
INPE ePrint: sid.inpe.br/yolanda/2004/05.24.18.48 v1 2004-05-25

Distance transform as a basis for contour line interpolation and intermediate line
generation

ARLEY F. DE SOUZA, GERALD J. F. BANON

INPE - Instituto Nacional de Pesquisas Espaciais

Av. Dos Astronautas, 1758, Jd. Da Granja, 12227-010 São José dos Campos, SP, Brasil
{arley, banon}@dpi.inpe.br

Abstract. The objective of this work is to show how the distance transform can be used to perform contour
line interpolation, and intermediate line generation. More precisely, it is shown that these problems can be
solved by computing two sets of local image distances, in only two steps: one in raster mode and another in
antiraster mode. Besides its efficiency, the algorithm leads to contour line interpolation without flat zones.

Keywords. Image processing, mathematical morphology, distance transform, contour line interpolation,
intermediate line.

1. Introduction

The distance transform (DT) is an operator that converts
binary images into grey-level images, where each
foreground pixel is assigned to its distance to the
background. The DT result is named image distance
(ID). The DT is a classical operator in image processing,
and its use is of fundamental importance in the
implementation of some mathematical morphology
operators like the binary image dilations and erosions [1],
the medial axis extraction [2-6] for skeletonization, and
the watershed for segmentation [6]. In the case of binary
dilation and erosion, the DT allows their sequential
implementation without the overhead of successive
iterations in the image, even though parameterized by
large structuring elements.

The DT can be implemented exploring different
kind of metrics: City-Block, Chessboard, Octagonal [7]
(the Octagonal metric is obtained from the combination
of the City-Block and Chessboard metrics), Chamfer [8,
9], and Euclidean [10]. There is yet the quasi-Euclidean
DT [11] that is much faster than the Euclidean DT, and
has the Euclidean metric precision for almost all the
mapped pixels.

The paper main objective is to show how the
combination of IDs of binary images representing a color
image can be used, in order to perform contour line
interpolation and intermediate line generation.

An illustrative example in one dimension is shown
in Figure 1(a - c). In these figures, the foreground is the
segment between p and q, resulting in an image with a
background consisting of two connected components
(CC), one on the left of p (denoted by P) and another on
the right of q (denoted by Q).

Figure 1 (a - c) Euclidean images distance of
[p, q], [p, + ∞] and [– ∞, q], and (d) linear
interpolation between p and q.

Figure 1a shows the Euclidean ID of the foreground.
Figure 1b shows the Euclidean ID of the image, which
background is just the first CC P (ignoring the second CC
Q), and Figure 1c shows the opposite. One observes that
Figure 1a is precisely the intersection of Figures 1b and
1c. Nevertheless, Figure 1a is useless in order to perform
interpolation between the pixels (p, f(p)) and (q, f(q)),
because the ID just gives the distance to P ∪ Q, and not
the distance to P and Q. Actually, what is needed are both
IDs of Figures 1b and 1c as it can be seen from the linear
interpolation expression g(r) at a point r in the
foreground:

INPE ePrint: sid.inpe.br/yolanda/2004/05.24.18.48 v1 2004-05-25

Equation 1 g(r) = f(p) + (f(q) – f(p)) * d(r, P) / (d(r, P) +
d(r, Q)),

where d(r , X) = min{d(r, x): x ∈ X}, and d is a metric
(for more details see Section 2).

Figure 1d shows the interpolation result of Equation
1.

In the next section the concept of distance and
metric are recalled and a DT implementation is given.
The third section introduces the color image
decomposition in terms of binary images. The forth
presents the interpolation for contour line images, and the
fifth the generation of intermediate lines in contour line
images.

2. Distance Transform

The DT is based on the concept of distance and metric
which are recalled bellow.

