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ABSTRACT

Context. Coronal mass ejections (CMEs) are large plasma structures expelled from the low corona to the interplanetary space with a
wide range of speeds. In the interplanetary medium CMEs suffer changes in their speeds because of interaction with the ambient solar
wind.
Aims. To understand the interplanetary CME (ICME) dynamics, we analyze the interaction between these structures and the ambient
solar wind (SW), approaching the problem from the hydrodynamic point of view.
Methods. We assume that the dynamics of the system is dominated by two kinds of drag-force dependence on speed (U), as ∼U and
∼U2. Furthermore, we propose a model that takes variations of the ICME radius (R) and SW density (ρsw) into account as a function
of the distance (x) as R(x) = x0.78 and ρsw(x) = 1/x2, respectively. Then, we solve the equation of motion and present exact solutions
Results. Considering CME speeds measured at a few solar radii and at one AU, we were able to constrain the values of the constants
(viscosity and drag coefficient) for the linear (U) and quadratic (U2) speed dependences, which seems to reproduce the ICME – SW
system well. We found different solutions in which the concavity of the curves of the ICME speed profile changes, depending on the
dominant factor, either the ICME radius or the SW density.
Conclusions. This work shows that the macroscopic ICME propagation may be described by the hydrodynamic theory and that it is
possible to find analytical solutions for the ICME-SW interaction.
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1. Introduction

A major solar transient event that injects large amounts of mass
and energy to the interplanetary space is known as coronal mass
ejection (CME). These vast structures of plasma and magnetic
field, observed principally with white light coronographs, are
known as the main link between the Sun’s activity and geomag-
netic storms (Gosling et al. 1999). We classify CMEs according
to their initial speed into two categories: “slow” for CMEs with
speed lower than 400 km s−1; and “fast” for CMEs with speeds
higher than 400 km s−1. In both cases, an interaction between
the ICME structure (the remnant of a CME in the interplane-
tary medium) and the ambient solar wind takes place. This inter-
action can be described as a momentum transfer involving two
systems, a body (the CME) moving in an ambient fluid, the so-
lar wind (SW). In the case of “fast” CMEs the process causes
a deceleration of the ICME structure from its initial speed (in
the range of 400 km s−1 to 3000 km s) towards the value of the
SW speed (400 km s) at distances of a few AU. In general, the
ICME dynamics have been deduced by complementary obser-
vations (of the same event) close to the Sun by coronographs
and close to the Earth by satellite in-situ measurements. This re-
striction (observations from only two points) has been overcome
by the interplanetary scintillation (IPS) technique (Manoharan
2006) and direct white-light observations in the interplanetary
medium (Tappin 2004).

Using these observational methods, the acceleration of
ICMEs has been confirmed; however, the profile and

mechanisms of the ICME dynamics are still unknown. Many
efforts have been made to describe the dynamics of ICMEs.
Different kinds of theoretical, empirical, and numerical models
have been studied. Recent analytical models of ICME propaga-
tion have been presented by Canto et al. (2005) and Borgazzi
et al. (2008, hereafter Paper 1). Canto et al. (2005) studied the
dynamics of a fluctuation in density and speed starting at the
base of the solar corona and traveling in the ambient solar wind.
They used a kinematic approximation, proposed CME properties
as velocity, density, and temperature, and found the ICME travel
time from a few solar radii (R�) to one AU. In Paper 1, the au-
thors found exact solutions for the behavior of the speed versus
time of ICMEs. The interaction between the ICME and the sur-
rounding medium is described by the action of viscous forces,
and values of drag and viscous coefficients for the medium were
obtained. Empirical models were developed mainly to forecast
the 1 AU arrival time of ICMEs (e.g. Gopalswamy et al. 2000,
2001, 2005). The methodology applied in these works consists
on the establishment of relationships between the observed data,
i.e., the CME initial speed; speeds observed in the interplanetary
medium; and the mean acceleration acting on the ICMEs. The
studies reported by Vršnak (2001); Vršnak et al. (2002, 2004,
2007) may be considered in the same branch, with the differ-
ence that in these cases the studies are done, from the point
of view of viscous forces acting on the ICMEs. The group of
numerical simulation of the transport of ICMEs is more nu-
merous (e.g. Vandas et al. 1995; Cargill et al. 1996; Cargill
2004; Odstrčil et al. 1999a,b; Gonzalez-Esparza et al. 2003;
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Chen 1996). They generally study the evolution, through the in-
terplanetary space, of some properties (temperature, density and
speed) of the plasma structure (plasmoids or magnetic clouds).

