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ABSTRACT: 

 

Multi-temporal LiDAR DTMs are used for the development and testing of a method for geomorphological change analysis in 

western Austria. Our test area is located on a mountain slope in the Gargellen Valley in western Austria. Six geomorphological 

features were mapped by using stratified Object-Based Image Analysis (OBIA) and segmentation optimization using 1m LiDAR 

DTMs of 2002 and 2005. Based on the 2002 data, the scale parameter for each geomorphological feature was optimized by 

comparing manually digitized training samples with automatically recognized image objects. Classification rule sets were developed 

to extract the feature types of interest. The segmentation and classification settings were then applied to both LiDAR DTMs which 

allowed the detection of geomorphological change between 2002 and 2005. FROM-TO changes of geomorphological categories 

were calculated and linked to volumetric changes which were derived from the subtracted DTMs. Enlargement of mass movement 

areas at the cost of glacial eroded bedrock was detected, although most changes occurred within mass movement categories and 

channel incisions, as the result of material removal and/or deposition. The proposed method seems applicable for geomorphological 

change detection in mountain areas. In order to improve change detection results, processing errors and noise that negatively 

influence the segmentation accuracy need to be reduced. Despite these concerns, we conclude that stratified OBIA applied to multi-

temporal LiDAR datasets is a promising tool for of geomorphological change detection. 
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1. INTRODUCTION 

1.1   Motivation and objectives 

Geomorphological mapping is a well-recognized technique to 

document landforms, materials, morphometry and genesis of 

landforms. It is used in landscape reconstructions, as additional 

data to understand climate proxies and is used in applied studies 

such as hazard and risk assessment and landscape conservation. 

Classical geomorphological maps are hand drawn paper maps, 

mostly prepared by an expert using a package of point, line and 

area symbols, which are combined to display geomorphological 

features. For an overview of such mapping systems is referred 

to Seijmonsbergen et al. (2011). The wide availability of DTMs 

and the integration of both geographical information systems 

(GIS) and remote sensing (RS) technology have changed the 

routines of modern geomorphological map production. 

Computer-generated geomorphological mapping uses DTMs, 

ortho-rectified imagery, and (semi-) automated routines for 

feature extraction and landform mapping in a digital 

environment and reduces field visits. Digital applications of 

modern geomorphological information layers are being 

developed and are made available more easily to end-users, e.g. 

via web-based portals.  

 

The field of “geomorphometry”- the science of quantitative 

land-surface analysis (Hengl and Reuter, 2008) - is concerned 

with the automated extraction of geomorphological features 

from DTMs by using Land Surface Parameters (LSPs) and 

statistical analyses. Next to this development, Object-Based 

Image Analysis (OBIA) is widely used for landform 

classification (Drăguţ and Blaschke 2006) and other 

geomorphological applications by using complex workflows for 

the segmentation and classification of both high-resolution 

imagery and/or DTMs (Blaschke 2010).Automated techniques 

of feature extraction and geomorphological mapping allow 

objective and systematic analysis of digital elevation data, 

which paves the way for quantitative comparison of multi-

temporal data to model detailed and specific topographic 

change over time.  

 

Our objective is to test stratified object-based segmentation and 

classification on a multi-temporal 1m resolution LiDAR dataset 

and to prepare and evaluate a geomorphological change 

detection layer in a mountainous area suffering from slope 

instability processes. 

 

 

 
Figure 1. The study area (red box, left) is located in Vorarlberg, 

the westernmost state of Austria. Characteristic to the area are 

surface mass movements in metamorphic bedrock. 

 

1.2   Overview 

There are currently three important trends in modern 

geomorphological mapping (Seijmonsbergen et. al (2011):  

Proceedings of the 4th GEOBIA, May 7-9, 2012 - Rio de Janeiro - Brazil. p.484

484



 

1. Digitizing existing classical geomorphological maps into GIS 

databases 2. Updating classical digitized geomorphological 

maps by adding detailed information which has been manually 

or automatically extracted from high resolution DTMs and 3. 

Automated and semi-automated geomorphological mapping 

using DTM-derived LSPs, OBIA and rule sets development. 

  

The use of LiDAR technology has accelerated the development 

of analysis tools and work flows for use in the automated 

approach, especially in mountains, where accessibility is 

difficult and detailed maps are often scarce. Feature extraction 

using LSPs and/or object-based classification has been tested 

and applied in a number of mass movement studies (e.g. 

McKean and Roering 2004; Glenn et al. 2006). Traditionally, 

mass movement change detection was studied by detecting 

changes in multi-spectral temporal satellite image and air-photo 

analyses. Nowadays, OBIA is increasingly applied on DTMs 

(Anders et al, 2011a), and initiatives for preparation of feature 

signature libraries (Anders et al., 2011b) or combining spectral 

and DEM derived signatures (e.g. Stumpf and Kerle 2011, 

Aksoy and Ercanoglu 2012) have been undertaken to map 

landscape as a whole (MacMillan et al. 2000; Van Asselen and 

Seijmonsbergen 2006; Anders et al. 2011b). 
 