The mapping d of Z2 to R is a distance if for any x
and y ∈ Z2, the following conditions are satisfied:
(i) d(x, y) = d(y, x);
(ii) d(x, y) ≥ 0;
(iii) d(x, y) = 0 ⇔ x = y.

A distance d is a metric if for any x, y and z ∈ Z2, it
satisfies the triangle inequality:
(iv) d(x, y) ≤ d(x, z) + d(z, y).

Examples of metric are the City-Block, Chessboard
and Euclidean metrics, d4, d8 and dE, defined by, for any
x = (x1, x2) and y = (y1, y2) of Z2,
d4(x, y) = |x1 – y1| + |x2 – y2|;
d8(x, y) = max{|x1 – y1|, |x2 – y2|};

dE(x, y) = 2
22

2
11)()(yxyx −+− .

Based on a metric d one can define the respective
distance transform.

Let E be a rectangle of Z2, and K = {0, 1}. A binary
image f is a mapping from E to K, where for any point (x,
y) ∈ E, f(x, y) = 1 if (x, y) belongs to the foreground and
f(x, y) = 0 otherwise.

Let A be a subset of E, and Ac its complement. The
ID of A with respect the metric d is the mapping DTA
from E to R given by, for any x ∈ E,

 ∈

=
otherwise.

 if

0

),(
)(DT

c AxAxd
xA

The mapping A aDTA is called the distance
transform.

In this paper, the DT implementation is based on the
Chessboard metric. The corresponding pseudocode is
presented in Pseudocode A below.

The distance propagation occurs in two iterations
over the image, one in raster mode (from left to right and

from top to bottom) and the other in antiraster mode
(from right to left and from bottom to top).

Let m be the number of lines of E, let n be the
number of columns, and let (0, 0) be the upper left point
of E.

Let denote Nr((x, y), f) = {f(x – 1, y – 1), f(x – 1, y),
f(x – 1, y + 1), f(x, y – 1)} and Na((x, y), f) = {f(x, y + 1),
f(x + 1, y – 1), f(x + 1, y), f(x + 1, y + 1)} two subsets of
pixel values.

Pseudocode A

(1) create a matrix M of the same size as E;
/* fill out the first and last columns */
(2) for x varying from 0 to m – 1 do

 if f(x, 0) is equal to 1 then M(x, 0) = 1;
 else M(x, 0) = 0;
 if f(x, n – 1) is equal to 1 then M(x, n – 1) = 1;
 else M(x, n – 1) = 0;

 end do;
/* fill out the first and last rows */
(3) for y varying from 1 to n – 2 do

if f(0, y) is equal to 1 then M(0, y) = 1;
else M(0, y) = 0;
if f(m – 1, y) is equal to 1 then M (m – 1, y) = 1;
else M(m – 1, y) = 0;

end do;
/* process in raster mode */
(4) for x varying from 1 to m – 2 do

for y varying from 1 to n – 2 do
if f(x, y) is equal to 1 then

M(x, y) = min{Nr((x, y), M)} + 1;
else M(x, y) = 0;

end do;
end do;

/* process in antiraster mode */
(5) for x varying from m – 2 to 1 do

for y varying from n – 2 to 1 do
if M(x, y) is greater than 1 then

M(x, y) = min{M(x, y), min{Na((x, y), M)} + 1};
end do;

end do.

Pseudocode A returns the ID of the foreground
f({1}) of f, that is, M = DTf({1}).

Moreover, it can be easily expanded for color
images. In this case, two substitutions are necessary. The
first one consists of substituting (2) and (3) by a code that
fills out the border of matrix (M) with value 1. The
second one consists of changing the if and else condition
in (4) by:
if f(x, y) is equal to Nr((x, y), f) then

M(x, y) = min{Nr((x, y), M)} + 1;
else M(x, y) = 1.

INPE ePrint: sid.inpe.br/yolanda/2004/05.24.18.48 v1 2004-05-25

There is no change in (5). One should observe that,
differently of Pseudocode A, this last pseudocode applied
to binary images returns the ID of both the foreground
f({1}) and background f({0}) of f, that is, M = DTf({1}) ∨
DTf({0}).

