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Abstract. Analysis of information from multiple data sources obtained through
high resolution instrumental measurements has become a fundamental task in
all scientific areas. The development of expert methods able to treat such multi-
source data systems, with both large variability and measurement extension,
is a key for studying complex scientific phenomena, especially those related to
systemic analysis in space and environmental sciences. In this paper, we propose
a times series generalization introducing the concept of generalized numerical
lattice, which represents a discrete sequence of temporal measures for a given
variable. As a case study, we show a preliminary application in space science
data, highlighting the possibility of a real time analysis expert system to be
developed in a future work.

1. Introduction
Scientific research based on high resolution measurement instruments (sometimes com-
bined with high resolution numerical simulations) leads to systemic multiple data sources
resulting in heterogeneous scientific data, that we call complex data systems. As a con-
sequence, modern science is confronted with a large variety of high resolution data, ad-
vanced mathematical techniques and algorithms for multidimensional data analysis. The-
fore, a development of importance to scientific computing in general is the representation
of the enormous amount of information as organized and coherent database systems. A
special attention should be devoted to complex data system composed of time series gen-
erated from complex systems observation. New concepts such as complex systems are
related to real systems in physics, chemistry, biology, economics, etc, when they are
characterized by collective, time-dependent phenomena emerging from the dynamic in-
terplay of a large number of heterogeneous constituents, observed and analyzed in detail
[P.E.Cladis and P.Palffy-Muhoray 1995, Yanner-Bar-Yan 1997]. It means that there will
be observations of structures and processes in all possible temporal, spatial and spec-
tral scales. Because of this multi-scaling and multidimensional approach, information on
nonlinearities, long-range correlations and phase transitions should be present in a post-
analytical data representation. For this reason, in this paper, we introduce an innovative



generalization which represents a set of time series based on: (i) its constitutive variables
Ui(t, s) as function of time (t) and euclidian space (s(x,y,z)); (ii) its time and space dis-
crete extensions; and (iii) second-order measurements coming from the analysis of each
Ui(t, s). Hence, in our approach the concept of generalized numerical lattice (GNL) is
introduced based on structural and phenomenological information of a discrete sequence
of spatio-temporal measures for a given constitutive variable. This paper presents a case
study introducing the GNL concept to an integrated data representation for the Brazilian
space weather program. In this program there are several data files coming from high
resolution observations taken by different satellites and ground instruments. There are
data from the solar atmosphere, interplanetary medium, magnetosphere and ionosphere
observed in one (1D), two (2D) and three (3D) spatial dimensions with different time and
space resolution and different frequencies, all representing distinct physical processes
possibly nonlinearly correlated. Thus, the main goal in a space weather program is to fol-
low the Sun-Earth magnetic coupling to understand the solar-terrestrial relationship and
predict geoeffective events. Furthermore, it will be clear from the following sections that
GNL-based data representation can be useful for data mining, advanced data analysis and
information representation systems in many different scientific areas where a robust data
description from a complex data system is required.

2. Complex Data Systems
In most scientific areas, there are many ways to collect data from natural systems in or-
der to extract data structural information and perform different kinds of analysis on them.
For this reason, researchers usually have a lot of data sets stored independently, occupy-
ing huge hard drive memory space, which increases with the technological advances. In
this context, data systems are often composed by spatio-temporal information of 1D, 2D
and 3D which can represent many distinct possible measurements taken from the same
observed system.

Nowadays, for example, a data system from a solar active region is composed of
many time series observed in almost all electromagnetic spectra (radio, visible, infrared,
UV, x-ray) in 1D and 2D, plus a set of possible correlated data from the interplanetary
field, magnetosphere and ionosphere [SPIDR ]. Also, data from numerical simulation
based on magnetohydrodynamic (MHD) models can be addressed [Buchner et al. 2003].
Thus, space weather investigation, for example, is a promising application where more
than fifty different kinds of time series data are available involving observations and sim-
ulations in all possible spatio-temporal physical dimensions [Hanslmeier 2007]. Gener-
ally, space physics data are generated from international space programs administered by
[NASA ], [NOAA ] and [ESA ].