1.3   Study area 

We have selected part of a hillslope in the Gargellen Valley, in 

the State of Vorarlberg, western Austrian Alps (Figure 1) 

because multi-temporal LiDAR datasets were available, and the 

landslide and fluvial activity is high, guaranteeing that change 

over this time interval is expected. The area is part of the 

crystalline Silvretta nappe and is underlain by formations 

composed of ortho- and paraschists, amphibolites and 

micaschists. This crystalline nappe was dragged over East 

Alpine sedimentary series during alpine orogenesis which 

resulted in severe tectonic deformation and weakening of rock 

strength. In addition, intense and repeated glacial erosion during 

the Pleistocene has resulted in steepening of slopes. This has 

triggered tensional rebound, which accelerated a variety of 

geomorphological processes such as rock slides, rock fall and 

fluvial erosion, carving deeply into the disintegrated and 

weathered bedrock (Van Noord et al., 1996). 

 

2. METHODS 

2.1   Data and software  

Two LiDAR data sets from a December 2002 and a November 

2005 flight were used. The raw point data were acquired, 

filtered and interpolated into 1m resolution LiDAR raster DEMs 

by TopScan (http://www.topscan.de/). We had access to a 

Canopy Height Model (CHM) and the DTMs of both years. Six 

coverages of digital multi-temporal ortho-rectified 

panchromatic, color and infrared air-photos, with resolutions 

between 12.5cm and 100cm were available from the mid 

nineteen-fifties to 2010.The segmentation and classification was 

performed in eCognition Developer8.7, the segmentation 

accuracy assessments and optimization were carried out in 

Python+GDAL/OGR, while change detection calculations and 

map visualizations were performed in ArcGIS10. 

 

2.2   Processing 

  

A workflow visualizing the individual main processing steps are 

displayed in Figure 2. These steps follow and elaborate on the 

approach of Anders et al., (2011a). Their analysis is divided 

into four steps: 1. data preparation, 2. parameterization, 3. 

stratified feature extraction using OBIA and 4. validation. As a 

further step 5 we introduce the calculation of a 

geomorphological change detection layer. Included in this 

additional step 5 is the volumetric change between the two 

DTMs, linked to the geomorphological categories that occur in 

the area. 

 

 
 

Figure 2. General  workflow of the method. The numbers in the 

boxes correspond to the processing steps in the text. 

 

 
Figure 3. RGB false color LSP composite layer combination of 

slope angle, openness25m and openness 250m. 

 
Six contrasting geomorphological feature classes were 

recognized and incorporated: 1. fluvial incision, 2. glacially 

eroded bedrock, 3. alluvial/debris fans, 4. shallow mass 

movements, 5. flow/slide deposits and 6. deep-seated mass 

movements. The step by step procedure comprises:  

 

1. Data preparation. This step comprises the calculation of 

LSPs from the two LiDAR DTMs, namely a slope angle layer, 

an elevation percentile layer (EPC) and two topographic 

openness layers, with a kernel size of 25x25m (TO25) and 

250x250m (TO250) (Yokayama et al., 2002). For the 
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classification of fluvial incisions, an upstream area layer was 

constructed by using the D8 method as implemented in ArcGIS 

(Jenson and Domingue, 1988). 

 

A Red-Green-Blue (RGB) false color LSP composite layer was 

produced by combining the slope angle, TO25 and TO250 

layers (Figure 3). Such false color LSP composites are 

independent of artificial illumination, like hill shade maps are. 

RGB layers do not suffer from disguise of boundaries by 

shadows or clouds on air-photos, and thus allow precise 

landform delineation, either manually or through automatic 

segmentation. The RGB layer was used to create a) training 

samples for each category to determine optimal scale parameters 

for the segmentation of the two DTMs, and b) a validation set of 

manually delineated landforms to test the performance of the 

resulting classification.  

 

2. Parameterization. Image objects were derived from 

segmentations with scale parameters ranging from 1-1000. The 

sets of objects were compared with the training samples of each 

geomorphological feature type by calculating 2D frequency 

distribution matrices (using the slope and TO250 LSPs). The 

sum of absolute error between the matrices of training samples 

and eCognition objects were used as a measure of segmentation 

error. The scale parameter related to the smallest segmentation 

error was considered most accurate for segmenting the specific 

geomorphological feature. For in-depth information regarding 

the parameter optimization we refer to Anders et al. (2011a).  

