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Abstract
We consider in this paper an axially symmetric, angle independent, perturbation iD of a
plane front in a cylindrical burner. We determine the transient states and the constant-
speed solutions of the Kuramoto-Sivashinsky equation which describes the behavior of
such a flame, analysing the stability of these last solutions.We calcrrlate rnultiple possi-
ble states and transitions of stability which may lead to Hopf bifurcation and, therefore,
to time-periodic solrrtions.
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1 Introduction

Let us consider an axially symmetric,angle indepen-
dent, perturbation iD of a plane front in a cylindrical
burner of radius .R. Let it be f the radial coordi-
nate, i time, .L the Lewis mrmber of the component
of the combustible mixture limiting the reaction, ,Ls
the critical Lewis number, which depends on the
physical properties of the mixture (lo < 1) and
e : (Lo - L) l0 - Lo). Then, if the length variables
are measured in units of the width lr of the ther-
mal flame structure and time is measured in units
of 17 lU6 - where [/a is the normal velocity of the
plane flame front - and the coefficient of gas expan-
sion is assumed eqrral to one, the evolution of the
disturbed flame front is described by the Kuramoto-
Sivashinsky equation [1, 2, 3],
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Drle to the axial symmetry, one must impose the
condition
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This is not enough to determine a unique solution,
hence, in order to fix it, we shall investigate here
the case in which
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a solutiori of the boundary
linearizing (1) around it one
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In equation (1) A is the one-dimension form of
the Laplacian operator , i.e.,

O b v i o u s l y Õ = 0 i s
value problem (1,2,3);
obtains
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which has the solution[4J

Q(f  , ï ,À)  :  Jo(À, ; )exp(a, i ) ,

provided

u + l4(1 + e)2À2 -  e]  À2 :0.

Here, and in the seqrrel, J, stands for the Bessel
function of first kind and order z. The condition
(2) is automatically satisfied, while (3) leads to
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where {; is the i * th, zero of [. Thus, the resulting
dispersion eqrration is:
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and, therefore, if e ( 0 the pÌane front is linearly

siable for all modes. Let us then concentrate only

on the physicalty interesting case e > 0' \Mith the

í : 4 e - 2 ( l * e ) 2 t ,

(1) is reduced to the parameter free equation

4 + L'u-f Au * I lV.rl' : o' (5)
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Let R be the rreqt dimensiorüess radius corre-

sponding to .É, and.::;

It is our purPorie in this paper to determine con-

sta,nt speed solutions of (5) subject'ed to conditions

(2) and (3) in the form

u-  -1 t t+  f  ( z ) ,

that is, we seek f(z) such that
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also satisfYing

has non-trivial solutions - For the sake of a simpler

notation, vre define 9;(z) and orti aÍt
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We shall solve the borrndary value problem

setting[6, 7, 8]
m
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in (7 - 9). Collecting powers of e we obtain

change of variables

Q: ê ' ìL t F :2e-1/2(L + e)r ,

Going back to the stability problem, the disper-

sion eqiation in the new variables is, transposing

terms in (4):

(ü:_Gr_n)#.
In this simpler form, it follows that the stability of

the planarìolution changes as R goes through the

zeros of fi. Besides, if l? < {1, then the plane front

is linearly stable to all perturbations of the form

Jo(€iz)-

2 AnalYtical solution

It is possible to prove' following alongside a simi-

lar proof given by Rabinowitz [5] for a bifurcation

theárem, In"t tnl borrndary value problem (7 - 9)

koya fn *y, Í* 
(11)
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A by-product of the proof of existence of the non-

trivial solutions is that ï f*V)'" must be orthog-
n:2

onal to po, thus
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Let us now define
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Utilizing (1a) in (11) and defining
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we get
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/ '(1) :  0.
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Conditions (12) are automatically
(13) imply that

/"(0) : 0 Vn'

i"(E : 6nt '

Expanding the products of Bessel
(15) we finally obtain

if we exchange the order of srrmmation and add on
bhe powers of e for fixed p in (10 - 14), we can write

rQ):l f-(ú)vo@).

The subscript m wilÌ have a clear meaning in the
next section, when time-dependent functions i (prt)
will be introduced for the analysis of the transient
states, resulting i" i*k) :.üm fk,ú). Using (18)

in equation (6) we get 
'+m
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We thus obtain the following infinite system of

nonlinear algebraic equations
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If (19) can be solved, then its solution can be

used to determine

. -o: I  e\ i ï@.