3. Color image decomposition

A color image is a mapping from E to a set of colors.
By background of a color image, it is meant here, the

set of positions of pixels having a predefined color (for
example, the set of positions of pixels represented by – is
considered as the background of the Figure 2a image).
Furthermore, to each other color in the image, one
assigns the set of positions of pixels having that color.
These sets are called color objects in the color image
domain (Figure 2a shows two color objects, one is the set
of positions of pixels represented by �, and the other by
�).

Figure 2 Color image decomposition and
Chessboard IDs. (a) Part of a color image, (b)
first object binary image, (c) second object
binary image, and (d - f) Chessboard IDs of the
(a – c) backgrounds.

A color image can be decomposed into a set of
binary images whose foregrounds are its color objects.

The decomposition of the Figure 2a color image
consists of the two binary images of Figures 2b and 2c.

The Figures 2 (d – f) show respectively the Figures 2 (a –
c) background Chessboard IDs.

The same decomposition can be applied to images
with more than two color objects. In this case, there will
be as many binary images as objects.

The pair of IDs of Figures 2e and 2f gives the
distance values from any background pixel to the two
color objects. This is exactly what will be used to perform
the interpolation between contour lines in the next
section.

4. Contour line interpolation

It is assumed that contour line data are raster data, that is
images, otherwise they must be converted, for example
from vector data to raster data.

Let f : E → K = {0, 1, …, m} be a color image of m
contour lines. For the sake of simplicity, it is assumed
here that the contour line increment is unitary.

Let denote by Ci = f({i}), with i = 0, …, m.
Following the definitions of the previous section, C0 is
the background of f and the Ci’s (i = 1, …, m) are its
color objects, one for each contour line. Let B1, …, Bn be
the n CCs of the background C0.

By properties of contour line images, every Bk (k = 1,
…, n) is adjacent to at most two Ci’s.

Let r be a background point, r ∈ C0, and let k be
such that r ∈ Bk, k is unique. If Bk has two adjacent
contour lines, and if i is such that Ci and Ci+1 are these
two contour lines, then, following Equation 1, the linear
interpolation expression g(r) at point r is given by
g(r) = i + 1 * d(r, Ci) / (d(r, Ci) + d(r, Ci+1)).

Figure 3a shows five contour lines C1, …, C5, and
six CCs B1, …, B6. Figure 3b and 3c show d(r, Ci) and
d(r, Ci+1) for any points r in Bi+1 (i = 1, …, 4) along the
dashed line of Figure 3a.

The above interpolation includes the following tasks:
finding the CCs of the background, finding their adjacent
contour lines and computing the two IDs over these CCs.

Actually, in the case of the Chessboard metric, all
these tasks can be computed at once using Pseudocode B
below.

Pseudocode B is divided into two parts. The first one
simulates the distance propagation from the contour lines
with the smallest quote values (as in Figure 3b), and the
second one with the greatest quote values (as in Figure
3c).

Pseudocode B

Part one:
(1) create a matrix M1 of the same size as E, and fill M1

border with a large value;
(2) create an image f1, and copy f into f1;
/* process in raster mode */

INPE ePrint: sid.inpe.br/yolanda/2004/05.24.18.48 v1 2004-05-25

(3) for x varying from 1 to m – 2 do
for y varying from 1 to n – 2 do

if f(x, y) ≠ 0 /* i.e. (x, y) is a contour line point */
M1(x, y) = 0;

else
choose the color with smallest value in Nr((x, y),
f1), in case of more than one color with the
smallest value, choose that one with the smallest
distance value in M1;
set M1(x, y) to this distance value plus one;
set f1(x, y) to this color value;

end else;
end do;