To better understand the ICME behavior and to encourage
this kind of work (from a theoretical point of view), in this work
we approach the study of the ICMEs dynamics using the hy-
drodynamics theory and considering the ICME – SW system as
two interacting fluids, under the action of viscous forces without
taking the microscopic details of this interaction into account.

2. Dynamical propagation model of ICMEs

2.1. Initial ICME conditions

In this work we concentrate in the ICME dynamics, from ∼30
to ∼215 R�. As the initial point is far enough from the solar
surface, we assume the following considerations, presented by
Chen (1996) and Sheeley et al. (1997):

– the gravity force is negligible. For example, in Fig. 7 of Chen
(1996) the gravity force tends to zero at approximately 110
min after CME initiation, corresponding to a distance of the
expanding loop apex of ∼2 R� (see Fig. 5 of the same paper);

– the Lorentz force is negligible. In Fig. 9 of Chen (1996),
the Lorentz force is practically zero after 200 min of the
CME initiation. This time corresponds to an apex height of
∼6 R�;

– the solar wind speed is constant. At 30 R� the solar wind
has already been formed. We assume a constant speed of
400 km s−1. Observationally, Sheeley et al. (1997) found
that this constant speed begins at approximately 30 R�.
Some models assume a speed profile of the form vsw =
a0 tanh(x/b0) and adjust the constants a0 and b0 to obtain a
constant speed (400 km s−1) at a given distance, for example
at 35 R� (Chen 1993) and 40 R� (Chen 1996);

– after the initial point, the drag force is the only force acting
on the system;

– We do not consider the magnetic properties of ICMEs.

2.2. Basic theory

When a body moves in a fluid, a force starts acting over the body
due to the interaction with the surrounding medium. This force
is due to the relative motion between the body and the fluid and
is named drag force in a general way. In a first approach we can
distinguish between two types of drag forces, one that has a lin-
ear dependence on the velocity, whereas another has a quadratic
dependence (Kundu & Cohen 2004). In our approach, the body
is the ICME and the SW is the ambient fluid. The main concern
in this model may be that we are only considering the hydrody-
namic behavior of the system, i.e., no magnetic field interaction
is considered. As the plasma in the interplanetary medium has
a very low density and is collisionless, the momentum transfer
may be due by waves or other collective microscopic processes
that, in this approximation, are not relevant. For a macroscopic
quantitative description of the ICME – SW dynamics involving
drag force, we must take the equation of motion for incompress-
ible fluids (∇ · u = 0) into account, i.e., the Navier-Stokes equa-
tion:

ρ
Du
Dt
= −∇p + ρg + μ∇2u, (1)

where ρ is the ambient density, u is the velocity of the fluid, p the
pressure, and μ the viscosity coefficient. Considering stationary

conditions for the flow and neglecting gravity, we can rewrite the
last equation as

ρu · ∇u = −∇p + μ∇2u. (2)

A useful parameter in hydrodynamics theory is the Reynolds
number

� = ρdU
μ
, (3)

where d is a characteristic length of the body, U the speed, and μ
the viscosity of the medium. In general, � is used to describe
the behavior of the system and, in general, two extreme cases
are considered: when the speed is dominant (� � 1) or when
the viscosity is dominant (�� 1). In the case of high Reynolds
number (� � 1), Eq. (2) can be written as (Kundu & Cohen
2004):

