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ABSTRACT: 

 

The image segmentation is a key step in the image classification process since its quality will directly affects the classification result. 

The quality measure of image segmentation has been widely discussed in image analysis leading to the development of different 

metrics in order to try to automate the process and replace the subjective analysis of a specialist. These metrics are also known as 

similarity metrics (or functions) and evaluate the segmentation outcome comparing it with a given image containing some reference 

objects and returning a numerical value that express the similarity between the result and the expected references. As the quality can 

be expressed by a metric, the problem lies in achieving a small similarity value. This task is related to the input segmentation 

parameters that vary according to the image features and the classes of objects of interest. Given that the relation between the 

parameters and the segmentation quality can not be formulated, this procedure is generally done by a trial and error process. To 

avoid misleading and time consuming, automatic parameter tuning are proposed using genetic algorithms. However, this solution 

tends to have a high computational cost and another several parameters to tune. This work compares this solution with some 

derivative-free optimization methods to present some alternatives that have smaller computational cost. 
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1. INTRODUCTION 

In geographic object-based image analysis (GEOBIA), 

segmentation quality is a crucial issue. For good classification 

accuracy the parameters of the segmentation algorithm must be 

properly tuned to the object classes of each target application.  

 

However, the relation between the input parameters and the 

segmentation result is generally unclear. In consequence, in 

most applications segmentation parameters are tuned through a 

time consuming trial and error process. 

 

Supervised approaches to automate this procedure have been 

proposed, in which the optimum setting is given by the 

parameter values that minimize the degree of dissimilarity 

between the segmentation outcome and a set of reference 

segments provided manually by an operator.  

 

Conventional optimization techniques are not applicable to this 

task since the dissimilarity is generally not expressed by 

differentiable functions. Most approaches proposed to date for 

segmentation parameter tuning rely on stochastic techniques, 

mostly on genetic algorithms (GA) (Bhanu et al., 1995, 

Pignalberi et al., 2003, Feitosa et al., 2006). However, GAs 

have a number of inconveniences:  are non-deterministic, 

involve a bunch of parameters and options whose selection is 

not obvious, and have a high computational cost.  

 

Derivative-free methods have been in focus in the last few years 

for the optimization of black-box functions, i.e., functions for 

which there is no analytical formulation (Conn et al., 2009). 

Such methods have been successful in many applications, 

including the search of optimal parameter settings of different 

algorithms (Audet and Orban, 2006). 

 

The objective of this work is to assess derivate-free 

optimization methods for the automatic adaptation of 

segmentation parameters in terms of accuracy and 

computational load. Specifically, the following methods are 

evaluated: 

a) Generalized Pattern Search (GPS), 

b) Mesh Adaptive Direct Search (MADS), 

c) The Nelder-Mead (ND), 

using Genetic Algorithms as benchmark. These three methods 

are iterative algorithms, which, after the evaluation of the 

objective function on a finite number of points, consider only 

those values to settle on the next necessary actions. 

 

GPS (Torczon, 1997) and MADS (Audet and Dennis Jr., 2006) 

are said as directional direct-search methods moving towards 

the best point guided by sets of directions with particular 

features. ND (Nelder and Mead, 1965) is a direct-search 

algorithm based on simplex, which shifts to the opposite side 

from the worst point through some operations. 

 

The remainder of this paper is organized as follows. The next 

section provides a description of genetic algorithms and the 

derivative-free methods cited above. Also, the objective 

function is explained. In section 3, the methodology is 

presented and the results of experimental analysis are discussed 

in section 4. Lastly, section 5 ends the work with the main 

conclusions and directions for future work. 

 

 

2. OPTIMIZATION TECHNIQUES 

This section describes succinctly the referred techniques as well 

as the objective function used on the optimization process. 
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2.1 Genetic Algorithms 

Genetic algorithms are stochastic methods for finding 

approximate solutions to optimization problems. Inspired by the 

theory of evolution by Charles Darwin (Darwin, 1859), these 

algorithms consist of an evolutionary process that tries out to 

maximize or minimize a given fitness function. 

