probabilistic model, the posterior distribution of ββββt 

is Gaussian with mean mt and covariance matrix Ct, where mt = mt-1 + At (Zt – mt-1) and 

matrices Ct and At are the result of operations with the matrices Ft, Gt, Vt and Wt. The 

term “filter” refers to a recursive procedure for inference about the state vector ββββt : the 

knowledge about ββββ at time t-1 (mt-1) is updated at time t through the observation of Zt, 

resulting in the knowledge about ββββ at time t (mt). Applications of this technique can be 

found in Stroud et al. (2001) and Wikle and Cressie (1999), just to cite a few examples.  

 Space-time Kalman filter is a very flexible framework to data analysis. One of its 

flexible characteristics is the size of data vector Zt, which has not to be the same every 

time period t. This fits very well to the geosensors network data, since sensors can fail to 

transmit their data at some time period.      

3.2.2 - Aggregated data analysis   

The transportation of all nodes data can spend much energy, especially in the case of 

densely deployed geosensors networks. As seen previously, the aggregation of these data 

is one of the strategies used in routing protocols to save energy. Since the data are 

associated to the aggregator node, from the data analysis point of view, the points 
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configuration presented in the Figure 3a (complete network) would become the points 

configuration of the Figure 3b (network reduced to the aggregator nodes). This 

reduction of the points number would be compensated by a decrease in the noise present 

in the data, a variability source that doesn't interest to the analyst. The data could still be 

treated as spatially continuous. 

 Another approach for the data analysis is to consider that each aggregator node is 

responsible for an area. This area is the union of the areas nodes under the aggregator 

node jurisdiction (Figure 3c). The area of a node can be obtained by Dirichlet 

tessellation, in case the location of the nodes that sent their data to the aggregator node 

is preserved. In this approach, the aggregated data is associated to an area and no more 

to a point. Hence, it should be treated as an area data, other Spatial Statistics class of 

data. 

 Area data are quite frequent in the Spatial Epidemiology, especially in disease 

risk maps (Bailey, 2001). Bayesian inference has become a common approach in space-

temporal modeling of area data. 

 

 

Figure 3 –Geosensors network with in-network data aggregation 

  

 The variable Z(xi,yi,t) assumes a probabilistic model with mean µit and variance 

σ2
it, and its mean is modeled. One of the spatio-temporal models for µit is: 

f(µ it) = α + φi + νi + δ0t + δit,      i=1,…,n  e  t=1,…,m.                       (3) 

where f(.) is a function whose values are real numbers;  n is the number of areas; m is 

the number of time periods ; α is the component of f(µ it) that is common to all areas and 

time periods;  φi and νi are the spatially unstructured and structured components of 
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f(µ it), respectively; δ0  is the temporal coefficient spatially unstructured and δi is the 

temporal coefficient spatially structured. 

 The spatial structure enters the model through the prior distributions of νi and δi, 

as present below   
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where wij are suitable adjacency weights for the areas. 

 The model for νi and δi prior distributions is called Gaussian Conditional Auto 

Regressive (CAR). It conditions the mean of the area on its neighbors' values using a 

weighted average. The parameters σν and σδ  control the strength of local spatial 

dependence. Inferences about each parameter are made using samples of its posterior 

distribution.  These samples are obtained by Markov Chain Monte Carlo simulation 

(Gamerman, 1997).  If νi assumes values close to zero with large probability, this means 

that the neighborhood of area i doesn't have influence on its mean. The same is valid for 

δi, what indicate that the neighborhood of area i doesn't have influence on temporal 

component of the trend µit. 

 The options usually adopted for the other prior distributions are:                               

α ~ Uniform [-∞ ;+∞];  δ0 ~ Uniform [-∞ ;+∞]  ;   φi ~ Gaussian (0;σ2
ϕ) 

 The model in (3) can include covariates, allowing the study of other variables 

measured by the same sensor node. An alternative to the Bayesian approach when there 

are covariates is to use the Geographically Weighted Regression (GWR -  Brunsdon et 

al., 1998). The idea of GWR is to estimate the regression coefficients for each area 

using their neighbors as data entry in a weighted regression. The weights are defined as 

a function of the distance to the possible neighbors. Each period time is modeled 

separately.  

 A third alternative for area data analysis is the space-time Kalman filter 

framework (Rojas and Ferreira, 2004). The approach is very similar to that adopted for 

spatially continuous data. 

 From statistical point of view, treating the aggregated data as if it was an area 

data is the most appropriate approach. That is because the aggregated data is not just 

composed by the data of the aggregator node, but also for a combination of its 

neighbors' data. 

 However, it is necessary to be careful about the definition of the areas, because 

the analysis results will be associated to them. The proposal of sensors data storage done 

by Goldin and Kutlu (2004) establishes that areas of interest are defined in a 

geographical database and the sensors data are aggregated according these areas. The 

routing protocol LEACH-C (Heinzelman et al., 2002) proposes the aggregator nodes 

(cluster heads) are chosen in the base station. As a modification of this proposal, the 

choice process could include some geographical parameter so that the clusters are well 

distributed in geographical terms. The aggregation could also be defined in several 

levels, from a less aggregated level (many clusters) until a more aggregated level (few 
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clusters). In Goldin and Kutlu proposal as well in the LEACH-C modification, the 

analyst would have more control over his or her analysis areas.  

 As the networks size increases, sending all data to the base station become 

unfeasible. Networks that have to send their data continuously have few options to save 

energy. One of them is to aggregate the data. However, data aggregation can be good in 

terms of analysis, because it helps to reduce the noise level, avoiding uninteresting 

variability sources.  

4. Concluding Remarks   

Geosensor networks promise a revolution in the physical world observation, offering the 

possibility of a dense sensing of the environment.  This technology will provide an 

unprecedented amount of detailed measurements over wide geographic areas. While a 

considerable amount of research has been made to enable the data collection and data 

delivery, little effort has been done towards the analysis of these data. 

 In this scenery, this work tried to identify the analysis types to which the 

geosensors data can be submitted. Techniques as data mining and spatial statistics were 

chosen and discussed in this context.  The data aggregation, which is thoroughly 

proposed to save the network energy in the data routing stage, it was also evaluated in 

the data analysis context. Considering dense networks, as the ones that are foreseen for 

the future, the aggregation can also help to improve the data quality, eliminating the 

variability due to uninteresting sources. 

 In addition to help the geosensors data analysis, spatial statistics methods, 

specially geostatistical techniques, can be useful to solve the design network problem: 

how to choose the best locations for the geosensors deployment. Some approaches 

consider the prediction variance of kriging estimates as a reasonable measure of the 

goodness of a spatial sampling scheme (Bogárdi et al., 1985 ; Trujillo-Ventura and Ellis, 

1991; as a few examples). As might be expected, the deployment of the geosensors has 

to be done manually to satisfy the solution found by these methods. 

 Sensors networks are a new research subject and much more work has to be 

done to solve problems like energy efficiency, nodes localization and data routing, for 

example. Despite their currently limitations, sensors networks still have many 

contributions to offer to environmental monitoring and surveillance applications.   
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