ρu′ · ∇u′ = −∇p′ +
1
�∇

2u′. (4)

On the other hand, for low Reynolds number (� � 1), Eq. (2),
takes the form

�u′ · ∇u′ = −∇p′ + ∇2u′. (5)

From Eqs. (4) and (5), it is possible to derive the expressions for
the force acting on a body in a “laminar” (low�) or “turbulent”
(high�) regimes (see Kundu & Cohen 2004, for details) as

Fl = 6πμR · U (6)

and

Ft =
CdAρsw · U2

2
· (7)

In Eqs. (6) and (7), the indexs l and t refers to laminar and tur-
bulent regime, μ is the viscosity of the medium, R the ICME
radius, ρsw the density of the interplanetary medium, and A the
cross section of the ICME that is in contact with the interplan-
etary medium (considering spherical symmetry). A common di-
mensionless parameter Cd describes the “intensity” of the drag
force. It depends mainly on the shape of the body and could be
defined as Cd = Ft/( 1

2ρU
2A), i. e. the rate between the drag force

and the kinetic energy density and the transversal area of the
body (Landau 1987). It is useful to describe the Cd parameter as
a function of the Reynolds number (Eq. (3)). For example, for a
spherical body, the drag coefficient is between 0.4 and 0.6., in the
high Reynolds number range (between 103 and 105), whereas for
a low Reynolds number (2×10−1) the Cd is ∼ 102 (see Fig. 10.10,
Daugherty et al. 1989). Therefore, the value of Cd depends on
the system variables and is difficult to give absolute numbers
in the ICME context. The ICME deceleration described by our
model involves the action of Eqs. (6) and (7), as was described
in Paper 1. We note that both forces, “laminar” and “turbulent”
are used in similar ways as in the hydrodynamics theory.

2.3. Variability of ICME radius

We used the expressions for the drag forces (Eqs. (6) and (7))
in the equation of motion. We also consider that the ICME ra-
dius (R) varies with the distance as R = xp, assuming p = 0.78
(Liu et al. 2005). In a system of reference where the ambient
SW is at rest, and therefore, the ICME speed is U = Ucme −Usw,
where Usw is the solar wind speed, we obtain the following dif-
ferential equations for “laminar” and “turbulent” regimes:

− 6πμxp(U − Usw) = mcmeU · dU
dx

(8)
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Fig. 1. ICME speed versus distance for “laminar regime”, showing a
weak (μ = 0.1 g/cm s in continuous lines) and strong (μ = 0.25 g/cm s
in dotted lines) ICME – SW interaction. Here and in the following fig-
ures, the y-axis indicates the initial CME speed used to obtain the pre-
sented curves.

and

− Cdπρswx2p

2
(U − Usw)2 = mcmeU · dU

dx
· (9)

Solutions of Eqs. (8) and (9) are given by

x(p+1) − x(p+1)
0 = −mcme(p + 1)

6πμ

×
(
U − U0 + Usw ln

[
(U − Usw)
(U0 − Usw)

])
(10)

and

x(2p+1) − x(2p+1)
0 = −2

mcme(2p + 1)
Cdπρsw

×
[

Usw

(U0 − Usw)
− Usw

(U − Usw)
+ ln

[
(U − Usw)
(U0 − Usw)

]]
· (11)

In Eqs. (10) and (11), U0 and x0 are the initial CME speed and
position (as measured at the coronograph field of view). To an-
alyze the motion described by Eqs. (10) and (11), we present in
Figs. 1 and 2 the resulting speed as a function of the position, for
different initial speeds, considering Usw = 400 km s−1. The plots
are for two different values of μ = 0.1 g/cm s (continuous lines)
and μ = 0.25 g/cm s (dotted lines); and Cd = 6 × 104 (continu-
ous lines) and Cd = 1.6×105 (dotted lines). In all cases, we have
chosen the parametres (μ and Cd) in such a way that the ICME
speed at 1 AU fall in a range similar to the observed (see Paper 1
for more details).