 

This process occurs in an iterative way through generations of 

individuals, where each individual can be described as a 

possible solution to the optimization problem. The individuals 

are composed by a number of genes, which represent the 

variables that have to be set by the optimization process.   

 

In each generation, the existing set of individuals is called 

population and each individual is evaluated by calculating a 

given fitness function. This function is responsible for 

representing numerically the capability of a particular individual 

to solve a given problem (Michalewicz, 1996). The worst 

individuals are then discarded, while new ones are generated 

through the reproduction of the fittest individuals with the help 

of genetic operator. 

 

The classical genetic operators are crossover and mutation. 

Crossover operators create new individuals that inherit 

characteristics from their parents. This occurs by mixing genes 

between two individuals that generally are well fitted. Mutation 

modifies gene values randomly so as to keep away from 

convergence to local minima. 

 

In this particular case, the goal is to find the optimal values for 

segmentation parameters. Thus, each individual represents a set 

of parameter values and the fitness function is defined by a 

function that expresses the degree of disparity between the 

results produced by segmentation and a set of segments defined 

as a reference image. 

 

2.2 Derivative-Free Optimization 

Derivative-free optimization (DFO) methods do not require any 

knowledge about derivatives of the objective function, nor 

estimates for these derivates. Therefore, they can be used when 

the objective function is unknown, when it is not smooth or 

when it is impossible to obtain its derivatives. 

 

These methods include the following classes of algorithms 

(Vaz, 2009): Directional Direct Search, Simplicial Direct 

Search, Line-Search and Trust Region. In this paper, the 

interest lies on both direct search methods: directional and 

simplicial. So, these methods are presented below. 

 

2.2.1 Directional Direct Search 

These methods are known for determining possible optimal 

points using directions (whether fixed or not) through an 

iterative process. 

 

Starting from an iteration k, the next iteration will be found 

looking for a pattern or mesh points in some directions d at a 

distance αk called step size. The objective is to find a new point 

where the objective function decreases.  

 

The step size α0 is a parameter that is set at the beginning of the 

method. If at the current iteration a better function value is 

found, αk remains unchanged or is increased. Otherwise, αk is 

contracted. 

 

The directions d are generally given by a positive basis. For a 

better understanding it is important to define some concepts. A 

positive combination of the set of vectors {vi ϵ IRn : j=1,...,r} is a 

linear combination a1v1 +…+ arvr with aj ≥ 0. Also, a set of 

vectors {vi ϵ IRn : j=1,...,r} is said positively independent if none 

of them is a positive combination of the others. Lastly, a 

positive basis for Rn is such that every vector in Rn can be 

written as a positive combination of the positive basis vectors 

but no member of the positive basis is expressible as a positive 

combination of the remaining members of the basis (Coope and 

Price, 2000). The minimal positive basis contains n+1 elements 

and the maximal contains 2n, being n the dimension of the 

points.  

 

Figure 1 illustrates an example of iterations starting from x0 and 

moving toward x6. The search is performed in the directions 

north, south, east and west and the first point found that  makes 

the object function decreases is selected for the next step. The 

process starts on x0. Using the step size α0, the direction to the 

south is tested without success. When the point at the north 

from x0 is verified, the function experiences a better result and 

set the point to be x1. Then, after failing with the north and 

south directions from x1, x2 is found at the east. Similarly, x3 is 

defined. In this step, the search failed in all directions and the 

solution is to set x4 = x3 and to decrease the step size. The 

process then continues through x5 until it finds x6. 

 

 
Figure 1. Example of some iterations of a directional direct 

search algorithm  

 

The simplest directional method is the Coordinated Search 

(CS). It consists in using the maximal positive basis to proceed 

in the directional direct search algorithm. According to Konda 

et al. (2003), these methods are easy to implement and have an 

initially fast progress toward the solution, but may take a 

comparatively long time to converge. 

 

Generalized Pattern Search (GPS) are discussed in (Audet and 

Dennis Jr., 2003). The key difference is the use of sets of 

positives bases instead of only the maximal one. Also there is an 

additional step called Search Step. The search step is optional 

and has no implications on the convergence of the method. It 

consists in calculating the objective function value for a finite 

number of points arbitrarily chosen within the provided pattern. 

