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Abstract. This paper describes a new parallel raster terrain visibility (or view-
shed) algorithm, based on the sweep-line model of [Van Kreveld 1996]. Com-
puting the terrain visible from a given observer is required for many GIS appli-
cations, with applications ranging from radio tower siting to aesthetics. Pro-
cessing the newly available higher resolution terrain data requires faster archi-
tectures and algorithms. Since the main improvements on modern processors
come from multi-core architectures, parallel programming provides a promis-
ing means for developing faster algorithms. Our algorithm uses the economical
and widely available shared memory model with OpenMP. Experimentally, our
parallel speedup is almost linear. On 16 parallel processors, our algorithm is
up to 12 times faster than the serial implementation.

1. Introduction

An important group of Geographical Information Science (GIS) applications on ter-
rains concerns visibility, i.e., determining the set of points on the terrain that are vis-
ible from some particular observer, which is usually located at some height above the
terrain. This set of points is known as viewshed [Franklin and Ray 1994] and its ap-
plications range from visual nuisance abatement to radio transmitter siting and surveil-
lance, such as minimizing the number of cellular phone towers required to cover a region
[Ben-Moshe et al. 2007], optimizing the number and position of guards to cover a region
[Magalhães et al. 2011], analysing the influences on property prices in an urban envi-
ronment [Lake et al. 1998] and optimizing path planning [Lee and Stucky 1998]. Other
applications are presented in [Champion and Lavery 2002].

Since visibility computation is quite compute-intensive, the recent increase in
the volume of high resolution terrestrial data brings a need for faster platforms and al-
gorithms. Considering that some factors (such as processor sizes, transmission speeds
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and economic limitations) create practical limits and difficulties for building faster serial
computers, the parallel computing paradigm has become a promising alternative for such
computing-intensive applications [Barney et al. 2010]. Also, parallel architectures have
recently become widely available at low costs. Thus, they have been applied in many
domains of engineering and scientific computing, allowing researchers to solve bigger
problems in feasible amounts of time.

In this paper, we present a new parallel algorithm for computing the viewshed of
a given observer on a terrain. Our parallel algorithm is based on the (serial) sweep line
algorithm firstly proposed by [Van Kreveld 1996], which is described in Section 2.3.3.
Comparing to the original algorithm, our new algorithm achieved speedup of up to 12
times using 16 parallel cores, and up to 3.9 times using four parallel cores.

2. Related Work

2.1. Terrain representation

In what follows, our region of interest is small compared to the radius of the earth, thus,
for this discussion the earth can be considered to be flat.

A terrain ⌧ is a 2

1
2 dimensional surface where any vertical line intersects ⌧ in at

most one point. The terrain is usually represented approximately either by a Triangulated
Irregular Network (TIN) or a Raster Digital Elevation Model (DEM) [Li et al. 2005]. A
TIN is a partition of the surface into planar triangles, i.e., a piecewise linear triangular
spline, where the elevation of a point p is a bilinear interpolation of the elevations of the
vertices of the triangle containing the projection of p. On the other hand, a DEM is simply
a matrix storing the elevations of regularly spaced positions or posts, where the spacing
may be either a constant number of meters or a constant angle in latitude and longitude.
In this paper, we will use the DEM representation because of its simpler data structure,
ease of analysis, and ability to represent discontinuities (cliffs) more naturally. Finally,
there is a huge amount of data available as DEMs.

2.2. The viewshed problem

An observer is a point in space from where other points (the targets) will be visualized.
Both the observer and the targets can be at given heights above ⌧ , respectively indicated
by ho and ht. We often assume that the observer can see only targets that are closer than
the radius of interest, ⇢. We say that all cells whose distance from O is at most ⇢ form the
region of interest of O. A target T is visible from O if and only if the distance of T from
O is, at most, ⇢ and the straight line, the line of sight, from O to T is always strictly above
⌧ ; see Figure 1.
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Figure 1. Targets’ visibility: T1 and T3 are not visible but T2 is.