2.4. Density variation in the interplanetary medium

To improve the analysis, we used the Leblanc et al. (1996) model
to account for the variation in the SW density with the distance,
given by

ρsw(x) =
a
x2
+

b
x4
+

c

x6
, (12)

where a = 3.3×105, b = 4.1×106 and c = 8.0×107 are empirical
coefficients. The quadratic term represent the density variation in
the interplanetary space, whereas the high-order terms represent
the density variation in the low corona. In this way, the param-
eter a is computed using the density measured at 1 AU. As we
are interested only on the density variation in the interplanetary
medium (from 30 R� to 215 R�), we only take the quadratic term
in Eq. (12) into account.
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Fig. 2. ICME speed versus distance for “turbulent regime”, showing a
weak (Cd = 6 × 104 in continuous lines) and strong (Cd = 1.6 × 105 in
dotted lines) ICME – SW interaction.
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Fig. 3. ICME speed versus distance for “turbulent regime” considering
ICME radius and SW density variable. The ICME - SW interaction is
weak for a drag coefficient Cd = 2 × 104 (continuous lines) and strong
for Cd = 8 × 104 (dotted lines).

2.4.1. “Turbulent” regime

The “turbulent” regime, described by Eq. (7), has an explicit de-
pendence with the density, therefore, by using ρsw = a/x2 we
obtain the following equation

− Cdπax(2p−2)

2
(U − Usw)2 = mcmeU · dU

dx
· (13)

The solution is given by

− Cdπa
2mcme(2p − 1)

[
x(2p−1) − x(2p−1)

0

]
=

Usw

(U0 − Usw)

− Usw

(U − Usw)
+ ln

[
(U − Usw)
(U0 − Usw)

]
· (14)

The behavior of the speed versus position, given by Eq. (14),
can be seen in Fig. 3, where we have plotted the solutions for
different initial speeds and using two drag coefficients, 2 × 104

(continuous lines) and 8 × 104 (dotted lines).

2.4.2. “Laminar” regime

To describe the motion of the ICMEs considering the “laminar”
regime, it is necessary to express the “laminar” force as a func-
tion of the density of the medium (in this case the SW den-
sity). Therefore, we use the relationship between the dynamic

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811171&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811171&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811171&pdf_id=3


888 A. Borgazzi et al.: ICME dynamics

0.2 0.4 0.6 0.8 1.0
Distance (AU)

500

1000

1500

S
pe

ed
 (

km
/s

)
Laminar - Rad and Den Var

Fig. 4. ICME speed versus distance for “laminar regime” considering
ICME radius and SW density variable, in this case the value of the kine-
matic viscosity is 5 × 1020 cm2/s for the weak ICME – SW interaction
(continuous lines) and 1.25× 1021 cm2/s for the strong interaction (dot-
ted lines).

viscous coefficient μ and the kinematic viscous coefficient ν, as
(see Kundu & Cohen 2004, for details):

ν =
μ

ρsw
· (15)

Using Eq. (15), the equation of motion becomes

− 6πνax(p−2)(U − Usw) = mcmeU · dU
dx

(16)

and the solution is

− 6πνa
mcme(p − 1)

[
xp−1 − xp−1

0

]
=U + Usw ln

(U − Usw)
(U0 − Usw)

− U0. (17)

Finally, the behavior of the speed versus position for this case
can be seen in Fig. 4, where we have plotted the solution
(Eq. (17)) for different initial speeds and using a value of
5× 1020 cm2/s (continuous lines) and 1.25× 1021 cm2/s (dotted
lines) for the kinematic viscosity.

