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Abstract. Different algorithms have been proposed in the last few years for dis-
covering different types of behaviors in trajectory data. Existing approaches, in
general, deal only with the outliers, and do not consider the standards routes
and regions of interest. In this paper we propose a new algorithm for trajectory
outlier detection between regions of interest. We show with two experiments on
real data that the method correctly finds outlier patterns.

1. Introduction and Motivation
Current advances in mobile technology have increased the interest in mobility data
analysis in several application domains. Very simple actions as carrying a mobile
phone may register the trace of an object. Some devices specially developed for
tracking like GPS or sensor networks may capture the movement of people, ani-
mals, cars, boats, buses and natural phenomena. These tracks are called trajecto-
ries of moving objects. Several data mining methods have been proposed for extract-
ing different types of patterns from trajectories. Some examples of trajectory patterns
are chasing [de Lucca Siqueira and Bogorny 2011], objects moving together in flocks
[Laube et al. 2005], sequences of visited places [Giannotti et al. 2007], periodic move-
ments [Cao et al. 2007], outliers [Lee et al. 2008], and avoidance [Alvares et al. 2011].
In this paper we focus on trajectory outlier detection.

Trajectory outliers can be very useful in traffic analysis. This type of movement
analysis between regions of interest is useful to help to understand the flow of people that
move between the regions, how this flow is distributed and what are the characteristics of
the movements. In high traffic areas outliers can show alternative paths that can reduce
the volume of cars, or reveal the best or worst path that connects two regions. Moreover,
the outliers can be interesting to discover suspicious behaviors, like company cars that
scape from their normal route.

Figure 1 shows some examples of trajectory outliers moving between two regions.
There are six trajectories that move from region R1 to region R2. Trajectories T2, T3 and
T4 move close to each other, using a similar path (probably the same) to move from R1 to
R2, and form the standard path. If we consider that R1 is a Shopping center area in a city
and R2 is the downtown region, there is a high probability that T2, T3 and T4 followed
a common route to move between the regions, while T1 used an alternative way in its
movement. Trajectory T1 is far from the group (T2, T3 and T4), so it may characterize
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Figure 1. Examples of trajectory outliers.

an outlier in relation of the group. Trajectory T5 took an alternative route in part of its
movement (made a detour) in the middle of the way from R1 to R2. Trajectory T6 made
a very long detour, on the way from R1 to R2. By observing the movement of T1, T5

and T6 we notice that these trajectories made a movement different from the rest of the
trajectories (the standard path), what characterizes an outlier.

In this paper we present an algorithm to find spatial and spatio-temporal outliers
between trajectories, and in summary, we make the following contributions in relation to
existing approaches: (i) Define a different type of outlier pattern in trajectory data anal-
ysis, (ii) find both the standard path and the outlier patterns between regions of interest
and (iii) define a new algorithm for discovering spatial and spatio-temporal outliers. It is
important to mention that in this paper (at this first step) we are not interested in discov-
ering why an object avoided a group, but to discover the main route and alternative ways
to move between regions of interest.

The rest of the paper is organized as follows: section 2 presents the related works.
Section 3 presents the main definitions and the algorithm. Section 4 presents experiments
on real trajectory data. Finally, section 5 concludes the paper and suggests directions of
future research.

2. Related Works

Several types of patterns can be extracted from trajectories. Laube in 2005
[Laube et al. 2005] proposed five types of trajectory patterns based on movement, direc-
tion, and location, which are very well known: convergence, encounter, flock, leadership,
and recurrence.

Lee [Lee et al. 2008] proposed an algorithm to find outliers, which are the trajec-
tories that move differently from the rest of the trajectories in the dataset. No regions of
interest, standard path or time is considered. In [Li et al. 2007] an approach is proposed
to find hot routes. These routes are discovered based on the density of the roads, and
not among trajectories that move together in space between regions of interest. A simi-
lar work for discovering popular routes is proposed by [Chen et al. 2011]. This approach
considers as regions of interest the origin and destination of the trajectories and hot routes
are discovered based on trajectory turns. The routes where several trajectories make turns
are considered popular.

A closer approach to our method could be the T-pattern [Giannotti et al. 2007]. It
is a sequential trajectory pattern mining algorithm that first generates regions of interest
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considering dense areas in space, and than computes sequences of visited regions, taking
into account transition time from one region to another and minimum support. Although
it finds the trajectories that move between regions, it does not look at the path followed
by the objects, if they move together, or if there is a standard route. The basic idea of our
approach is to detect if there is a standard path to move between places and to find the
trajectories that avoid this path. In the following section we present the basic concepts for
outlier patterns and the proposed algorithm.