 

3. Stratified feature extraction. In this step, feature-specific 

segmentation and classification rules are applied and the six 

categories are extracted separately in a stratified way: smaller 

and distinct features first, followed by extraction of larger 

features.  

 

4. Validation. Qualitative comparison and validation of the 

classified geomorphological feature types were carried out by 

manual comparison to the existing 1:10.000 scale classical 

geomorphological map sheet St.Gallenkirch (Van Noord, 1996). 

In addition, six temporal ortho-photo series were inspected to 

validate the resulting change maps.  

 

A quantitative validation of classification results was performed 

based on the method described by Congalton and Green (1999). 

Both the classification and the validation samples of step 1 were 

rasterized into 5x5m grid cells. Then the labels of classified grid 

cells and the validation grid cells were compared and 

summarized into a confusion matrix. The user’s, producer’s and 

overall accuracies were determined for the six feature classes to 

quantify the performance of the classifications.  

 

5. Change detection. A geomorphological change layer was 

prepared by listing the change per geomorphological feature 

type as FROM-TO changes. These were attributed with 

volumetric change information by subtracting the 2005 from the 

2002 DEM and using an overlay operation with the 

geomorphological change layer.  

 

The method requires mimimum expert-knowledge input, which 

was obtained from a short field visit and by consulting the 

multi-temporal ortho-photos, which were draped over the 

LiDAR DTM and CHM, allowing detailed genetic 

interpretation of landform and evaluation of locations of 

potential change. 

 

3. PRELIMINARY RESULTS 

3.1   Segmentation parameterization  

Figure 4 shows the calculated error against the scale parameter 

value for the six feature types. The optimal SP varies between 

35 (fluvial incision) and 150 (shallow mass movement). The 

error values indicate that alluvial/debris fan (error 0.39) has 

been more accurately segmented than deep seated mass 

movement (error 0.57). The surface morphology of the debris 

fan is clearly “smoother” or more “homogeneous” than that of 

the deep seated mass movements occurring in the area, which 

may also inherit “signature“ characteristics of former feature 

types such as glacially eroded bedrock.  

 

 
Figure 4. Segmentation Error (SE) plotted against the scale 

parameter value for each geomorphological feature. The three 

colors in the graphs refer to segmentation results calculated with 

the LSPs ‘slope’, ‘slope and TO250 and TO250. 
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Scale parameter 75 35 75 100 150 45

LSPs TO250
Slope, 

TO250

Slope, 

TO250
TO250

Slope, 

TO250

Slope, 

TO250

Mean EPC [%] > 55 > 45

Mean TO250 [
o
] > 160 < 160 > 160 130-170

Mean slope [
o
] > 20 < 25 > 30 < 45

Std DTM [-] < 4 > 8

Std slope [-] > 5

Dist. to river [m] < 50

Segmentation

Classification

 
Table 1. Segmentation and classification settings used in the 

classification of both LiDAR DTMs. 
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Figure 5. Classifications for 2002 (full color) overlain with the 

changes of the 2005 classification  (hatched).  

 
Figure 6. Volumetric change in m3. The backdrop image is an 

ortho-photo of 2006. 

 

 
Figure 7. Volumetric changes (removal and deposition) per 

geomorphological feature class and the most important  

“FROM-TO‟ changes. 

3.2   Classification 

The parameters and criteria used in the classification of the two 

LiDAR DTMs are listed for each geomorphological feature type 

in table 1. The order of stratified classification that produced the 

best result was 1) fluvial incision, 2) alluvial fan/debris fans, 3) 

glacially eroded bedrock, 4) deep-seated mass movement, 5) 

shallow mass movement, 6) flow/slide deposits. The 

geomorphological maps generated for the two dates are 

displayed in Figure 5. Although segmentation is thought to be 

influenced by noise in the two DTMs, the overall patterns 

correlate well. Based on these multi-temporal geomorphological 

maps and DTMs, the change analysis has been made.  

 

3.3  Change analysis  

In Figure 5 the classifications of 2002 and 2005 are displayed. 

The classification of 2005 has been indicated by a hatching. In 

this way the locations where the 2005 classification is equal to 

the 2002 classification the hatching will overlap the original 

color and no difference or change is visible.  On the other hand, 

change between different classes is clearly visualized. 

 

Figure 6 presents the volumetric change (in m3) between 2002 

and 2005, by taking into account a threshold value of -1 to +1m 

(regarded as no change). The map is underlain by a subset of the 

25cm resolution true color ortho-photo of 2006.  

