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Abstract -

We consider in this paper an axially symmetric, angle independent, perturbation ® of a
plane front in a cylindrical burner. We determine the transient states and the constant-
speed solutions of the Kuramoto - Sivashinsky equation which describes the behavior of
such a flame, analysing the stability of these last solutions.We calculate multiple possi-
ble states and transitions of stability which may lead to Hopf bifurcation and, therefore,

to time-periodic solutions.
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1 Introduction

Let us consider an axially symmetric,angle indepen-
dent, perturbation ® of a plane front in a cylindrical
burner of radius R. Let it be 7 the radial coordi-
nate, 7 time, L the Lewis number of the component
of the combustible mixture limiting the reaction, Lg
the critical Lewis number, which depends on the
physical properties of the mixture (Lp < 1) and
e = (Lo—L)/(1— Lo). Then, if the length variables
are measured in units of the width It of the ther-
mal flame structure and time is measured in units
of I /Uy - where U, is the normal velocity of the
plane flame front - and the coefficient of gas expan-
sion is assumed equal to one, the evolution of the
disturbed flame front is described by the Kuramoto-
Sivashinsky equation [1, 2, 3],

0P 1

1 €)’A’® +eA® + > Vo> =0. (1)
Due to the axial symmetry, one must impose the
condition
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This is not enough to determine a unique solution,

hence, in order to fix it, we shall investigate here
the case in which
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In equation (1) A is the one-dimension form of
the Laplacian operator , i.e.,

1d d
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Obviously ® = 0 is a solution of the boundary

value problem (1,2,3); linearizing (1) around it one
obtains

g—f +4(14e)2A28 + eAd =0,

which has the solution[4]

O(7, 7, \) = Jo(AF) exp(wT),
provided
w+ [4(1+e)*X* —e] X2 =0.

Here, and in the sequel, J, stands for the Bessel
function of first kind and order v. The condition
(2) is automatically satisfied, while (3) leads to

.
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where &; is the 7 — th zero of J;. Thus, the resulting

dispersion equation is:
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and, therefore, if e < 0 the plane front is linearly
stable for all modes. Let us then concentrate only
on the physically interesting case e > 0. With the
change of variables

P = eu, F=2e"12(1+e)r,
7 =4de 2(1 +e)?t,

(1) is reduced to the parameter free equation
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Let R be the new dimensionless radius corre-
sponding to R, and define

r =z

It is our purpose in this paper to determine con-
stant speed solutions of (5) subjected to conditions
(2) and (3) in the form

= _',u‘f £ f(z)a
that is, we seek f(z) such that
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and, if we set pu = %, k=1/R*

kA2 +OF 45 VI =0, (7)

also satisfying

(®)
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Going back to the stability problem, the disper-
sion equation in the new variables is, transposing
terms in (4):
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In this simpler form, it follows that the stability of
the planar solution changes as R goes through the
zeros of J;. Besides, if R < &1, then the plane front
is linearly stable to all perturbations of the form

2 Analytical solution
It is possible to prove, following alongside a simi-

lar proof given by Rabinowitz [5] for a bifurcation
theorem, that the boundary value problem (7-9)

has non-trivial solutions . For the sake of a simpler
notation, we define ¢;(z) and ars; as
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and
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We shall solve the boundary value problem
setting[6, 7, 8]

H2) = 3 fal@)em fol2) =0, f1(2) = i,

n=0
oo
k= z knffn, k0=1/€3,
n=0
gl 3. gat”, oo =0,
n=0
(10)
in (7 - 9). Collecting powers of € we obtain
k0v4fn i szn
(11)
n—1 1
= on— {kn_jv4fj + 5ijwn_j} ;
j=1

fn(0) = fn(1) = 0. (12)
A by-product of the proof of existence of the non-
o0

trivial solutions is that > fn(2)e™ must be orthog-
n=32
onal to g, thus
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Let us now define
fn(z) (= an(p)‘pp(z)'

p=0

Utilizing (14) in (11) and defining
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Conditions (12) are automatically satisfied while
(13) imply that

fm(0) =
fa@) =

0 Vn,
On1.

(16)

Expanding the products of Bessel functions in
(15) we finally obtain
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and therefore
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It follows from the properties of the Bessel functions

that
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7) and using (16)
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Choosing now p =i in (1
n—1 [o/e)

and finally, for all other values of p
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3 Numerical solution