One must observe that /-(p) : 0 Vp is a solrrtion
of (19) and that the Jacobian of the system at this
solution is the diagonal matrix

t(€; - R2) €?6eil.
If R + {o Vp then the zero solrrtion is unique. On
the other hand if R: €; for some i, the Jacobian
is singular. Any numerical method used to solve
a finite truncation of (19) will require a starting
point, the only simple one being the above men-
tioned trivial solution. 

'We 
can then proceed as fol-

lows: we first trtmcate the series (18) to, say, .1V
terms, then employ the aÌgorithm described in the
previous section to find an approximate solution of
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satisfied while
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It follows from the properties of the Bessel functions
that
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Choosing now p: z in (17) and using (16)
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and finally, for all other values ofp
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3 Nurnerical solution

A more direct, although not analytical, solution of
(6 - 9) can be obtained by a straightforward ex-
pansion of / in terms of Bessel functions[9]. We
saw in the previous section that each term of the
pov/er series is itself a Fourier-Bessel series, thus,
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for given .R close to {a and I I p 1l/. The value of
e corresponding to .R is determined recalling from
section 2 that

and it follows that it does not matter whether the
mode is linearly stable or rrnstable, it will become
different from zero for 0 ( t << 1. Furthermore,
still for ú small, one can expect Í(i,t), i f m,, to
be of order e2 while Í(-,,t) : O(r).As f increases,
the behavior of the sohrtions is determined bv those
modes with the greater rates of growth

I-'l

f '(, i ,,t7 :

r ; -
v K

JrT €eËG

hence, € - 2({t - n/q?k. FinaÌly, use the approx-
irnation thus obtained as the initial guess for the
mrmerical method.

4 Transient states and stabil-
itv

Observe that if we substitut" l-(p) Uy f(p,t) in
(18) and add from p : 0, then we can use the
resrrlting function u(z,t) for determining the tran-
sient states of the solrrtions of equation (5). Doing
so, we obtain

= f '  =€u(t*
| + ,€?krc 

\

i '(o,t): -#iqf'u,ü,

One must observe that these rates are uniformly
borrnded above by 3/16. In fact, a^s R increases
from 0 t,o a, oi goes from -oo, through zero at
R : 4i, reaches its maximrrm of. 3/16 at R : 24i
decreasing again to zero. This is an important prop-
erty, one must recalì that Ç - jzr. Then for any
n, €zn = 2ntr - 2{, which Ìneans that at the onset
of the instabiìiby of the 2n, - th. mode, the n, - th,
one attains its maximum rate of growth; however,
their importance is inverted again for ,R not mrrch
greater than {2,. In fact, for any pair 7, I, oi : o1
implies

t ï -R'€? :ef-n '€7.
Therefore

€i-€f :R'(€?-€1,) ,

Ê?
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n t
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€?t?
o i : o t" (€? + e?)"
for j - rt,I : 2n, we have:

ï**',7, [ ( * ) '

-#{,r t(#) -r] rt,,,r

(21 )
and then

with

(22)

In particular,

One must observe that (22) is a closed system,
that once solved, can be used for the integration
of (21). As before, for practicaÌ purposes, we shall
deal with truncations of / with -ly' terms, referring
to the resulting systems also as (21) and (22), being
cìear from the context whether it is a truncation or
the firll system.

Let rrs consider an initial pertrrrbation of the form
/(0) : eg*(z), we then have

*"Ë,EtrffiJ iro,r)ik,r)I

f'(0, o) : -fi*i'(m,,0) : #*,,

f ' ( t ,o):  -#

,  €2*a*n -\-jreà" l '

F t ^t  L n l z n

I . l2(2n.

Thrrs, as long as 0.12{2. < 7r, we have that in a
right neighborhood of {2, the leading rnode is the
n, - th, one. This phenonrenon can not take place
at odd ordered eigenvahres. At, say, (2r.u1 we have
that the n, - th, rat,e of growth is already decreasing.

This dominance of certain modes, which depends
on the valrre of R, leads to a baiance among the dif-
ferent terms of equation (22), with the consequence
of a bounded behavior of tÌre sohrtion, resembling,
a^s it should be, the sohrtion of the Landau equa-
tion. Figures 1,2,3 sÌrow /(1, ú) and Í Q,t) and the
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Ê 2 t ç 2
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Ê 2  L Ê 2
S t r r \ 2 n



corresponding flame velocity /(0, ú) obtained by mr-
merical integration of the system using Romberg's
method with .l/ : 20 for R: 5 and 0 ( ú < 100.
It is evident from them that /(0, ú) approaches a
linear dependence on ú as the time increases, while

Í0,t) and /(2,ú) converge to constants. This nat-
rrrally suggests the rrse if equation (22) for the lin-
ear stability analysis of the constant-speed solutions

f*(p)obtained in the previous section, because they
are also solutions of (22). In fact, if one linearizes

this system at Ì(p,t) : i*(p), p > I, one obtains
a linear svstem of ordinary differential equations
n'hose matrix is mimrs the Jacobian matrix used
for the determination of /-(p), i.e., its eigenvalues
determine q-hether this solution is sbabìe or not.