3. Mining outlier patterns from Trajectories
Before defining the outlier we present some definitions like point and trajectory.

Definition 1 Point. A point p is a tuple (x, y, t), where x and y are spatial coordinates
and t is the time instant in which the coordinates were collected.

Definition 2 Trajectory. A trajectory T is a list of points hp1, p2, p3, ..., pni , where pi =

(xi, yi, ti) and t1 < t2 < t3 < ... < tn.

Usually the patterns do not hold for the whole trajectory or during the complete
trajectory life. Trajectory patterns occur in part of the trajectories, and this is specially
true for outlier. Therefore, we make use of subtrajectories, that is a concept commonly
used in trajectory research.

Definition 3 Subtrajectories. Let T = hp1, p2, ..., pni be a trajectory. A subtrajectory S
of T is a list of consecutive points hpk, pk+1, ..., pmi, where p 2 T, k � 1, and m  n.

Most existing works for trajectory pattern mining look for patterns in the whole
dataset, without having a specific interest. For instance, for chasing patterns, flocks or
outliers, the whole dataset is searched. When looking for outlier patterns in trajectory data
we first look for trajectories that move around the same places. It would not make much
sense to compare a trajectory that moves in Paris around Eiffel Tower with a trajectory
moving around Hotel des Invalides. Trajectories should be in close areas to deviate from
others. Therefore, we look for outlier patterns between regions of interest.

Regions of interest can have different size and format, depending on the applica-
tion. Regions of interest can be districts, dense areas, hot spots, important places, etc. A
region can be a pre-defined important place or computed by an algorithm that finds dense
areas. How to find these regions is not the focus of this work, but we consider a region as
a polygon, as in [Giannotti et al. 2007], that is a well known concept in GIS comunity.

The use of regions allows filtering from the whole dataset only the subtrajectories
that move between the same regions, and outliers will be searched among these sets, what
significantly reduces the search space for outlier. It is important to mention that at this
point, among the trajectories that cross specific areas, we are only interested in the part of
the trajectories (subtrajectories) that move between the regions, and not in the trajectory
inside the area. We call these subtrajectories that move between regions as candidates.

We define candidate as the smallest subtrajectory that moves between two regions,
i.e., we take the last point of the subtrajectory that intersects the first region and the first
point that intersects the final region, as shown in Figure 2(left). In this example the can-
didate has the points from pi to pm.
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Figure 2. (left)Example of candidate (right) Example of neighborhood.

Definition 4 Candidate. Let R1 and R2 be two regions such that R1 \ R2 6= 0 and T
a trajectory. A candidate from R1 to R2 is the subtrajectory S = hpi, pi+1, ..., pmi of T ,
where (S \ R1) = {pi} and (S \ R2) = {pm}.

After defining the set of candidates we start looking for outliers. A candidate will
be an outlier when it follows a different path in relation to the majority of the candidates
from its group. We can say that a path that is different from the route used by most
candidates is of low density, and it has less trajectories around, while a crowded path has
many trajectories in its neighborhood. In order to discover these two types of paths we
introduce the concept of neighborhood, that is computed for each point of the candidate. A
candidate is a neighbor of a point if it is close to the point. If a point has a few candidates
in its neighborhood, then at that time the moving object was following a path different
from the majority of candidates. The maximal distance for a candidate to be a neighbor
of a point is called maxDist.

Definition 5 Neighborhood. Let p be a point. The neighborhood of p
N(p, maxDist) = {ci|ci is a candidate and 9q 2 ci, dist(p, q)  maxDist}.

Figure 2(right) shows an example of neighborhood. The neighborhood of point p
are the candidates C1 and C3, since these two candidates have at least one point inside the
radious of size maxDist around p. Notice that point q has no candidates inside its radios
of size maxDist, so its neighborhood is empty. We can conclude that at point p, C2 was
moving with C1 and C3 (same path), but at point q, C2 was moving far from C1 and C3

(different path).