end do;
/* process in antiraster mode */
(4) for x varying from m – 2 to 1 do

for y varying from n – 2 to 1 do
if f(x, y) = 0 /* i.e. (x, y) is a background point */

choose the color with smallest value in Na((x, y),
f1), in case of more than one color with the
smallest value, choose that one with the smallest
distance value in M1;
if f1(x, y) is greater than this color value then

set M1(x, y) to this distance value plus one;
set f1(x, y) to this color value;

end if;
else

if M1(x, y) is greater than this distance value
plus one and f1(x, y) is equal to this color value
then

set M1(x, y) to this distance value plus one;
end else;

end if;
end do;

 end do.

Part two:
Because of the duality between the first and second

part, the second one is obtained from the first one by
replacing the variable names M1 and f1 by M2 and f2,
and the boldface words by their dual.

By applying Pseudocode B to the Figure 3a example,
- the image f1 is filled out with 1 over B2, 2 over B3, 3

over B4, and 4 over B5;
- the image f2 is filled out with 2 over B2, 3 over B3, 4

over B4, and 5 over B5;
- one gets the images M1 and M2 partially depicted in

Figures 3b and 3c respectively.
Pseudocode B differs from the color DT

implementation of Section 2, for two reasons. The first
one is that the DT applies now to the background (and
not to each colored CC). The second one is that the

background CCs must be identified by propagating the
contour line colors.

The linear interpolation g of image f is given by,
Pseudocode C below.

Pseudocode C

for (x, y) varying in E do
if f(x, y) = 0 /* i.e. (x, y) is a background point */

g(x, y) = f1(x, y) + (f2(x, y) – f1(x, y)) * M1(x, y) /
(M1(x, y) + M2(x, y));

else g(x, y) = f(x, y);
end do.

Figure 3 (a) Five contour line image, (b and c)
distance values to the contours along the dashed
line of Figure a.

Pseudocode B could be reused to implement a more
accurate (non linear) interpolation by applying it, besides
the original contour lines image, to the even and odd
contour line images.

The interpolation could be still improved by using
more accurate metrics, like the Octagonal, Chamfer and
Euclidean ones.

An interesting feature of the suggested algorithm is
its ability to interpolate properly areas like the one
marked by × in Figure 4. In this case, where most of the
interpolators do produce flat zones, the algorithm doesn’t,
since it is based on pairs of contour lines.

INPE ePrint: sid.inpe.br/yolanda/2004/05.24.18.48 v1 2004-05-25

Figure 4 Potential flat zone.

This is the case of the interpolators based on
Delaunay triangulation and its dual, the Voronoi diagram
[12], in situations like in the Figure 4 example, these
interpolators produce flat zones, since the triangles are
constructed from a same contour line. In order to solve
this problem some authors [12] introduce intermediate
lines and additional points between the contour lines.

Intermediate lines are usually obtained from
skeletons [13, 14]. At the contrary of the skeleton, which
generates only one intermediate line between two
contours, in the next section more than one intermediate
line are generated using Pseudocode B.

5. Intermediate line generation in contour lines

The intermediate line generation becomes a simple
operation by using two IDs.

This is shown for example, by applying Pseudocode
B to the Figure 5a image.

Figure 5 Intermediate lines in contour lines. (a)
Part of a contour line image, (b) three
intermediate contours, and (c) three

intermediate contour lines of the image
expanded by dilatation.

The generation of an image g containing the contour
lines of image f plus three (for example) intermediate
lines in between, is given in Pseudocode D below.

Pseudocode D

for (x, y) varying in E do
if f(x, y) = 0 /* i.e. (x, y) is a background point */

if M1(x, y) = M2(x, y) and f1(x, y) != f2(x, y) then
g(x, y) = (f1(x, y) + f2(x, y))/2;

else
if M1(x, y) = M2(x, y)/3 then

g(x, y) = f1(x, y) + (f2(x, y) – f1(x, y)/3;
else

if M1(x, y)/3 = M2(x, y) then
g(x, y) = f2(x, y) – (f2(x, y) – f1(x, y)/3;

end else;
end else;

end if;
else g(x, y) = f (x, y);

end do.