 

The Mesh Adaptive Direct Search (MADS) was proposed in 

(Audet and Dennis Jr., 2006). The main difference to the other 

methods is that the local exploration of the space of variables is 

not restricted to a finite number of directions which makes this 

class of algorithms capable of achieving convergence in the 

nonsmooth case.  
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2.2.2 Simplicial Direct Search 

The central idea of this method is to build a non-degenerate 

simplex in IRn and use it to conduct the search. A simplex is a 

polyhedron in IRn with n+1 sides and it is said non-degenerate 

when the set {x1-xi, x2-xi, …, xn+1-xi} i=1,…,n is linearly 

independent. 

 

Originally, the simplicial direct search algorithm consisted in a 

single movement of an isometric reflection from the worst 

vertex in relation to the centroid of the n best vertices. If the 

reflected vertex still is the worst vertex, then the second worst 

one is picked up and the process is repeated. 

 

When the objective function decreases on the reflected vertex in 

relation to the best vertex, then it is considered a new candidate 

for the minimization problem. On the other hand, when 

reflection is worse than the worst vertex, there is the alternative 

to reduce both adjacent edges lengths from the best vertex, 

consequently reducing the search space. 

 

Some new movements were then introduced: expansion and 

contraction (for inside or outside). Also, if these movements fail 

there is yet a possibility to shrink toward the best vertex. Figure 

2 represents an example of these simplex operations. 

 

 

 
Figure 2. Movements of Nelder-Mead method 

 

The algorithm begins with the generation of a regular simplex in 

IRn with n+1 vertices and the evaluation of the objective 

function. Then, the worst vertex of the simplex (vw) must be 

replaced by a new point so as to approximate to the solution. 

Thus, the centroid (vc) of the n best vertices has to be 

calculated. 

 

The next step is determining the reflected vertex (vr). If this new 

point indicates a good progression then the expanded vertex (ve) 

is calculated. Then, according to the objective function, it is 

choose between the reflected and the expanded vertex as the 

substitute for the worst vertex.   

 

Otherwise, the vertices contracted for inside and outside (vci and 

vco) are calculated and compared with the two worst vertices of 

the simplex. If one of the contracted vertices is better than the 

second worst vertex, this will replace the worst vertex in the 

simplex. If not, a shrink should be executed. 

 

The shrink operation fixes the best vertex and replaces each of 

the other vertices by the midpoint of the segment that joins the 

best. After the new vertices of the simplex are established, a 

new iteration is then performed. 

 

It is important to point out that this method has some 

convergence problems. Some variants are presented in 

literature. One version can be found at (Conn et al., 2009) that 

is based on the control of the simplex geometry, through its 

diameter and its normalized volume. 

 

2.3 Objective Function 

The evaluation function works comparing the segmentation 

result a set of parameters as input and compares its result with a 

given reference image that represent some objects of interest. At 

the end, the function returns a numerical value that represents 

the degree of dissimilarity between them. The intention in this 

case is to minimize this function in order to obtain the best set 

of parameters. 

 

For a better understanding of the objective function it is worth 

to define some concepts, as illustrated in Figure 3. Given a set 

of n reference objects, Ri (i=1, 2, ..., n) is assumed to be the i-th 

reference object. The object resulting from the segmentation 

process that has the largest intercession with Ri is denoted as Si. 

The number of pixels in Si that not belong to Ri is called false 

positives fpi, the number of pixels in Ri that not belong to Si is 

defined as false negatives fni, and the number of pixels in Si that 

belong to Ri is called true positives. 

 

 
Figure 3. The reference and the segmentation object 

 

The objective function selected for estimating the dissimilarity 

metric in this work is the Reference Bounded Segments Booster 

(RBSB) proposed in (Feitosa et al., 2006) and expressed by 

equation 1:  

 

 


 




n

i ii

ii

fntp

fnfp

n
PSF

1

1
),(  (1) 

 

 

If the segmentation matches perfectly with the reference then 

the degree of dissimilarity is zero. Also, it is important to point 

out that identical values can be assigned to different 

segmentation results. 