In general, there exist one or more frequent paths (main routes) to move from
one region to another, and which are more frequently used than alternative ways. To find
these standard paths we use the minimum support concept (minSup), which is the minimal
amount of candidates that a point should have in its neighborhood to be part of a crowded
or dense path. In the example in Figure 2(right), considering minSup = 2, the point p in
candidate C2 is in a dense path, while the point q in C2 moves alone. A candidate that has
all its points in a crowded path is considered a standard.

Definition 6 Standard. Let c = hp1, p2, p3, ..., pni be a candidate, c is a standard candi-
date if and only if 8pi 2 c, | N(pi, maxDist) |� minSup.

The candidates that have at least one point where the cardinality of its neighbor-
hood is less than minSup are called potential outlier. Therefore, the candidates are split
in standards and potential outliers, such that a candidate will always be either a standard
or a potential outlier. When all candidates between two regions are potential outlier, there
is no standard. As a consequence, there is no standard path that an object could avoid or
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deviate. On the other hand, if there is at least one standard path, then the potential outlier
did really perform a detour, and becomes a spatial outlier.

An important remark here is that no outlier will exist if there is no standard path.
This is one of the main difference of our approach in relation to existing works on tra-
jectory pattern mining. So the first assumption to define an outlier is that it should move
between two regions of interest. The second is that there must be a standard path that con-
nects the regions such that the outlier should deviate from it. Therefore, any subtrajectory
that uses a path different from the standard is an outlier.

Definition 7 Outlier. Let C be the set of candidates between two regions. A potential
outlier is an outlier O if 9c 2 C|c is a standard.

When two candidates leave the start region at the same time interval we can say
that they are synchronized. For instance, when two students leave the university together
to go to the cinema, we can say their trajectories are synchronized. Two candidates leave
the same region at the same time interval if the difference between the timestamps of the
first point of the candidates is less than a given time tolerance. When the trajectories in the
standard path are synchronized with the outlier, then the outlier becomes spatio-temporal.

Definition 8 Spatio-temporal outlier. Let C be the set of candidates between two regions.
An outlier O is a spatio-temporal outlier if 9c 2 C|c is standard and c is synchronized
with O.

In this work we analyze the time that the objects leave the starting region, since
the objective is to know if they have a synchronized departure, and it is not relevant here if
they keep the synchronization during the entire movement until reaching the destination.
After defining the main concepts related to outlier patterns, we show in listing 1 the
pseudo-code of the algorithm. The input of the algorithm is a set of trajectories T , a set
of regions of interest R, the maximal distance (maxDist), the minimum support (minSup)
and the TimeTolerance.

Listing 1. Algorithm
1 INPUT :
2 T ; / / S e t o f t r a j e c t o r i e s
3 R ; / / S e t o f r e g i o n s
4 maxDist ; / / maximum d i s t a n c e
5 minSup ; / / minimal number o f n e i g h b o u r
6 TimeTole rance ;
7
8 OUTPUT:
9 S e t o f s e m a n t i c s p a t i a l and s p a t i o�t e m p o r a l o u t l i e r s .

10
11 METHOD:
12 FOR EACH PAR OF REGIONS ( s t a r t R e g i o n , endRegion ) i n R{
13 C = f i n d C a n d i d a t e s ( T , s t a r t R e g i o n , endRegion ) ; / / f i n d c a n d i d a t e s .
14 S t a n d a r d S e t = f i n d S t a n d a r d (C , maxDist , minSup ) ; / / f i n d s t a n d a r d s .
15 IF ( S t a n d a r d S e t != EmpytSet ) {
16 S p a t i a l O u t S e t = C � S t a n d a r d S e t ; / / S e t o f s p a t i a l o u t l i e r s
17 FOR EACH o u t l i e r o u t i n S p a t i a l O u t S e t {
18 o u t . T i m e g r a n u l a r i t y r e f i n e m e n t ;
19 o u t . C o m p u t s y n c h r o n i z e d s t a n d a r d s ( T imeTole rance ) ;
20 IF ( o u t . d u r a t i o n > a v g d u r a t i o n s t a n d a r d s )
21 Out . i s ( ” s l o w e r o u t l i e r ” ) ;
22 IF ( o u t . d u r a t i o n < a v g d u r a t i o n s t a n d a r d s )
23 o u t . i s ( ” f a s t e r o u t l i e r ” ) ;
24
25
26 } } }
27 r e t u r n o u t

For each pair of regions (line 12 ), the algorithm starts by computing the candidates
that move from startRegion to endRegion (line 13), with the function findCandidates. This
function checks for every trajectory if it intersects the pair of regions. Once the candidates
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are computed, the algorithm searches for the standards with the function findStandard
(line 14), considering the parameters maxDist and minSup. The function findStandard
checks for all points of a candidate in the set if the number of neighbors is greater than
minSup. If this is the case, then the candidate is considered a standard. If the set of
standards is not empty (line 15), then it goes for finding the spatial outliers, since there is
a standard path that connects both regions.