The viewshed of O is the set of all terrain points vertically below targets that can
be seen by O; formally,

viewshed(O) = {p 2 ⌧ | the target above p is visible from O}

with ⇢ implicit. The viewshed representation is a square (2⇢ + 1) ⇥ (2⇢ + 1) bitmap with
the observer at the center.

Theoretically, determining whether a target T is visible from O requires verifying
all points in the line of sight connecting O to T . But since ⌧ is represented with a finite
resolution, only points close to the rasterized line segment connecting the projections of
O and T onto the horizontal plane will be verified. Which points those might be, is one
difference between competing algorithms, as the ones we will describe in Section 2.3.
The visibility depends on the line segment rasterization method used, see Figure 2, and
how the elevation is interpolated on those cells where the segment does not intersect the
cell center.

Figure 2. The rasterization of the line of sight projection.

The visibility of a target above a cell ct can be determined by checking the slope of
the line connecting O and T and the cells’ elevation on the rasterized segment. More pre-
cisely, suppose the segment is composed of cells c0, c1, · · · , ct where c0 and ct correspond
to the projections of O and T respectively. Let ↵i be the slope of the line connecting O to
ci, that is,

↵i =

⇣(ci) � (⇣(c0) + ho)

dist(c0, ci)
(1)
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where ⇣(c0) and ⇣(ci) are, respectively, the elevation of cells c0 and ci and dist(c0, ci) is
the ‘distance’ (in number of cells) between these two cells. The target on ct is visible if
and only if the slope ⇣(c

t

)+h
t

�(⇣(c0)+h
o

)
dist(c0,c

t

) is greater than ↵i for all 0 < i < t. If yes, the
corresponding cell in the viewshed matrix is set to 1; otherwise, to 0.

2.3. Viewshed algorithms

Different terrain representations call for different algorithms. A TIN can be processed by
the algorithms proposed by [Cole and Sharir 1989] and [De Floriani and Magillo 2003].
For a DEM, we can point out [Van Kreveld 1996] and RFVS [Franklin and Ray 1994],
two very efficient algorithms. Another option for processing DEMs is the well-known R3
algorithm [Shapira 1990]. Although this one is not as efficient as the other two, it has
higher accuracy and may be suitable for small datasets.

These three algorithms differ from each other not only on their efficiency, but also
on the visibility models adopted. For instance, R3 and Van Kreveld’s algorithms use a
center-of-cell to center-of-cell visibility, that is, a cell c is visible if and only if the ray
connecting the observer (in the center of its cell) to the center of c does not intersect a cell
blocking c. On the other hand, RFVS uses a less restrictive approach where a cell c may
be considered visible if its center is not visible but another part of c is.

Therefore, the viewsheds obtained by these methods may be different. Without
knowing the application and having a model for the terrain’s elevation between the known
points, it is impossible to say which one is better. Some applications may prefer a view-
shed biased in one direction or the other, while others may want to minimize error com-
puted under some formal terrain model. For instance, since Van Kreveld’s algorithm
presents a great tradeoff between efficiency and accuracy [Fishman et al. 2009], it may
be indicated for applications that require a high degree of accuracy. On the other hand, if
efficiency is more important than accuracy, the RFVS algorithm could be preferred.

Considering that each one of these algorithms might be suitable for different ap-
plications, we will describe them briefly in the next sections.

2.3.1. R3 algorithm

The R3 algorithm provides a straightforward method of determining the viewshed of a
given observer O with a radius of interest ⇢. Although it is considered to have great accu-
racy [Franklin et al. 1994], this algorithm runs in ⇥(n

3
2
), where n = ⇥(⇢2

). It works as
follows: for each cell c inside the observer’s region of interest, it uses the digital differ-
ential analyzer (DDA) [Maćiorov 1964] to determine which cells the line of sight (from
O to the center of c) intersects. Then, the visibility of c is determined by calculating the
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slope of all cells intersected by this line of sight, as described in Section 2.2. In this pro-
cess, many rules to interpolate the elevation between adjacent posts may be used, such as
average, linear, or nearest neighbour interpolations.