 

3. METHODOLOGY 

A group of experiments were performed with the objective to 

analyse, for each method, the required number of executions of 

the segmentation program and the dissimilarity value reached at 

the end of the optimization process.  

 

The segmentation program used in our tests is an 

implementation of the region growing algorithm proposed in 
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(Baatz and Schäpe, 2000) and the parameters being optimized 

were: the scale parameter, the color/shape weight, the 

compactness/smoothness weight, and the bands weights.  

 

Two images have been selected to perform our tests. IM1 is a 

clipping from an image extracted from Google Earth (219 x 

217). IM2 is a clipping from a Quickbird image (418 x 599 

pixels) where the five original bands were merged into three by 

applying principal component analysis. These images are 

presented in Figure 3. 

 

   
Figure 3. Images used as input in segmentation process:  

IM1 (left) and IM2 (right) 

 

For IM1, five circular objects were selected to represent the 

reference segmentation result. For IM2, nine spectrally 

homogeneous objects were delineated manually to correspond 

to to the ideal outcome. In the first case, the spatial attributes 

were the distinguishing characteristics while in the last case the 

spectral ones. The reference objects are shown in Figure 4. 

 

   
Figure 4. Reference objects for IM1 (left) and for IM2 (right) 

 

Functions implementing the methods available in the 

optimization toolbox of MATLAB were used throughout our 

experiments. With the exception of the NM, which was 

executed with its default values, some parameters of the other 

methods were varied as described hereafter. For GPS and 

MADS, it was modified the number of basis vectors (which 

influences the quantity of search directions), the polling order 

(that defines the order of directions to move in the parameter 

space), the mesh expansion factor (that influences the step size 

after a successful poll) and the mesh contraction factor (that 

influences the step size after a failed poll). The tested 

configurations are presented in Table 1. 

 

 

Name Size of 

Basis 

Polling 

Order 

Expansion 

Factor 

Contraction 

Factor 

GPS1 N+1 Consecutive 2 0.5 

GPS2 N+1 Success 2 0.5 

GPS3 N+1 Consecutive 1 0.5 

GPS4 N+1 Consecutive 2 0.25 

GPS5 2N Consecutive 2 0.5 

GPS6 2N Success 2 0.5 

GPS7 2N Consecutive 1 0.5 

GPS8 2N Consecutive 2 0.25 

MADS1 N+1 Consecutive 2 0.5 

MADS2 N+1 Success 2 0.5 

MADS3 N+1 Consecutive 1 0.5 

MADS4 N+1 Consecutive 2 0.25 

MADS5 2N Consecutive 2 0.5 

MADS6 2N Success 2 0.5 

MADS7 2N Consecutive 1 0.5 

MADS8 2N Consecutive 2 0.25 

Table 1.  Configurations of GPS and MADS 

 

For GA execution, variants of a basic configuration were tested 

involving the selection function, the crossover function and the 

mutation function. The population size was also adjusted since 

it is directly related to the number of executions. Table 2 shows 

the configurations used for the experiments using GA. 

 

Name Population Selection Crossover Mutation 

GA1 8 
stochastic 

uniform 
scattered default 

GA2 8 roulette scattered default 

GA3 8 
stochastic 

uniform 
two point default 

GA4 8 
stochastic 

uniform 
scattered uniform 

GA5 10 
stochastic 

uniform 
scattered default 

GA6 10 roulette scattered default 

GA7 10 
stochastic 

uniform 
two point default 

GA8 10 
stochastic 

uniform 
scattered uniform 

Table 2.  Configurations of GA 

 

 

4. EXPERIMENTAL RESULTS 

The results using IM1 are shown in Table 3. ND seems to have 

achieved local minima and did not deliver a good result in terms 

of dissimilarity. GPS reached good dissimilarity values using 

few executions. MADS required more evaluations, but obtained 

better values. GA took a higher number of executions and 

produced almost the same dissimilarity values as GPS when the 

population was set to 10.  

