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Abstract. The objective of this work is to show how the distance transform can be used to perform contour 
line interpolation, and intermediate line generation. More precisely, it is shown that these problems can be 
solved by computing two sets of local image distances, in only two steps: one in raster mode and another in 
antiraster mode. Besides its efficiency, the algorithm leads to contour line interpolation without flat zones. 
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1. Introduction 

The distance transform (DT) is an operator that converts 
binary images into grey-level images, where each 
foreground pixel is assigned to its distance to the 
background. The DT result is named image distance 
(ID). The DT is a classical operator in image processing, 
and its use is of fundamental importance in the 
implementation of some mathematical morphology 
operators like the binary image dilations and erosions [1], 
the medial axis extraction [2-6] for skeletonization, and 
the watershed for segmentation [6]. In the case of binary 
dilation and erosion, the DT allows their sequential 
implementation without the overhead of successive 
iterations in the image, even though parameterized by 
large structuring elements. 

The DT can be implemented exploring different 
kind of metrics: City-Block, Chessboard, Octagonal [7] 
(the Octagonal metric is obtained from the combination 
of the City-Block and Chessboard metrics), Chamfer [8, 
9], and Euclidean [10]. There is yet the quasi-Euclidean 
DT [11] that is much faster than the Euclidean DT, and 
has the Euclidean metric precision for almost all the 
mapped pixels. 

The paper main objective is to show how the 
combination of IDs of binary images representing a color 
image can be used, in order to perform contour line 
interpolation and intermediate line generation. 

An illustrative example in one dimension is shown 
in Figure 1(a - c). In these figures, the foreground is the 
segment between p and q, resulting in an image with a 
background consisting of two connected components 
(CC), one on the left of p (denoted by P) and another on 
the right of q (denoted by Q).  

 
Figure 1 (a - c) Euclidean images distance of 
[p, q], [p, + ∞] and [– ∞, q], and (d) linear 
interpolation between p and q.  

Figure 1a shows the Euclidean ID of the foreground. 
Figure 1b shows the Euclidean ID of the image, which 
background is just the first CC P (ignoring the second CC 
Q), and Figure 1c shows the opposite. One observes that 
Figure 1a is precisely the intersection of Figures 1b and 
1c. Nevertheless, Figure 1a is useless in order to perform 
interpolation between the pixels (p, f(p)) and (q, f(q)), 
because the ID just gives the distance to P ∪  Q, and not 
the distance to P and Q. Actually, what is needed are both 
IDs of Figures 1b and 1c as it can be seen from the linear 
interpolation expression g(r) at a point r in the 
foreground:  
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Equation 1 g(r) = f(p) + (f(q) – f(p)) * d(r, P) / (d(r, P) + 
d(r, Q)), 

where d(r , X) = min{d(r, x): x ∈  X}, and d is a metric 
(for more details see Section 2).  

Figure 1d shows the interpolation result of Equation 
1. 

In the next section the concept of distance and 
metric are recalled and a DT implementation is given. 
The third section introduces the color image 
decomposition in terms of binary images. The forth 
presents the interpolation for contour line images, and the 
fifth the generation of intermediate lines in contour line 
images. 

2. Distance Transform 

The DT is based on the concept of distance and metric 
which are recalled bellow. 

The mapping d of Z2 to R is a distance if for any x 
and y ∈  Z2, the following conditions are satisfied:  
(i) d(x, y) = d(y, x); 
(ii) d(x, y) ≥ 0; 
(iii) d(x, y) = 0 ⇔ x = y. 

A distance d is a metric if for any x, y and z ∈  Z2, it 
satisfies the triangle inequality: 
(iv) d(x, y) ≤ d(x, z) + d(z, y). 

Examples of metric are the City-Block, Chessboard 
and Euclidean metrics, d4, d8 and dE, defined by, for any 
x = (x1, x2) and y = (y1, y2) of Z2, 
d4(x, y) = |x1 – y1| + |x2 – y2|; 
d8(x, y) = max{|x1 – y1|, |x2 – y2|}; 

dE(x, y) = 2
22

2
11 )()( yxyx −+− . 