A more direct, although not analytical, solution of
(6 - 9) can be obtained by a straightforward ex-
pansion of f in terms of Bessel functions[9]. We
saw in the previous section that each term of the
power series is itself a Fourier-Bessel series, thus,

if we exchange the order of summation and add on
the powers of € for fixed p in (10 - 14), we can write

= Z foo(p)WP(z)
p=1

The subscript co will have a clear meaning in the
next section, when time-dependent functions f (p,t)
will be introduced for the analysis of the transient
states, resulting in foo( s hm f(p,t). Using (18)

(18)

in equation (6) we get
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We thus obtain the following infinite system of
nonlinear algebraic equations
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If (19) can be solved, then its solution can be
used to determine

a =3 8 L)
r=1

One must observe that foo (p) = 0 Vp is a solution
of (19) and that the Jacobian of the system at this
solution is the diagonal matrix

[(& — B*) &56p] -

If R # &, Vp then the zero solution is unique. On
the other hand if R = &; for some i, the Jacobian
is singular. Any numerical method used to solve
a finite truncation of (19) will require a starting
point, the only simple one being the above men-
tioned trivial solution. We can then proceed as fol-
lows: we first truncate the series (18) to, say, N
terms, then employ the algorithm described in the
previous section to find an approximate solution of

(€2 — R?) €2 foo (p)+
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for given R close to & and 1 < p < N. The value of
€ corresponding to R is determined recalling from
section 2 that
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hence, £ =~ 2(& — R)/&2k. Finally, use the approx-
imation thus obtained as the initial guess for the
numerical method.

4 Transient states and stabil-
ity

Observe that if we substitute foo(p) by f(p, t) in

(18) and add from p = 0, then we can use the

resulting function u(z,t) for determining the tran-

sient states of the solutions of equation (5). Doing
so, we obtain

Fon=-m3aren, e
Fan = -z e |(5) -1] 6o
22

p,q=1 |J0 (Ep)Jo(éq

One must observe that (22) is a closed system,
that once solved, can be used for the integration
of (21). As before, for practical purposes, we shall
deal with truncations of f with N terms, referring
to the resulting systems also as (21) and (22), being
clear from the context whether it is a truncation or
the full system.

Let us consider an initial perturbation of the for
f(0) = epm(z), we then have :

etk Dinbulath )lf(p,t)f(q,t)}-

21 1 5 2 gt 2
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and it follows that it does not matter whether the
mode is linearly stable or unstable, it will become
different from zero for 0 < ¢t << 1. Furthermore,
still for ¢ small, one can expect f(i,t), i # m, to
be of order ? while f(m,t) = O(e). As t increases,
the behavior of the solutions is determined by those
modes with the greater rates of growth

(%) -

T :

One must observe that these rates are uniformly
bounded above by 3/16. In fact, as R increases
from 0 to oo, o; goes from —oo, through zero at
R = &, reaches its maximum of 3/16 at R = 2¢;
decreasing again to zero. This is an important prop-
erty, one must recall that §; ~ jm. Then for any
n, {9, = 2nm =~ 2§, which means that at the onset
of the instability of the 2n — th mode, the n — th
one attains its maximum rate of growth; however,
their importance is inverted again for R not much
greater than &3,. In fact, for any pair 5,1, 0; = oy
implies

L1

O'J': R2

& — R’ =¢ - R}

Therefore
G- =R(&-¢),
and then
Rj1= /& + £}
with s
&€
O'j =0 = —2~—2—‘2~
(€3 +¢7)

In particular, for j = n,l = 2n we have:

\) ~72L + 6%77,
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Thus, as long as 0.12€5, < 7, we have that in a
right neighborhood of &3, the leading mode is the
n — th one. This phenomenon can not take place
at odd ordered eigenvalues. At, say, £5,41 we have
that the n —th rate of growth is already decreasing.