2.3.2. RFVS algorithm

RFVS [Franklin and Ray 1994] is a fast approximation algorithm that runs in ⇥(n). It
computes the terrain cells’ visibility along rays (line segments) connecting the observer
(in the center of a cell) to the center of all cells in the boundary of a square of side 2⇢ + 1

centered at the observer (see Figure 3(a)). In each column, it tests the line of sight against
the closest cell. Although a square was chosen for implementation simplicity, other shapes
such as a circle would also work.

RFVS creates a ray connecting the observer to a cell on the boundary of this
square, and then rotates it counter-clockwise around the observer to follow along the
boundary cells (see Figure 3(a)). The visibility of each ray’s cells is determined by walk-
ing along the segment, which is rasterized following [Bresenham 1965]. Suppose the
segment is composed of cells c0, c1, · · · , ck where c0 is the observer’s cell and ck is a cell
in the square boundary. Let ↵i be the slope of the line connecting the observer to ci de-
termined according to Equation (1) in Section 2.2. Let µ be the highest slope seen so far
when processing ci, i.e., µ = max{↵1, ↵2, · · · , ↵i�1}. The target above ci is visible if
and only if the slope (⇣(ci) + ht � (⇣(c0) + ho)) /dist(c0, ci) is greater than µ. If yes, the
corresponding cell in the viewshed matrix is set to 1; otherwise, to 0. Also, if ↵i > µ

then µ is updated to ↵i. We say that a cell ci blocks the visibility of the target above cj if
ci belongs to the segment c0cj and ↵i is greater or equal to the slope of the line connecting
the observer to the target above cj .

2.3.3. Van Kreveld’s algorithm

Van Kreveld’s algorithm [Van Kreveld 1996] is another fast viewshed algorithm. Accord-
ing to [Zhao et al. 2013], it has accuracy equivalent to the R3 algorithm, while running
in ⇥(n log n). Its basic idea is to rotate a sweep line around the observer and compute
the visibility of each cell when the sweep line passes over its center (see Figure 3(b)).
For that, it maintains a balanced binary tree (the agenda) that stores the slope of all cells
currently being intersected by the sweep line, keyed by their distance from the observer.
When this sweep line passes over the center of a cell c, the agenda is searched to check
c’s visibility. More specifically, this algorithm works as follows:

For each cell, it defines three types of events: enter, center, and exit events to indi-
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cate, respectively, when the sweep line starts to intersect a cell, passes over the cell center
and stops to intersect a cell. The algorithm creates a list E containing these three types of
events for all cells inside the region of interest. The events are then sorted according to
their azimuth angle.

To compute the viewshed, the algorithm sweeps the list E and for each event it
decides what to do depending on the type of the event:

• If it is an enter event, the cell is inserted into the agenda.
• If it is an center event of cell c, the agenda is searched to check if it contains any

cell that lies closer to the observer than c and has slope greater or equal to the
slope of the line of sight to c; if yes, then c is not visible, otherwise it is.

• If it is an exit event, the cell is removed from the agenda.

(a) (b)

Figure 3. Viewshed algorithms: (a) RFVS; (b) Van Kreveld - adapted from
[Fishman et al. 2009].

2.3.4. Parallel viewshed algorithms

Parallel computing has become a mainstream of scientific computing and recently some
parallel algorithms for viewshed computation have been proposed. [Zhao et al. 2013]
proposed a parallel implementation of the R3 algorithm using Graphics Processing Units
(GPUs). The RFVS algorithm was also adapted for parallel processing on GPUs by
[Osterman 2012]. [Chao et al. 2011] proposed a different approach for parallel viewshed
computation using a GPU, where the algorithm runs entirely within the GPUs visualiza-
tion pipeline used to render 3D terrains. [Zhao et al. 2013] also discuss other parallel
approaches.

However, we have not found any previous work proposing a parallel implemen-
tation of Van Kreveld’s algorithm. In fact, [Zhao et al. 2013] stated that “a high degree
of sequential dependencies in Van Kreveld’s algorithm makes it less suitable to exploit
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parallelism”. In Section 3 we show how we have overcome this difficulty and describe
our parallel implementation of Van Kreveld’s sweep line algorithm.