As illustrated in Figure 1, the task of modeling the data system in an organized and
meaningful representation is achieved by the execution of a sequence of dependent steps.
First, real systems observations are performed using several instruments and/or numerical
experiments. The resulting measurements can be organized as metadata and data files.
Then, data processing is performed, which refers to a class of programs that organize
and manipulate data, usually large amounts of numeric data. Next, the data are usually
visualized and analyzed. A post-analytical data acquisition system is a device designed to
measure and log some data parameters. In a nutshell, one can acquire measurements over
the observable system in as many variables as desired, then perform a parameterization



Figure 1. From the real system observation to an useful data system representa-
tion.

and analyze the information in order to put them in the numerical lattice representation,
as proposed in next section. The final model is obtained by gathering all files – one for
each kind of data – in a single Data System Representation (DSR), from which systemic
analysis might be performed to identify, for example, space weather features responsible
for geostationary satellite anomalies.

In this paper we introduce the concept of Generalized Numerical Lattice (GNL) in
order to generate a post-analytical data integration which we call here a GNL-based Data
System Representation.

3. Generalized Numerical Lattices

Numerical lattices are interpreted here as any regular and discrete distribution of numer-
ical quantities structured in a Cartesian space bounded by linear spatial dimensions. We
propose here a new formalism for a mathematical generalization of data systems obtained
from multiple measures over a single system, based on the concept of generalized nu-
merical lattices (GNL) which represents any dynamical sequence of measurements of a
constitutive variable Ui(t, s). A GNL is defined as a structural data representation, £,
where a given time series is represented by three kinds of coefficients, being the first and
second for the data structure (function and extension domains, respectively) and the third
kind for post-analytical properties as statistical moments, power spectrum index, morpho-
metrical quantities, etc. Thus £ can be written as

£ = f (κ, λ`, µp) , (1)

where κ is defined as being the variational degree, which is the amount of state
variables from the fundamental domains (time and three-dimensional Euclidian space);
λ` indicates the extension coefficients, given by the quantity of discrete measures at each
usual domain; and µp is the set of post-analytical properties characterizing the dynamics
and/or statistical behavior of the constitutive variable Ui(t, s).



3.1. The Variational Degree: κ

The variational degree κ depends on how many of the possible kinds of constitutive vari-
ables from the real system are available in the data system. In a GNL all variables that
can be measured are considered varying at least in time. As shown in Table 1, time (t) is
always present and is characterized by κ = 1. So we can have, for a 1D discrete sequence
of data, one temporal observable U(t), correspondng to κ = 2. If we have space-time in-
formation measured in one, two or three dimensions, respectively, the variational degree
increases to 3, 4 or 5. For a spatio-temporal series (e.g., a sequence of images composed
by λ1× λ2 pixels) we have κ = 4. When the data is a dynamical hypercube composed by
λ1 × λ2 × λ3 voxels the GNL has κ = 5. Note that GNL composed by extra dimensions
and new coupled variables (functionals) correspond to κ ≥ 6.

3.2. The Extension Coefficients λ`

Extension coefficients λ` refer to data set length in each measured variable. So, λ0 refers
to the number of points N that compose the vector U(t); λ1 is the size of the data in the x
Euclidian spatial domain; λ2 is the size of the next discrete dimension y , and so on. Thus,
a £2,λ0 represents a U(t) time series composed by λ0 points, while a £4,λ0,λ1,λ2 represents
a spatio-temporal series composed by λ0 images of size λ1 × λ2 with a intensity measure
U(t, x, y) in each correspondent pixel (x, y). As examples, a £2,104 represents a U(t) time
series composed by 10.000 points, while a £4,102,64,64 represents a dynamical sequence of
100 images of size 64× 64. A given GNL £5,102,64,64,64 represents a dynamical sequence
of 100 hypercubes of size 64 × 64 × 64 with a intensity measure U(t, x, y, z) in each
correspondent voxel (x, y, z).

Table 1. The constitutive variables as a function of the variational degree κ.
κ Constitutive Variables
1 U1 = t

2 U1 = t;U2 = f(t)
3 U1 = t;U2 = x;U3 = f(x, t)
4 U1 = t;U2 = x;U3 = y;U4 = f(x, y, t)
5 U1 = t;U2 = x;U3 = y;U4 = z;U5 = f(x, y, z, t)
6 U1 = t;U2 = x;U3 = y;U4 = z;U5 = g(Ui, i ≤ 4);U6 = f(x, y, z, U5, t)
...