3. Discussion and conclusion

The acceleration in the interplanetary medium of CMEs is
well-established (Gopalswamy et al. 2000, 2001; Manoharan
et al. 2001; Manoharan 2006; Howard 2007). This acceleration
has been explained by an increase of the ICME mass (snow-
plough model Tappin 2006) or due to Lorentz force (Chen 1996;
Howard 2007), although it is more common to attribute this ac-
celeration to drag forces (Vršnak 2001; Cargill 2004). However,
the exact form, the magnitude of the related coefficients and the
dependence of this drag force with the CME or SW parameters
are still unknown. Even more, there are doubts about this force
acting on ICMEs (Reiner et al. 2003; Forbes et al. 2006). As
pointed out by Vršnak et al. (2006), by considering the kinetic
energy of ICMEs, the gravity and Lorentz forces are negligi-
ble in the interplanetary space. Therefore, a drag force should
act in the interchange of momentum between the ICME and
the SW. All forces, Lorentz, aerodynamic drag, and gravity, de-
crease with the heliocentric distance (Chen 1993, 1996; Sheeley
et al. 1997; Vršnak et al. 2006). Although, the Lorentz force is
the most important at low heights then the drag becomes pre-
dominant after ∼30 R� (Vršnak et al. 2006). Recently, to ex-
plain IPS and white light observations (SMEI), Howard (2007)
has suggested that the drag force overcome the Lorentz force
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Fig. 5. ICME speed versus distance for the four models analyzed in
this work. a) “laminar” regime considering variability in ICME radius
(Eq. (10)) and μ = 0.175 g/cm s (dashed line). b) “turbulent” regime
considering variability in ICME radius (Eq. (11)) and Cd = 5 × 104

(dot-dashed line). c) “laminar” regime considering variability in ICME
radius and SW density (Eq. 17) and ν = 8.75 × 1020 cm2/s (continuous
line). and d) “turbulent” regime considering variability in ICME radius
and SW density (Eq. (14)) and Cd = 1.1 × 105 (dot line).

at greater distances, between 80 to 100 R�. Here, since we are
not taking the magnetic field effects into account, we neglect
the Lorentz force. In order to understand and model the drag
force acting on the ICME-SW system, we explore two forms of
this force (linearly and quadratically dependent with the ICME
speed) and variations in two parameters of the system (the CME
radius and the SW density). Our analytical analysis helps to
physically understand the effects of these parameters and depen-
dences in the ICME dynamics. To perform such comparison, in
Fig. 5 we plot Eqs. (10), (11), (14), and (17), assuming an initial
speed of 1000 km s−1 and the parameters (μ and Cd) correspond-
ing to the mean values of these parameters used in Figs. 1 to 4.
Upon inspection of Fig. 5, it is easy to see a completely different
behavior between the models considering only variability of the
ICME radius and considering variability of both, ICME radius
and solar wind density.

When the dominant variation is the CME radius (as x0.78),
the curves have negative concavity; when the density variation
(as x−2) is dominant, the concavity changes, meaning that the
density of the medium plays an important role in the transport
of the ICMEs (Reiner et al. 2003). Using scintillation data (IPS),
Manoharan et al. (2001) and Manoharan (2006) have found that
ICMEs show a low decline in speed below 100 R� (0.36 AU) and
a rapid decrease after this distance. This behavior agree with the
concavity of the curves in Figs. 1 and 2. By analyzing type II
bursts, Reiner et al. (2003) find that a drag force cannot explain
the observed frequency drift. They argue that a change in the
concavity of the velocity-distance curve is necessary in order to
fit the type II data. We note that Reiner et al. (2003) used simi-
lar variations for both CME area (∼x2) and SW density (∼x−2).
Here we show that it is necessary to determine the dominant
parameter in the drag force in order to determine the concav-
ity of the curve. Considering the “turbulent” regime and using
the variation in radius as the dominant factor, we note the drag-
coefficient between 0.6×105−1.6×105; on the other hand, if we
consider the density variation as the dominant factor, the drag’s
coefficient values diminish to the 2 × 104–8 × 104 range.
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