This dominance of certain modes, which depends
on the value of R, leads to a balance among the dif-
ferent terms of equation (22), with the consequence
of a bounded behavior of the solution, resembling,
as it should be, the solution of the Landau equa-
tion. Figures 1,2,3 show f(1,t) and f(2,¢) and the



corresponding flame velocity f(0,t) obtained by nu-
merical integration of the system using Romberg’s
method with V = 20 for R = 5 and 0 < ¢ < 100.
It is evident from them that f(0,%) approaches a
linear dependence on t as the time increases, while
f(1,t) and f(2,t) converge to constants. This nat-
urally suggests the use if equation (22) for the lin-
ear stability analysis of the constant-speed solutions
o (p)obtained in the previous section, because they
are also solutions of (22). In fact, if one linearizes
this system at f(p, t)= foo(p), p > 1, one obtains
a linear system of ordinary differential equations
whose matrix is minus the Jacobian matrix used
for the determination of fu (p), i.e., its eigenvalues
determine whether this solution is stable or not.
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Figure 1: Transient state of the Fourier-Bessel coef-
ficient f(1,t).It presents a typical behavior of a so-
lution of the Landau equation. Ast — oo f(1,t) —

foo(l),indicated with the symbolx.

5 Discussion of results and
conclusions

As described in section 3 we used the algorithm of
section 2 with an order of approximation equal to
20 to determine the Fourier-Bessel coefficients of
the solutions and the coefficients of the Maclaurin’s
series of k and o at the eigenvalues &; for 1 <17 < 6,
employed Horner’s summation method to deter-
mine the initial guess for the system (20) with
N = 20 and solved it utilizing Newton-Raphson’s
method[10]

Figures 4 through 9 show the dependence of the
velocity p and the coefficients foo(p) 105 ap<iih
on the radius R. Several features are worth to be

0.10 —
f(2,)
088 % X X
005 —
0.03 —
——— transient
7 X constant - speed solution
0.00 =1 T T ‘ T ' T ‘
0.00 25.00 50.00 75.00 100.00
t

Figure 2: Same as Figure 1 with f (2,%) instead of
f(1,1)

observed in them: contrary to what happens with
the one-dimension problem, which has periodic so-
lutions for £ < 1 [6], 1 being the first eigenvalue,
counted from right to left, where the solution bifur-
cates subcritically, here the bifurcation at £; is tran-
scritical, existing a non-trivial solution for R < &;.
Furthermore, this solution exists up to the mini-
mum value of R, Rymin =~ 3.366706,with a corre-
sponding flame velocity 1 min =~ 3.070748 . We
have seen that the planar front is linearly stable for
R < &, while of the two solutions which exist in
the interval Rymin < R < &, the linear stability
analysis indicated in section 4 shows that the one
with smaller absolute value is unstable. In fact,
the branch bifurcating to the left of &; is unsta-
ble up to Rjmin, becoming stable at the turning
point. Thus, only the former is not physically real-
izable. This can probably be explained in terms of
the mass flux and curvature. The stable flame cor-
responds to one with a greater velocity and positive
curvature at the center; it is well known that for a
Lewis number L smaller than one[11] the stability
is determined by two main parameters: one is the
balance between the incoming mass flux - normal to
the flame front - received by the concave and con-
vex regions of the flame front; the other is the heat
loss to the fresh gas. One can thus expect that the
greater velocity yields a larger mass flux, enough to
sustain the flame, while the other one dies toward
the planar front.

Another interesting point is the multiplicity of
solutions, not just in the interval R, < R < &,
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Figure 3: The z independent term of the transient
state approaches —ut with increasing ¢, where p is
the velocity of the constant-speed solution.

but for any given value of R. Again, the linear
stability analysis shows that among these math-
ematical solutions, the branch bifurcating to the
left of &; is stable up to its first turning point
R ~ 7.195 (passing &) regaining stability in the in-
terval 10.233 < R < 12.266. Two observations are
in order: the first one is that the leftmost stable sec-
tion has foo(l) > 0 implying a negative curvature
at the center of the flame, that is, as long as the
radius is not very large and the interaction of the
modes moderate, the incoming mass flux is enough
to sustain the flame. The second observation is,
perhaps, even more important. The transition of
the stability at the right bound of the interval indi-
cates a possible Hopf bifurcation[12], and therefore,
this may lead to oscillating flames

We can thus conclude that it is possible to have
corrugated cylindrical flames for a radius R > Ruin.
For lesser values of the radius, the flame would be
so small as to seem plane anyway. Multiple states
are also possible, however for limited values of the
radius only.
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Figure 4: Dependence of the flame velocity p
on the radius R.The left scale corresponds to the
branch,indicated with a darker line, that bifurcates
to the left of &;.
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Figure 8: Same as previous figures.Notice the dif-
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