0.50

0.25

0.00

25.00 50.00 75.00 100.00
t

Figrrre 1-: Tïansient state of the Fourier-Bessel coef-
ficient /(1, ú).It presents a typical behavior of a so-

lrrtion of the Landau equation. As ú ---+ * 71t, t; -*

/-(1),indicated with the symbolx.

5 Discussion of results and
conclusions

As described in section 3 we used the algorithm of
section 2 with an order of approximation equal to
20 to determine the Fourier-Bessel coeffi.cients of
the solutions and the coefficients of the MacÌaurin's
series of k and o at the eigenvalues (; for 1 ( i ( $,
ernployed Horner's srrmrnation method to deter-
mine the initial guess for the system (20) with
ly' : 20 and solved it utilizing Newton-Raphson's
rnethod[10]

Figures 4 through 9 show the dependence of the
velocity p, and the coefficients /-(p) I < p < 5
on the radius Ã. Several features are worth to be

0. '10

f(2,1)

0.08

0.05

0.03

Figure 2: Sarne a^s Figure 1 with i\,t) instead of

iG,t)

observed in them: contrary to what happens with
the one-dimension problem, which has periodic so-
Irrtions for & ( 1 [6], l being the first eigenvalrre,
counted from right to left, where the solution bifur-
cates subcritically, here the bifurcation at {1 is tran-
scritical, existing a non-trivial solution for R < €r.
Furthermore, this solrrtion exists up to the rnini-
mum value of. R, R1-in - 3.366706,with a corre-
sponding flame velocity Fl *in a 3.070748 . We
have seen that the planar front is linearly stable for
Ã ( {r, while of the two solutions which exist in
the interval Âr -i, < ,R < {1 , the linear stability
analysis indicated in section 4 shows that the one
with smaller absohrte vahre is rrnstable. In fact,
the branch bifrrcating to the left of {1 is rrnsta-
ble up to .R1 -i,, becoming stable at the turning
point. Thus, only the former is not physicaÌly real-
izable. This can probably be explained in terrns of
the mass flux and curvatrrre. The stabÌe flame cor-
responds to one with a greater velocity and positive
crrrvatrrre at the center; it is well knovrn that for a
Lewis mrmber Z smaller than one[ll] the stability
is determined by two rnain parameters: one is the
balance between the incorning mass flrrx - normal to
the fl.ame front - received by the concave and con-
vex regions of the flarne frorrtl the other is the heat
Ioss to the fresh gas. One can thus expect that the
greater velocity yields a larger mass flux, enough to
srrstain the flarne, while the other one dies toward
the planar front.

Another interesting point is the rnrrltiplicity of
soÌutions, not.just in lhe interval È-i, ( Ã < €r,

x x
0.75 - -
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Figure 3: The z independent term of the transient
state approaches -pú with increasing ú, where p is
the velocity of the constarrt-speed solution. Figure 4: Dependence of the flame velocity p

on the radius R.The left scale corresponds to the
branch,indicated with a darker line, that bifurcates
to the left of {1.

but for any given value of r3. Again, the linear
stability analysis shows that among these math-
ematical solutions, the branch bifurcating to the
left of €r is stable up to its first turning point

Ã - 7.195 (passing (2) regaining stabilitv in the in-

terval 10.233 < -R < 12.266. Two observations are

in order: the first one is that the leftmost stable sec-
tion has f-(f) > 0 implying a negative curvature

at the center of the flame, that is, as long as the
radius is not very large and the interaction of the
modes moderate, the incoming mass flux is enough
to sustain the flame. The second observation is,
perhaps, even more important. The transition of
the stability at the right bound of the interva,l indi-
cates a possible Hopf bifurcationfL2], and therefore,
this may lead to oscillating flames

We can thus conclude that it is possible to have

corrugated cylindrical flames for a radius ft ) R-io.
For lesser values of the radirrs, the flame would be
so small as to seem plane anyway. Multiple states
are also possible, however for limited values of the
radirrs only.
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Figqre 6: Same as Figure 5 with f*(2\.

0.80

f(4)

0.40

Figrrre 8: Sarne as previotrs figrrres.Notice the dif-
ference in scales, the left ordinates axis corresponds
to the branch bifrrrcating to the left of d1, and which
reaches the greatest positive value at R:20.

Figrre 7: Same as Figure 5 with /""(3).
Figure 9: Same a^s previorrs figures.
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