Spatial outlier are all candidates which are not standards (line 16). Once we have
the standard path and the spatial outlier, the algorithm starts the time analysis. For each
spatial outlier (line 17) the algorithm discretizes the time dimension (line 18). Instead
of simply showing the timestamp of the spatial and spatio-temporal outlier, as has been
done in most data mining algorithms, we automatically discretize the time for the user to
rapidly identify the periods of the outlier. Such discretization simplifies postprocessing
steps. For this purpose, the algorithm extracts from the timestamp several information,
including: the day of the week that the outlier occurred, the period of the day , and the
month of the year. Such granularity refinement is useful to interpret the patterns.

It is important to notice that we first discover the patterns, and afterwards interpret
them (discretize the time). If a time interval was defined a priori and the data filtered by
this time interval in preprocessing steps, the method would be very limited and several
patterns of previously unknown periods would never emerge. So the idea is to discover
the standard path and outlier trajectories for then checking when these patterns occur.

The next step of the algorithm is to check if the outlier is synchronized with any
standard, i.e., if there are standards that leave the start region at a similar time as the
spatial outlier (line 19). In case there is a synchronized standard, then the spatial outlier
becomes a spatio-temporal outlier. In the last step the algorithm verifies if the duration
of the outlier is greater than the average duration of the standards (line 20). When the
outlier is spatio-temporal, the average duration is compared only with the synchronized
standards. If the duration of the outlier is greater, it means that the outlier took more time
to move between the regions, and is classified as slower outlier. If its path was faster, the
outlier is classified as faster outlier.

In this section we presented the main concepts related to trajectory outlier detec-
tion and presented an algorithm to find both the standard and outlier subtrajectories. The
following section presents two experiments with real trajectories.

4. Experimental Results
In this section we evaluate the proposed method with two datasets with different char-
acteristics. The first are trajectories of cars of people that leave and work in the city of
Porto Alegre. It is a dense dataset, where trajectory points are collected every second.
The second dataset are trajectories of taxi drivers in the city of San Francisco, and the
trajectory points are collected in an average of one minute. More detailed experiments
with other datasets and a better comparison with the method TRAOD can be found in
[Fontes and Bogorny 2013].

4.1. Porto Alegre Dataset
This experiment considers a dataset with 241 trajectories, with a set of 197959 points.
As mentioned before, the sampling rate is one second. Figure 3 shows this dataset over
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Figure 3. (left) Car Trajectories in Porto Alegre (right) Candidate trajectories be-
tween districts MontSerrat and Partenon.

a map of districts of the city. In this experiment we considered as interesting regions
two districts which are crossed by the highest number of trajectories: Montserrat and
Partenon. Among the 241 trajectories, 59 cross these districts, so there are 59 candidates,
shown in Figure 3 (right).

This experiment was performed considering 50 and 80 meters as the maxDist, but
we show the results for 50 meters only since the results were quite similar. Minimum
support minSup was set to 10, indicating that at least 10 candidates should move in a
distance of around 50 meters for generating a standard path. The TimeTolerance was set
to 10 minutes, but no spatio-temporal pattern was found, because the dataset has not many
synchronized trajectories.

Among the 59 candidates, 29 subtrajectories move from Partenon in direction
to Montserrat, and from the 29 subtrajectories, 26 move in the standard path, which is
shown in Figure 4(left), and only 3 are outlier. This shows that the standard path is used
by the majority of the trajectories that move between these districts. The standard path
corresponds to the Carlos Gomes Avenue, which is a popular street that crosses Porto
Alegre. The average duration of the trajectories in the standard path is 6 minutes. Only
two standards took more time than the average (11 and 13 minutes), and both happened
at the end of the day. The majority of the standards (17) happened at morning.