2.4. Parallel Programming models

There are several parallel programming models, such as distributed memory/message
passing, shared memory, hybrid models, among others [Barney et al. 2010]. In this work,
we used the shared memory model, where the main program creates a certain number of
tasks (threads) that can be scheduled and carried out by the operating system concurrently.
Each thread has local data, but the main program and all threads share a common address
space, which can be read from and written to asynchronously. In order to control the
concurrent access to shared resources, some mechanisms such as locks and semaphores
may be used. An advantage of this model is that there is no need to specify explicitly the
communication between threads, simplifying the development of parallel applications.

For the algorithm implementation, we used OpenMP (Open Multi-Processing)
[Dagum and Menon 1998], a portable parallel programming API designed for shared
memory architectures. It is available for C++ and Fortran programming languages and
consists of a set of compiler directives that can be added to serial programs to influence
their run-time behaviour, making them parallel.

3. Our parallel sweep line algorithm

As described in Section 2.3.3, Van Kreveld’s algorithm needs information about the cells
intersected by the sweep line. It maintains these information by processing the enter and
exit events to keep the agenda up to date as the sweep line rotates. Therefore, processing
a center event is dependent upon all earlier enter and exit events.

In order to design a parallel implementation of this algorithm, this dependency
had to be eliminated. We did that by subdividing the observer’s region of interest in S

sectors around the observer, O (see Figure 4(a), where S = 8). Our idea is to process each
one of these sectors independently using Van Kreveld’s sweep line algorithm, such that it
can be done in parallel.

More specifically, consider sector s defined by the interval [↵, �), where ↵ and
� are azimuth angles. Let a and b be the line segments connecting O to the perimeter
of its region of interest, with azimuth angles ↵ and �, respectively (see Figure 4(a)). To
process s, the algorithm creates rays connecting O to all cells on the perimeter of the
region of interest that are between (or intersected by) a and b (see Figure 4(b)). These
rays are rasterized using the DDA method [Maćiorov 1964] and the events related to the
intersected cells are inserted into s’s own list of events, Es. Since the grid cells are convex,
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this process inserts into Es the events for all cells inside s or intersected by a or b. The
inserted cells are shown in Figure 4(b).

(a) (b)

Figure 4. Sector definition: (a) The subdivision of the region of interest and the
sector s, defined by the interval [↵,�); (b) The cells in the perimeter of the region
of interest, the rays used to determine which cells are intersected by s and the
cells inserted into Es (shaded cells).

Then, the algorithm sorts Es by the events’ azimuth angles and sweeps it in the
same manner as Van Kreveld’s algorithm. Note that, because we have distributed the
events into different lists and each list contains all events that are relevant to its sector,
each sector may be processed independently, each one with its own agenda. This allows a
straightforward parallelization of such processing. Also, note that the events of a cell may
be included in more than one sector’s event list and therefore some cells may be processed
twice. But that is not a problem, since this will happen only to a few cells, and it will not
affect the resulting viewshed.

It is also important to note that our algorithm might be faster than the original one
even with non-parallel architectures. For instance, we achieved up to 20% speedup using
only one processor (see Section 4). This happens because both implementations have to
sort their lists of events and, while the original (serial) algorithm sorts a list of size n, our
algorithm sorts S lists of size about n

S
. Since sorting can be done in ⇥(n logn), the latter

one is faster. In practice, we empirically concluded that, for a computer with N cores,
using S > N achieved better results than using S = N . This will be further discussed in
Section 4, as long with our experimental results.

4. Experimental results

We implemented our algorithm in C++ using OpenMP. We also implemented the original
(serial) Van Kreveld’s algorithm in C++. Both algorithms were compiled with g++ 4.6.4
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and optimization level -O3. Our experimental platform was a Dual Intel Xeon E5-2687
3.1GHz 8 core. The operational system was Ubuntu 12.04 LTS, Linux 3.5 Kernel.