Based on a metric d one can define the respective 
distance transform. 

Let E be a rectangle of Z2, and K = {0, 1}. A binary 
image f is a mapping from E to K, where for any point (x, 
y) ∈  E, f(x, y) = 1 if (x, y) belongs to the foreground and 
f(x, y) = 0 otherwise. 

Let A be a subset of E, and Ac its complement. The 
ID of A with respect the metric d is the mapping DTA 
from E to R given by, for any x ∈  E, 
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The mapping A aDTA is called the distance 
transform. 

In this paper, the DT implementation is based on the 
Chessboard metric. The corresponding pseudocode is 
presented in Pseudocode A below. 

The distance propagation occurs in two iterations 
over the image, one in raster mode (from left to right and 

from top to bottom) and the other in antiraster mode 
(from right to left and from bottom to top). 

Let m be the number of lines of E, let n be the 
number of columns, and let (0, 0) be the upper left point 
of E. 

Let denote Nr((x, y), f) = {f(x – 1, y – 1), f(x – 1, y), 
f(x – 1, y + 1), f(x, y – 1)} and Na((x, y), f) = {f(x, y + 1), 
f(x + 1, y – 1), f(x + 1, y), f(x + 1, y + 1)} two subsets of 
pixel values. 

Pseudocode A 

(1) create a matrix M of the same size as E; 
/* fill out the first and last columns */ 
(2) for x varying from 0 to m – 1 do 

 if f(x, 0) is equal to 1 then M(x, 0) = 1; 
 else  M(x, 0) = 0; 
 if f(x, n – 1) is equal to 1 then M(x, n – 1) = 1; 
 else  M(x, n – 1) = 0; 

 end do; 
/* fill out the first and last rows */ 
(3) for y varying from 1 to n – 2 do 

if f(0, y) is equal to 1 then M(0, y) = 1; 
else  M(0, y) = 0; 
if f(m – 1, y) is equal to 1 then M (m – 1, y) = 1;  
else  M(m – 1, y) = 0; 

end do; 
/* process in raster mode */ 
(4)  for x varying from 1 to m – 2 do 

for y varying from 1 to n – 2 do 
if f(x, y) is equal to 1 then 

M(x, y) = min{Nr((x, y), M)} + 1; 
else  M(x, y) = 0; 

end do; 
end do; 

/* process in antiraster mode */ 
(5) for x varying from m – 2 to 1 do 

for y varying from n – 2 to 1 do 
if M(x, y) is greater than 1 then 

M(x, y) = min{M(x, y), min{Na((x, y), M)} + 1}; 
end do; 

end do. 

Pseudocode A returns the ID of the foreground 
f({1}) of f, that is, M = DTf({1}). 

Moreover, it can be easily expanded for color 
images. In this case, two substitutions are necessary. The 
first one consists of substituting (2) and (3) by a code that 
fills out the border of matrix (M) with value 1. The 
second one consists of changing the if and else condition 
in (4) by: 
if f(x, y) is equal to Nr((x, y), f) then  

M(x, y) = min{Nr((x, y), M)} + 1; 
else M(x, y) = 1. 
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There is no change in (5). One should observe that, 
differently of Pseudocode A, this last pseudocode applied 
to binary images returns the ID of both the foreground 
f({1}) and background f({0}) of f, that is, M = DTf({1}) ∨  
DTf({0}). 

3. Color image decomposition 

A color image is a mapping from E to a set of colors. 
By background of a color image, it is meant here, the 

set of positions of pixels having a predefined color (for 
example, the set of positions of pixels represented by – is 
considered as the background of the Figure 2a image). 
Furthermore, to each other color in the image, one 
assigns the set of positions of pixels having that color. 
These sets are called color objects in the color image 
domain (Figure 2a shows two color objects, one is the set 
of positions of pixels represented by �, and the other by 
�). 

 
Figure 2 Color image decomposition and 
Chessboard IDs. (a) Part of a color image, (b) 
first object binary image, (c) second object 
binary image, and (d - f) Chessboard IDs of the 
(a – c) backgrounds. 

A color image can be decomposed into a set of 
binary images whose foregrounds are its color objects. 