 

In Figure 7 the most evident volumetric and „FROM-TO‟ 

changes per geomorphological feature class are presented as 

negative and positive change. Positive change (deposition) 

predominantly occurred predominantly within fluvial incisions 

and on alluvial/debris fans. Positive volumetric change also 

occurred where fluvial incisions changed into slopes with 

shallow mass movement. Negative change (removal of material) 

occurred predominantly within slopes affected by shallow mass 

movement and glacially eroded bedrock. Slopes with deep 

seated mass movement were only slightly altered by removal of 

material. It appears that some unlikely transformations occurred 

for the unit shallow mass movement, which erroneously 

changed into glacially eroded bedrock.   

 

Negative values correlate to numerous small bank failures that 

occurred along the slopes of fluvial incisions or along the 

steeper backs carps located on the upper steep slopes. Most 

positive changes reflect sediment, derived these upper landslide 

areas, which has transported and deposited near a distinct break 

in slope, occurring in most channels halfway to the main 

Suggadin River valley floor, and which probably occurred after 

heavy rainfall in August 2005 (Chiari et al., 2008). The banks of 

the Suggadin River also show a denser pattern of negative 

values, which is attributed to bank retreat, initiated by local 

landslides and lateral bank erosion.  

 

3.4   Accuracy assessment 

In Table 2 the accuracy assessment is presented in a confusion 

matrix (Congalton and  Green, 1999). The overall classification 

accuracy was 84% for 2002 and 87% for 2005. Review of the 

user’s  and producer’s  accuracy shows that a grouping of three 

well classified feature types appears in both datasets (glacially 

eroded bedrock, alluvial fan/debris fan and shallow mass 

movement), that two  feature types (deep mass movement and 

fluvial incision) are moderately well classified, and that the 

classification of the flow/slide deposits results in a poor 

classification. This could relate to overlapping topographic 
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properties or signatures between geomorphological features,  

the few validation pixels used in the accuracy assessment or the 

order of stratified classification followed. 
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2002 264 0 0 93 17 0 374

2005 331 0 0 102 21 0 454

2002 0 103 0 45 4 70 222

2005 0 75 0 59 0 54 188

2002 0 0 886 0 0 0 886

2005 0 0 903 0 0 0 903

2002 0 0 0 243 0 4 247

2005 0 0 0 224 0 6 230

2002 54 0 0 25 404 0 483

2005 7 0 0 25 404 8 444

2002 28 0 17 6 0 12 63

2005 8 0 0 2 0 8 18

2002 346 103 903 412 425 86 2275

2005 346 75 903 412 425 76 2237

2002 71 46 100 98 84 19

2005 73 40 100 97 91 44

2002 76 100 98 59 95 14

2005 96 100 100 54 95 11

2002 84

2005 87

User's accuracy

Producer's accuracy

Overall  accuracy

Total

Validation samples

C
la

ss
if

ic
a
ti

o
n

Glacially eroded 

bedrock

Fluvial incision

Alluvial/debris fan

Deep mass m.

Shallow mass m.

Flow/slide dep.

 
Table 2. Comparison between the classification results and 

validation sample data for the six feature classes. 

 

4. CONCLUSIONS 

Current geomorphological change detection methods mainly 

focus on subtraction of multi-temporal DTMs, and change 

interpretation afterwards. Our OBIA approach includes „From-

To” changes as well as volumetric changes per 

geomorphological category, as the result of multi-temporal 

semi-automated classifications for different years, using a 

stratified classification approach.  

 

The preliminary results and the experience obtained in working 

with multi-temporal DTMs leads to the following conclusions: 

The geomorphological change detection method gives insight in 

both the spatial changes and in volumetric changes that 

occurred in the landscape, which shows added value over 

existing geomorphological change detection methods (DeWitte 

et al., 2008).  

 

In areas where volumetric changes occurred we expected the 

DTM derived LSP signals to have changed likewise, forcing 

categorization in a different landform class. This seems true for 

the mass movement feature classes that enlarge at the cost of 

non-mass movement units. In case volumetric changes occur 

within the same feature classes, the segmentation signals and 

classification rules remain the same, indicating that such 

categories may deepen or become covered, without being 

“detected‟ as different in the signal. It was observed that this is 

strongly related to fluvial incisions.  

  

The noise present in the processed LiDAR DTMs does 

influence the final change product. This noise can be reduced 

during processing of the LiDAR, preferentially by using similar 

reflection densities and comparable interpolation techniques. 

We strongly suspect that the differences in vertical accuracy 

between the two DTMs are largest in forested and steep terrain, 

as a consequence of amongst others point density variation. For 

now, we used a threshold value to cope with these supposed 

uncertainties and errors.  

 

The proposed method is based on transferable segmentation 

parameters and classification rule sets and needs minimum 

expert-knowledge input. We see great monitoring potential 

application in hazard and risk studies, rate of change analyses, 

and scale dependant research (Hay et al. 2003) and vulnerability 

assessments with increasing availability of new multi-temporal 

LiDAR data. 
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