Figure 5b shows the Figure 5a image with 3
intermediate lines. Because of the discrete nature of the
image domain, the intermediate lines are generally not
connected. In order to solve this problem one can apply
an expansion by dilation [15] in the image. Figure 3c
shows the Figure 5a image expanded by dilatation with 3
intermediate lines. For better contrast between the
background and intermediate lines, the three intermediate
lines have been plotted using the same color.

6. Conclusions

In this paper, it was shown that the contour line
interpolation and intermediate line generation can be
solved by applying the DT to parts of the original image.

Furthermore, it was shown that the image
segmentation can be done while computing the IDs,
resulting in a very simple and fast algorithm.

In the future, applications of contour line
interpolation to image compression could be investigated.
In this case, the contour lines will be the image cross
section borders, and the reconstruction will be obtained
by interpolation.

Acknowledgements

The first author is supported by FAPESP, process:
02/02975-4.

INPE ePrint: sid.inpe.br/yolanda/2004/05.24.18.48 v1 2004-05-25

References

[1] H. J. A. M. Heijmans, Morphological image
operators, Boston: Academic Press, 1994.

[2] C. Arcelli, L. P. Cordella and S. Levialdi, “From local
maxima to connected skeletons”, IEEE Transactions
on Pattern Recognition and Machine Intelligence
PAMI-3:2 (1981), 134--143.

[3] C. Arcelli and G. Sanniti di Baja, “A one-pass two-
operation process to detect the skeletal pixels on the
4-distance transform”, IEEE Transactions on Pattern
Analysis and Machine Intelligence 11:4 (1989), 411--
414.

[4] F. Y. Shih and C. C. Pu, “A skeletonization algorithm
by maxima tracking on Euclidean distance
transform”, Pattern Recognition 28:3 (1995), 331--
341.

[5] A. F. Souza, “Esqueletos 8-isotrópicos”, Msc. Thesis,
National Institute for Space Research, INPE, Brazil,
2002.

[6] F. Preteux, “Watershed and skeleton by influence
zones: a distance-based approach”, Journal of
Mathematical Imaging and Vision 1 (1992), 239--255.

[7] P. P. Das, “Lattice of octagonal distances in digital
geometry”, Pattern Recognition Letters 11:10 (1990),
663--667.

[8] G. Borgefors, “Distance transformations in digital
images”, Computer Vision, Graphics, and Image
Processing 34 (1986), 344--371.

[9] M. A. Butt and P. Maragos, “Optimum design of
chamfer distance transforms”, IEEE Transaction on
Image Processing 7:10 (1998), 1477--1484.

[10] P. E. Danielsson, “Euclidean distance mapping”,
Computer Graphics and Image Processing 14 (1980),
227--248.

[11] F. Y. Shih and O. R. Mitchell, “A mathematical
morphology approach to Euclidean distance
transformation”, IEEE Transactions on Image
Processing 1:2 (1992), 197--204.

[12] D. Thibault and C. M. Gold, “Terrain reconstruction
from contours by skeleton retraction”, GeoInformatica
4 (2000), 349--373.

[13] C. M. Gold and J. Snoeyink, “A one-step crust and
skeleton extraction algorithm”, Algorithmica 30:2
(2001), 144--163.

[14] N. Amenta, M. Bern and D. Eppstein, “The crust
and the beta-skeleton: combinatorial curve
reconstruction,” Graphical Models and Image
Processing 60:2 (1998), 125--135.

[15] G. J. F. Banon, “New insight on digital topology”,
in Mathematical morphology and its applications to
image processing, L. Vicent and J. Goutsias Eds.,
Palo Alto, CA, USA, Kluwer Academic, 2000.