 

The results using IM2 are shown in Table 4. The first important 

aspect revealed by Table 4 is that ND also achieved the worst 

dissimilarity values among all methods. Second, GA was the 

worst method in terms of executions of the segmentation 

program. On the other hand, GPS and MADS presented a good 

balance between both performance metrics. According to these 

results, GPS and MADS produced nearly the same dissimilarity 

values as GA, requiring roughly as little segmentation 

evaluations as ND. 
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Method Name # Executions Dissimilarity Value 

GPS1 176 0.1419 

GPS2 179 0.1419 

GPS3 155 0.1191 

GPS4 101 0.2034 

GPS5 262 0.2808 

GPS6 265 0.2808 

GPS7 246 0.1191 

GPS8 182 0.1199 

MADS1 224 0.1248 

MADS2 236 0.1315 

MADS3 219 0.2362 

MADS4 210 0.1343 

MADS5 338 0.1241 

MADS6 347 0.1244 

MADS7 436 0.1117 

MADS8 283 0.1563 

ND 122 0.6791 

GA1 416 0.2523 

GA2 416 0.1910 

GA3 416 0.1799 

GA4 416 0.2493 

GA5 520 0.1197 

GA6 520 0.1299 

GA7 520 0.1906 

GA8 520 0.2232 

Table 3.  Result of the optimization methods with different 

configurations on image IM1 

 

Method Name # Executions Dissimilarity Value 

GPS1 217 0.1475 

GPS2 217 0.1475 

GPS3 151 0.1775 

GPS4 93 0.1853 

GPS5 277 0.1744 

GPS6 279 0.1744 

GPS7 226 0.1769 

GPS8 159 0.1697 

MADS1 183 0.1630 

MADS2 238 0.1647 

MADS3 193 0.1731 

MADS4 227 0.1911 

MADS5 304 0.2002 

MADS6 376 0.1433 

MADS7 324 0.1902 

MADS8 413 0.1736 

ND 180 0.4268 

GA1 416 0.2602 

GA2 416 0.1744 

GA3 416 0.1877 

GA4 416 0.2016 

GA5 520 0.1526 

GA6 520 0.1601 

GA7 520 0.1721 

GA8 520 0.2269 

Table 4.  Result of the optimization methods with different 

configurations on image IM2 

 

It can be noticed that for both GPS and MADS, N+1 bases led 

to a fewer executions. On average, it also delivered in better 

dissimilarity values, with the exception of MADS for IM1. 

Likewise, it can be verified that GPS mostly presented better 

dissimilarity results than MADS, with the exception of MADS 

working with 2N bases on IM1 that achieved the better 

dissimilarity values. 

 

The consecutive polling order behaved similar to the success 

polling order for GPS. However, it presented a substantial 

difference in terms of number of executions for MADS on IM2. 

For lower contraction factor the number of executions tended 

decrease for GPS. Though, this fact was not observed for 

MADS on IM2. 

 

The differences in terms of dissimilarity value when the 

population size of the GA was varied were relatively high for 

IM1. Using the population size equal to eight, the best 

dissimilarity value were almost 0.18. For the population size set 

to 10, the results became closer to the GPS and MADS. 

Considering the different configurations for GA, the selection 

set to "roulette" (GA2 and GA6) was the one that reached a 

better average dissimilarity. The worst result was obtained for 

the mutation set to "uniform". 

 

5. CONCLUSION 

These results strongly suggest that the GPS and MADS can be 

very effective for automatic segmentation parameter tuning as 

alternatives to Genetic Algorithm, specially in what refers to the 

computational cost. Both methods achieved an overall better 

accuracy at less number of executions. Moreover, GA still 

requires a great number of parameters and options that have to 

be adjusted before executed. Although MADS is more frequent 

in the recent literature, GPS achieved better results in most of 

our experiments when considering the number of executions.  

 

Analysing the dissimilarity values, the best absolute value as 

well as the best average value were obtained by the MADS. 

However, the difference is relatively small when comparing 

with GPS. ND did not deliver any good result. 

 

Since GPS presented the best balance between number 

of executions and dissimilarity value among the tested methods, 

it seems to be the most recommended method for tuning 

segmentation parameters.  

 

More experiments involving different images, objective 

functions, reference objects, as well as other derivate-free 

optimization methods, are planed for the continuation of this 

research. 
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