The tests were done using six different terrains from SRTM datasets and, in all
experiments, the observer was sited in the center of the terrain, with hO = 100 meters and
hT = 0. The radius of interest, ⇢, was set to be large enough to cover the whole terrain.

Another important parameter for our program is the number of sectors S into
which the region of interest will be subdivided. Changing the number of sectors may
significantly modigy the algorithm performance. Empirically, we determined that good
results are achieved when the region is subdivided such that each sector contained about
40 cells from the perimeter of the region of interest, so we adopted that strategy. Other
strategies for choosing the number of sectors should be further investigated and it could
be an interesting topic for future work.

To evaluate our algorithm performance, we compared it to the original (serial)
algorithm. We ran several experiments limiting the number of parallel threads to the
following values: 16, 8, 4, 2 and 1. The results are given in Table 1 and plotted in
Figure 5(a), where the times are given in seconds and refer just to the time needed to
compute the viewshed. That is, we excluded the time taken to load the terrain data and
to write the computed viewshed into disk, since it was insignificant (less than 1% of the
total time in all cases). Also, the time represents the average time for five different runs
of the same experiment.

Table 1. Running times for the serial algorithm and the parallel algorithm with
different number of threads.

Terrain size Serial
Alg.

Parallel Alg.
Number of threads

# cells GiB 16 8 4 2 1
5 000

2 0.09 24 2 4 7 13 23
10 000

2 0.37 125 11 17 32 57 105
15 000

2 0.83 252 25 41 78 165 246
20 000

2 1.49 485 52 79 144 265 464
25 000

2 2.33 891 78 128 226 427 740
30 000

2 3.35 1 216 121 191 335 629 1 100

We calculated our algorithm speedup compared to the original algorithm. They
are presented in Table 2 and plotted in Figure 5(b). Our algorithm has shown very good
performance, achieving up to 12 times speedup, when running 16 concurrent threads. It
is also important to notice that with only four threads we achieved a speedup of 3.9 times
for two terrains and more than 3 times for all other terrains. Considering that processors
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Table 2. Speedups achieved by our parallel algorithm, with different number of
threads.

Terrain size Parallel Alg.
Number of threads

# cells GiB 16 8 4 2 1
5 000

2 0.09 12.00 6.00 3.43 1.85 1.04
10 000

2 0.37 11.36 7.35 3.91 2.19 1.19
15 000

2 0.83 10.08 6.15 3.23 1.53 1.02
20 000

2 1.49 9.33 6.14 3.37 1.83 1.05
25 000

2 2.33 11.42 6.96 3.94 2.09 1.20
30 000

2 3.35 10.05 6.37 3.63 1.93 1.11

(a) (b)

Figure 5. (a) Running times for the serial algorithm and the parallel algorithm with
different number of threads; (b) Speedups achieved by our parallel algorithm,
with different number of threads.

with four cores have become usual and relatively cheap nowadays, these improvements
may be useful for real users with regular computers. Finally, as discussed in Section 3,
the experiments with only one thread show that our strategy can be faster than the original
program even with serial architectures.

5. Conclusions and future work

We proposed a new parallel sweep line algorithm for viewshed computation, based on an
adaptation of Van Kreveld’s algorithm. Compared to the original (serial) algorithm, we
achieved speedup of up to 12 times with 16 concurrent threads, and up to 3.9 times using
four threads. Even with a single thread, our algorithm was better than the original one,
running up to 20% faster.

Compared to other parallel viewshed algorithms, ours seems to be the only to use
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Van Kreveld’s model, which presents a great tradeoff between efficiency and accuracy
[Fishman et al. 2009]. Also, most of them use other parallel models, such as distributed
memory/message passing and general purpose GPU programming. On the other hand,
ours uses the shared memory model, which is simpler, requires cheaper architectures and
is supported by most current computers.

As future work, we can point out the development of other strategies for defining
S, the number of sectors into which the region of interest is subdivided. We also intent
to develop another adaptation of Van Kreveld’s model using GPU programming. Since
GPU architectures are much more complex, this will not be a straightforward adaptation.
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