We show two outlier patterns moving between these regions. Figure 4(center)
shows an outlier moving from Partenon to Montserrat which was faster than the standard
path, taking 4 minutes to make his trip (35% faster than the standards). As can be seen in
the Figure, this path is shorter than the standard, and can be a good alternative for avoiding
travel on the standard path. This pattern follows the Lucas de Oliveira Avenue. Another
outlier pattern took 10 minutes in its movement, making a longer trip, as can be seen in
Figure 4(right).

We compare the output found in this experiment with the TRAOD algorithm
[Lee et al. 2008]. This comparison is performed to show that both methods discover dif-
ferent patterns, which is mainly obvious since the proposals are different. The algorithm
TRAOD does not consider regions, the standard path and it does not perform any further
analysis over outliers, but in order to compare the results of both algorithms we considered
the same trajectory candidates as input for both methods. Different input would generate
different output. TRAOD has as input the maximal distance between trajectory partitions
(D), the maximal percentage of trajectories (p) for not being outliers and the fraction (F)
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Figure 4. (left) standard path from Partenon to Montserrat; (center) faster outlier
moving from Partenon to Montserrat; (right) slower outlier moving from Partenon
to Montserrat.

Figure 5. (left) Results for TRAOD (D=50, p=0.7, F0.2) for the POA dataset and
(right) Results with parameters D=100, p=0.9, F=0.2 for the taxi dataset.

of partitions that a trajectory should have to be an outlier. We ran the TRAOD, with the
parameters D = 50, p = 0.7 and F = 0.2 (these parameters are close to the parameters used
in the experiment with our algorithm). We keep the original algorithm output, therefore
outliers are shown in red while trajectories are shown in green, so it is not possible to
overlap the output with the geographic map and show the regions. TRAOD transforms
subtrajectories in lines, what makes the result a bit different. The algorithm found only 2
outliers, as shown in Figure 5(left). It is important to notice that the output of TRAOD is
the total number of outliers and the outliers presented over the set of trajectories.

The size of the regions may influence the standard path and outlier patterns. How-
ever, in this paper we are only interested in the part of the trajectories that move between
the regions, and not in the trajectory inside the area. The analysis of the part of the trajec-
tory inside the region can be interesting to understand why an object avoided the standard
path, but this is out of the scope of this paper. To avoid much influence of the size of the
region in the patterns, the size of the regions should not be so large. In the next experi-
ment we considered very small regions, such that the size of the region should not much
influence the selected route.

4.2. Taxi trajectories in San Francisco

This experiment was performed with trajectory data collected in the city of San Francisco,
California. This dataset contains trajectories of taxi drivers. We considered trajectories of
one month, with 1.8 million points. One trajectory corresponds to the movement of one
taxi driver during the whole day, and the time collection interval is in average 1 minute.
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Figure 6. (left) candidates that move from airport (gray rectangle) to the finan-
cial district (gray circle), (center) standard path from Airport to Financial District,
(right) standard path from Financial District to Airport.

Even with such a large time interval between every two points (which in general is every
second) the method obtained very good results for the standard path and outlier patterns,
what shows that the algorithm can deal with different types of trajectories.

Each taxi trajectory has an attribute occupation, which states if the taxi has pas-
sengers or is empty. Here we are interested in discovering the standard path and outlier
patterns only when the taxi has passengers. This is interesting to discover those drivers
that make detours from the main route. Therefore, we removed the trajectories with no
passengers and split each trajectory of the same driver in a different one when the pas-
senger changes. After splitting the trajectories the dataset resulted in 76.885 trajectories,
having a total of 842.455 points.

In this experiment we want to analyze the movement between some specific
places. We considered the trajectories of taxis moving from the airport to the Finan-
cial district in San Francisco. The parameters were distance of 100 meters for finding the
neighbors, because of the large distance between the trajectory points, minimun support
was set to 30 and time tolerance to 20 minutes. A total of 154 candidates was generated,
what means that 154 objects traveled from the airport to the financial district. Between
airport and financial district two standard paths were found, one from airport to finan-
cial area and another in the opposite direction. Figure 6 shows the candidates (left), the
standard path from airport to the financial district (center) and the standard path in the
opposite way (right). The average travel time on the standard path in this case is 18 min-
utes and has a length of 26 km. The standard path leaving the airport starts at Bayshore
Freeway (US 101), changes to John F. Foran Freeway and follows to the King Street, later
to Folsom Street and finally turns to Fremont Street.