The decomposition of the Figure 2a color image 
consists of the two binary images of Figures 2b and 2c. 

The Figures 2 (d – f) show respectively the Figures 2 (a – 
c) background Chessboard IDs. 

The same decomposition can be applied to images 
with more than two color objects. In this case, there will 
be as many binary images as objects. 

The pair of IDs of Figures 2e and 2f gives the 
distance values from any background pixel to the two 
color objects. This is exactly what will be used to perform 
the interpolation between contour lines in the next 
section. 

4. Contour line interpolation 

It is assumed that contour line data are raster data, that is 
images, otherwise they must be converted, for example 
from vector data to raster data. 

Let f : E → K = {0, 1, …, m} be a color image of m 
contour lines. For the sake of simplicity, it is assumed 
here that the contour line increment is unitary. 

Let denote by Ci = f({i}), with i = 0, …, m. 
Following the definitions of the previous section, C0 is 
the background of f and the Ci’s (i = 1, …, m) are its 
color objects, one for each contour line. Let B1, …, Bn be 
the n CCs of the background C0.  

By properties of contour line images, every Bk (k = 1, 
…, n) is adjacent to at most two Ci’s. 

Let r be a background point, r ∈  C0, and let k be 
such that r ∈  Bk, k is unique. If Bk has two adjacent 
contour lines, and if i is such that Ci and Ci+1 are these 
two contour lines, then, following Equation 1, the linear 
interpolation expression g(r) at point r is given by 
g(r) = i + 1 * d(r, Ci) / (d(r, Ci) + d(r, Ci+1)). 

Figure 3a shows five contour lines C1, …, C5, and 
six CCs B1, …, B6. Figure 3b and 3c show d(r, Ci) and 
d(r, Ci+1) for any points r in Bi+1 (i = 1, …, 4) along the 
dashed line of Figure 3a. 

The above interpolation includes the following tasks: 
finding the CCs of the background, finding their adjacent 
contour lines and computing the two IDs over these CCs. 

Actually, in the case of the Chessboard metric, all 
these tasks can be computed at once using Pseudocode B 
below. 

Pseudocode B is divided into two parts. The first one 
simulates the distance propagation from the contour lines 
with the smallest quote values (as in Figure 3b), and the 
second one with the greatest quote values (as in Figure 
3c). 

Pseudocode B 

Part one:  
(1) create a matrix M1 of the same size as E, and fill M1 

border with a large value; 
(2) create an image f1, and copy f into f1; 
/* process in raster mode */ 
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(3) for x varying from 1 to m – 2 do 
for y varying from 1 to n – 2 do 

if f(x, y) ≠ 0 /* i.e. (x, y) is a contour line point */ 
M1(x, y) = 0; 

else  
choose the color with smallest value in Nr((x, y), 
f1), in case of more than one color with the 
smallest value, choose that one with the smallest 
distance value in M1; 
set M1(x, y) to this distance value plus one;     
set f1(x, y) to this color value;     

end else; 
end do; 

end do; 
/* process in antiraster mode */ 
(4) for x varying from m – 2  to 1 do 

for y varying from n – 2 to 1 do 
if f(x, y) = 0 /* i.e. (x, y) is a background point */ 

choose the color with smallest value in Na((x, y), 
f1), in case of more than one color with the 
smallest value, choose that one with the smallest 
distance value in M1; 
if f1(x, y) is greater than this color value then 

set M1(x, y) to this distance value plus one;     
set f1(x, y) to this color value; 

end if;     
else 

if M1(x, y) is greater than this distance value 
plus one and f1(x, y) is equal to this color value 
then 

set M1(x, y) to this distance value plus one;     
end else; 

end if; 
end do; 

 end do. 

Part two: 
Because of the duality between the first and second 

part, the second one is obtained from the first one by 
replacing the variable names M1 and f1 by M2 and f2, 
and the boldface words by their dual. 