...

3.3. The Post-analytical Parameters µp

There are several post-analytical parameters µp which are relevant for time series char-
acterization [Dunn 2005, Peitgen et al. ]. When κ = 2, the autocorrelation of U(t) is
the first property to be considered. Thus, µ1 is the cross-correlation of U(t) with it-
self, a measure with values in the interval: −1 ≤ µ1 ≤ 1, which characterizes repeat-
ing intensities, such as the presence of a periodic signal which has been buried under
noise, or the missing fundamental frequency in U(t) imposed by its harmonic frequencies
[Dunn 2005]. When the variability pattern of U(t) is a perfect Gaussian white noise we
have µ1 ≈ 0 (non-correlated with a normal probability distribution). Hence, µ1 is able
to detect non-randomness in data and can be used to identify an appropriate time series
model when U(t) has a deterministic component. Consequently, a second kind of useful



post-analytical property is the characterization of 1/fµ2 noise from the power-spectrum of
U(t) [Keshner 1982]. Here, the power-law spectral index µ2 is used to identify the scales
in which the lattice presents stronger correlation. The correlation level can be formulated
either in simple frequency form or in cumulative frequency form, usually as a rank-size
type relationship, which is preferred in this case, when the focus is on the rarer or larger
events that dominate the distribution of U(t) for different temporal scales. There are many
other post-analytical properties as Kullback-Leibler divergence [Burnham and R. 2002],
fractal-like dimensions, Kolmogorov-Sinai entropy, Hurst exponent [Peitgen et al. ], sin-
gularity spectral index [bol ], etc, which can be addressed for GNL with κ = 2 (1D
time-series case U(t)). Although the quantity of post-analytical measures is an open set
{µ1, ..., µj, ..., µp}, here we are considering µ1 (the autocorrelation coefficient) and µ2

(the power-spectrum index) for £(2, λ`, µ1, µ2). However, when κ = 4, a third property
is given by morphometrical and/or image processing measures. Some examples of post-
analytical properties for the case κ = 4 are spatial correlation functions, Minkowski func-
tionals [K.R.Mecke and D.Stoyan 2000] and gradient moments from the Gradient Pattern
Analysis (GPA) [Rosa et al. 1999, Rosa et al. 2003, R.R.Rosa et al. 2007], which charac-
terize 2D Physical information of the U(t, x, y) pattern observed in the spatio-temporal
domain (see Table 1).

Without loss of generality, in this paper we use the following final notation for
a given GNL: £κ,λ0,...,λ`

(µ1, µ2), with µ1 and µ2 representing, respectively, the auto-
correlation coefficient and the power-spectrum index, which can be calculated for U(t),
U(t, x, y) and U(t, x, y, z). Such parameters are used here as the simplest examples for
µ1 and µ2.

Taking the examples given in Section 2.2, a £2,104 (0.28,-1.66), hence, represents
a U(t) time series composed by 10.000 points, with auto-correlation equals to 0.28 and
power-spectrum index equals to -1.66. Such values are revealed to diagnose turbulent-
like behavior and, hence, can suggest a process or modeling for the U(t) time series.
In this example, (µ1, µ2) are post-analytical properties explicitly represented in a given
Generalized Numerical Lattice. Examples for the cases when κ = 4 and κ = 5 can be
easily perceived.

3.4. A Data System Representation

Taking into account a set of generalized numerical lattices representing a collection of
experimental measurements of a given observed system, a post-analytical Data System
Representation (DSR) consists of a grid containing all the GNLs relative to a particular
data system, with the lines arranged by λ0 (the data temporal extension) and the columns,
by κ, both in ascending order, as in the example illustrated in Figure 2. The post-analytical
parameters (µ1, µ2, . . . , µp) are located under each respective GNL. An important prop-
erty of this DSR is that the right-hand column and the bottom row are marginal totals.
The right-hand column gives the marginal total for GNL with the same κ and the bottom
row gives the marginal total for GNL (the values are organized following λ0 increasing),
so that the box in the bottom right-hand corner is the grand total L of GNL considered.
Note that the DSR compute and show the total amount of GNL representing the data sys-
tem. When the data system is represented for all values of κ, the right-hand column gives
the marginal total of time series U(t) (1st line), U(t, x) (2nd line), U(t, x, y) (3rd line),
U(t, x, y, z) (4th line), etc. When there is no data for some κ, the representation takes the



next κ automatically. For example, when there is no £3 (U(t, x)), the total of time series
£4 (U(t, x, y)) is shown in the right-hand of the second line.