Figure 7 shows different examples of outliers, where triangles are the outliers and
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Figure 7. (left) very slow Outlier - 47 minutes (center) slow Outlier - 25 minutes
(right) fastest Outlier - 17 minutes

circles the standard path. One outlier made a long detour taking 47 minutes and traveling
36 km (Figure 7 (left)). Another one also made a longer detour, taking 25 minutes and
traveling 27 km (Figure 7(center)). Both trajectories that traveled a longer distance and
took more time than the standard path were generated on Sunday afternoon and Saturday
evening, respectively, characterizing a strange behavior for a weekend, where traffic flow
should be normal. The last outlier shown in Figure 7 (right) was a little bit faster than the
standard path (taking 17 minutes). This is a spatio-temporal outlier, i.e., this subtrajectory
left the airport at the same time as the trajectories in the standard path.

A last analysis is on the standard path from the Financial Area to the Airport. The
standard path which connects these regions is different from the previous one, as can be
seen in Figure 6 (right), and is faster, taking in average 15 minutes, while the previous
one takes 18. The traveled distance is the same, 26 km. Among the three examples of
outlier shown in Figure 8, all examples are slower, taking respectively 30, 21, and 17
minutes, showing that for this direction the standard path is the best option. One driver
made a very big detour. Two outlier trajectories partially followed the standard path, but
when leaving the financial area each one took a different route, i.e., a slower one. The
outlier on the right side in the figure is spatio-temporal. We compare the output found in
this experiment with the TRAOD algorithm [Lee et al. 2008] that found different outliers
even within the standard path (Figure 5(right)).

In general, most outlier patterns take more time to travel between the regions, and
the standard path should be a better option if the user is more familiar with it.

4.3. Parameter Analysis
As in any data mining algorithm, the parameter definition is a concern, and it directly
influences the results of the algorithm. The algorithm makes use of three parameters
only: maxDist; minSup and TimeTolerance. maxDist is used to check if trajectories use
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Figure 8. (left) very slow Outlier - 30 minutes (center) slow Outlier - 21 minutes
(right) fastest Outlier - 17 minutes

the same path to move between regions. The best value for this parameter is the width
of the streets, since outlier patterns are interesting for trajectories in cities. For instance,
in cities where the average width of a street is 50 meters, maxDist can be set as 80
meters, considering so 15 meters on each side of the street for GPS impreciseness. In
cities with larger streets like 80 or 100 meters, maxDist can be defined as 100 or even
as 120 meters. It will depend on size of the streets where trajectories are collected. In
narrow streets, maxDist should be lower, while in larger streets it should be higher.

A small maxDist may split objects that move in the same path, making it more
difficult to find the standards. A very high maxDist may join objects that move in dif-
ferent paths (distant paths) in the same group. Therefore, this parameter depends on the
application. In our experiments in San Francisco the best parameter was 100 meters, but
good results were also discovered with 80 meters.

Minimun support will depend on the density of the dataset. The higher the number
of trajectories to be in the standard path, the more difficult it will be to find the standard
route. A low minimal support may find several standard paths and less outliers, while
a high minSup will generate large amounts of outliers. The minimal support is also
application dependent, so it can be high for a dataset where dense regions have several
trajectories passing by. The TimeTolerance influences the amount of spatio-temporal out-
lier. The higher the TimeTolerance the higher is the chance for several trajectories being
traveling within the time window. However, a very high TimeTolerance may be meaning
less in the sense that trajectories should be moving together.

5. Conclusion and Future Works
In this paper we presented a method for discovering the standard path which connects
regions that are interesting for an application domain and the alternative routes to move
between these regions, that are called outliers. We presented the definition and an algo-
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rithm to discover the outlier trajectories and the standard path. Both dimensions of space
and time are considered, therefore allowing the interpretation of the outlier, like: when
did it happen; which path is faster; and their duration.

The method presented in this paper is a first step towards trajectory outlier detec-
tion and interpretation, and several future works are ongoing. The first one is to distin-
guish the standard paths between the same regions moving in the same direction. So far
we consider as standard path all standard candidates. A second one includes a deep anal-
ysis on the standard path and the use of context information around it aiming to discover
the intent of the outlier. For instance, if there is a traffic jam in the standard path or an
event like a police patrol, such information can help to interpret the outlier. In this method
if a subtrajectory has a small portion of it which avoids the standard path it is considered
an outlier. In next steps we will evaluate the use of minimal size of an outlier.
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