By applying Pseudocode B to the Figure 3a example,  
- the image f1 is filled out with 1 over B2, 2 over B3, 3 

over B4, and 4 over B5; 
- the image f2 is filled out with 2 over B2, 3 over B3, 4 

over B4, and 5 over B5; 
- one gets the images M1 and M2 partially depicted in 

Figures 3b and 3c respectively. 
Pseudocode B differs from the color DT 

implementation of Section 2, for two reasons. The first 
one is that the DT applies now to the background (and 
not to each colored CC). The second one is that the 

background CCs must be identified by propagating the 
contour line colors.  

The linear interpolation g of image f is given by, 
Pseudocode C below. 

Pseudocode C 

for (x, y) varying in E do 
if f(x, y) = 0 /* i.e. (x, y) is a background point */ 

g(x, y) = f1(x, y) + (f2(x, y) – f1(x, y)) * M1(x, y) / 
(M1(x, y) + M2(x, y)); 

else  g(x, y) = f(x, y); 
end do. 

 
Figure 3 (a) Five contour line image, (b and c)  
distance values to the contours along the dashed 
line of Figure a. 

Pseudocode B could be reused to implement a more 
accurate (non linear) interpolation by applying it, besides 
the original contour lines image, to the even and odd 
contour line images. 

The interpolation could be still improved by using 
more accurate metrics, like the Octagonal, Chamfer and 
Euclidean ones. 

An interesting feature of the suggested algorithm is 
its ability to interpolate properly areas like the one 
marked by × in Figure 4. In this case, where most of the 
interpolators do produce flat zones, the algorithm doesn’t, 
since it is based on pairs of contour lines. 
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Figure 4 Potential flat zone. 

This is the case of the interpolators based on 
Delaunay triangulation and its dual, the Voronoi diagram 
[12], in situations like in the Figure 4 example, these 
interpolators produce flat zones, since the triangles are 
constructed from a same contour line. In order to solve 
this problem some authors [12] introduce intermediate 
lines and additional points between the contour lines. 

Intermediate lines are usually obtained from 
skeletons [13, 14]. At the contrary of the skeleton, which 
generates only one intermediate line between two 
contours, in the next section more than one intermediate 
line are generated using Pseudocode B. 

5. Intermediate line generation in contour lines 

The intermediate line generation becomes a simple 
operation by using two IDs. 

This is shown for example, by applying Pseudocode 
B to the Figure 5a image. 

 
Figure 5 Intermediate lines in contour lines. (a) 
Part of a contour line image, (b) three 
intermediate contours, and (c) three 

intermediate contour lines of the image 
expanded by dilatation. 

The generation of an image g containing the contour 
lines of image f plus three (for example) intermediate 
lines in between, is given in Pseudocode D below. 

Pseudocode D 

for (x, y) varying in E do 
if f(x, y) = 0 /* i.e. (x, y) is a background point */ 

if M1(x, y) = M2(x, y) and f1(x, y) != f2(x, y) then 
g(x, y) = (f1(x, y) + f2(x, y))/2; 

else 
if M1(x, y) = M2(x, y)/3 then  

g(x, y) = f1(x, y) + (f2(x, y) – f1(x, y)/3; 
else 

if M1(x, y)/3 = M2(x, y) then 
g(x, y) = f2(x, y) – (f2(x, y) – f1(x, y)/3; 

end else; 
end else; 

end if; 
else  g(x, y) = f (x, y); 

end do. 

Figure 5b shows the Figure 5a image with 3 
intermediate lines. Because of the discrete nature of the 
image domain, the intermediate lines are generally not 
connected. In order to solve this problem one can apply 
an expansion by dilation [15] in the image. Figure 3c 
shows the Figure 5a image expanded by dilatation with 3 
intermediate lines. For better contrast between the 
background and intermediate lines, the three intermediate 
lines have been plotted using the same color. 

6. Conclusions 

In this paper, it was shown that the contour line 
interpolation and intermediate line generation can be 
solved by applying the DT to parts of the original image. 

Furthermore, it was shown that the image 
segmentation can be done while computing the IDs, 
resulting in a very simple and fast algorithm. 

In the future, applications of contour line 
interpolation to image compression could be investigated. 
In this case, the contour lines will be the image cross 
section borders, and the reconstruction will be obtained 
by interpolation. 
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