Figure 2. The GNL-based Data System Representation.

This GNL-based DSR may be helpful in many areas and applications, including
Data Mining based on structural properties of time series, multidimensional data model-
ing, multivariate informations systems, specially those obtained in space and environmen-
tal physics, genomics, neuroscience besides other spatio-temporal databases in general
sciences.

4. A Case Study in Space Physics

Space science data often need to be systemically analyzed in order to obtain mutual in-
formation necessary for space weather forecasting. Usually, the analysis is necessary to
understand the physical processes studied by identifying and understanding the interrela-
tionships of different parameters. In other cases it is necessary to use the data to build a
model of the solar process which are geoeffective. In this context, solar activity is one of
the main sources of space disturbances, which are primarily responsible for space weather
phenomena observed in the Interplanetary Medium and in Earth plasma atmosphere.

In this section we show an example of using GNL-based DSR for multiple data
sources based on the Space Weather Program which has been developed at [INPE ]. Ini-
tially, we have performed a preliminary data selection from three data sources: (i) The
Space Physics Interactive Data Resource [SPIDR ], (ii) The NASA International Solar-
Terrestrial Physics [ISTP ] and (iii) The Ondrejov Solar Radio Data Archive [ASU ]. The
metadata we have selected to illustrate this application are shown in next section, all re-
lated to the space weather activity observed from June 5-8, 2000.

4.1. The Simplest GNL-based DSR

Table 3 shows the GNL-based DSR for the June 6, 2000 Solar Activity (SAJ6). The GNL
are obtained from the data shown in Table 2. The quantities inside the parenthesis show
the post-analytical properties obtained over these data. Note that, when some property is
missing, it is indicated in the lattice keeping the correspondent identification µp.



Table 2. Selected data for SAJ6.

Data Instrument (Source) Temporal Size (N = λ0) Spatial Size (λ`, ` > 0)
Radio Burst 3GHz Ondrejov (Sun) 2988 -

X-Ray Flux GOES (Sun) 5760 -
Ion Density ACE (IMF) 5600 -

Dst Kyoto (MAG) 8736 -
UV Image TRACE (Sun) 3 256
WL Image TRACE (Sun) 9 512

Table 3. The Simplest GNL-based DSR for SAJ6
£2,2988 £2,5600 £2,5760 £2,8736 4

(0.6,−1.69, µ3) (0.4,−1.87, µ3) (0.5,−1.56, µ3) (0.3,−1.28, µ3)
£4,3,256,256 £4,9,512,512 2

(〈0.8〉 , µ2, 1.92) (〈0.6〉 , µ2, 1.96)
£5,1,64,64,64 1
(µ1, µ2, µ3)

3 2 1 1 7

A more complete GNL-based DSR for SAJ6 is under construction, using all avail-
able data from SPIDR and ISTP. In our complementary work, using the future expert
system for GNL-based DSR, we will take into consideration also data from the space
programs administered by the Brazilian National Institute for Space Research [INPE ].

5. Concluding Remarks

Here we propose a new concept for physically meaningful data generalization, that we
name generalized numerical lattices (GNL). For a given data system, every time series
which can be interpreted as a GNL is organized in a GNL-based Data System Represen-
tation. We expect to provide with this new data representation a better way for modeling
and understanding complex data systems, avoiding redundant analysis and storing of in-
formation, and, moreover, introducing new methods of systemic characterization. The
GNL-based DSR algorithm is still in progress, and implementations may be done soon
to confirm its scientific applicability. To be effective, it must be simple enough to build
the GNL-based DSR structure to the end user, supporting a 2nd order systemic analysis,
which, due to the present scientific purpose, was not developed in this paper.

Besides the space physics data representation exemplified in this paper, the GNL-
based DSR may also be helpful in many areas and applications, including Data Mining
based on phenomenological properties in physics, chemistry and biology. Special at-
tention should be paid to multidimensional time series data modeling and multivariate
analysis in Environmental Physics, GIS, Neuroscience, Genomics and Astrophysics.
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