
XI Workshop de Computação Aplicada (WORCAP 2011) – Instituto Nacional de Pesquisas Espaciais (INPE)

Extending the SOLIMVA methodology to address
incompleteness in software specifications

Valdivino Alexandre de Santiago Júnior1, Nandamudi Lankalapalli Vijaykumar2

1Programa de Doutorado em Computação Aplicada – CAP
Instituto Nacional de Pesquisas Espaciais – INPE

2Laboratório Associado de Computação e Matemática Aplicada – LAC
Instituto Nacional de Pesquisas Espaciais – INPE

valdivino@das.inpe.br,vijay@lac.inpe.br

Abstract. Incompleteness in software requirements specifications affects the
next software artifacts, including source code, developed within the software
development lifecycle. This work extends the SOLIMVA methodology to address
incompleteness in software specifications. We used Model Checking combined
with k-permutations of n values of variables and specification patterns to tackle
this problem. We present the results of applying our approach to a software
product in the space application domain.

Keywords: SOLIMVA Methodology, Incompleteness, Software Specifications, Model
Checking, k-permutations of n.

1. Introduction

There are several publications in the literature that prove that problems in requirements
are serious factors that affect the quality of software products. In a survey over 8,000
projects undertaken by 350 US companies, managers identified requirements as the main
cause of project failures in accordance with the following problems: the lack of user
involvement (13%), requirements incompleteness (12%), changing requirements (11%),
unrealistic expectations (6%), and unclear objectives (5%) [van Lamsweerde 2000].

Incompleteness, inconsistency, and, especially in Natural Language (NL) requirements
specifications, ambiguity are among the types of defects found in software requirements
specifications. Since software requirements specifications are created early within the
software development lifecycle, their defects affect the next software artifacts, including
source code, to be developed.

In a previous work we presented SOLIMVA, a methodology aiming at
model-based test case generation considering NL requirements deliverables
[Santiago Júnior and Vijaykumar 2011]. In this work, we extend the SOLIMVA
methodology to address incompleteness in software specifications (software require-
ments specifications, communication protocol specifications, ...). We used Model
Checking [Baier and Katoen 2008] combined with k-permutations of n values of vari-
ables and specification patterns [Dwyer et al. 1999] to tackle this problem. We applied
this extension of SOLIMVA to a significant software product in the space application
domain. We detected 21 incompleteness defects ranging in severity from Low to High,
and with the impact’s attributes Installability, Documentation, and Usability of the
Orthogonal Defect Classification (ODC).



XI Workshop de Computação Aplicada (WORCAP 2011) – Instituto Nacional de Pesquisas Espaciais (INPE)

2. A proposal to detect incompleteness in software specifications

The extension of the SOLIMVA methodology to address incompleteness in software spec-
ifications is peformed by two activities: Analyze Incompleteness and Improve Specifica-
tions. The most important activity to deal with the problem of incompleteness is Analyze
Incompleteness which will be described in the sequence.

Our proposal to identify incompleteness in software specifications uses Model Checking,
specification patterns and 2-permutations of n values of characteristics of specifications.
However, there are important changes of philosophy which differ the way Model Check-
ing is applied within the Analyze Incompleteness activity. As our goal is to detect defects
in software specifications, software specifications are used not to develop properties but
rather to develop the model of the system. However, it is necessary to generate the prop-
erties preferably in a way independent of the requirements in the software specifications.
We achieved this by combining specification patterns with 2-permutations of n values of
characteristics. This is discussed below.

First, it must be chosen a primary characteristic (prim) and its values (valprimi, 1 ≤
i ≤ l). The Verification and Validation (V&V) Team member must then select some
valprimi in order to generate the model. For each selected valprimi, secondary char-
acteristics (secj, 1 ≤ j ≤ m) and their values (valsecjk, 1 ≤ k ≤ n) must be obtained.
Then, a finite-state model for the selected valprimi must be generated and also simulated
to determine and correct possible defects which arise by translating the software specifi-
cations into the model. Primary and secondary characteristics are attributes of software
specifications.

Specification patterns come into picture to formalize properties in Computation Tree
Logic (CTL) for each valsecjk and according to the Absence Pattern and Glob-
ally Scope (propertyAbsjk). Each property is generated as follows: ∀□¬(prim =
valprimi ∧ secj = valsecjk). Thus, if the model does not satisfy this property this
means that valsecjk is present in the software specifications regarding valprimi; other-
wise, if the property is satisfied then it is not present. But, the V&V Team member must
predict in advance whether the property must or must not be satisfied. In other words,
if valsecjk must appear in the software specifications then the expected result must be
false. On the other hand, if valsecjk must not appear, the expected result must be true.
An incompleteness defect is detected if there is a discrepancy between the satisfaction or
non-satisfaction of the property by the model and the expected result.

After that, some secj must be selected for 2-permutations of n analysis and, for each
chosen secj , clusters (clusterp) of selected valsecjk are determined. Application of
2-permutations of n is then accomplished for each clusterp, and each permutation
t = {t1, t2} will derive two types of CTL properties. The first property is based on
the Soft Response Pattern and Globally Scope (propertySoftRespt) and is as follows:
∀□((prim = valprimi∧secj = valsect1)→ ∃♢(prim = valprimi∧secj = valsect2)).
The second property is according to the Precedence Pattern and Globally Scope
(propertyPrect) and is as follows: ¬∃[¬(prim = valprimi ∧ secj = valsect1) ∪
((prim = valprimi ∧ secj = valsect2) ∧ ¬(prim = valprimi ∧ secj = valsect1))].

After all properties are formalized, Model Checking is applied. If propertySoftRespt
is not satisfied then an incompleteness defected is detected. If valsect1 occurs in the



XI Workshop de Computação Aplicada (WORCAP 2011) – Instituto Nacional de Pesquisas Espaciais (INPE)

software specifications then the Soft Response Pattern and Globally Scope requires that
there is some path in which valsect2 occurs following valsect1. The interpretation is
that if this property does not hold then the software specifications were not complete
enough to predict such behavior, i.e. valsect2 occurs as a response to valsect1. Hence an
incompleteness defect is detected.

Being propertySoftRespt satisfied then the result depends on propertyPrect. If
propertyPrect is also satisfied then an incompleteness defect is also detected. The rea-
soning behind this is that if propertyPrect is satisfied it is because valsect1 always occurs
before (precede) valsect2 and this shows that the software specifications were not com-
plete enough to predict the opposite, namely, valsect2 occurs before valsect1. However,
the non-satisfaction of propertyPrect indicates that no incompleteness defect exists.

3. Case study: space application software product

We applied the extension of the SOLIMVA methodology to address incompleteness in
software specifications to a space application software product, Software for the Payload
Data Handling Computer (SWPDC) [Santiago Júnior and Vijaykumar 2011]. SWPDC is
embedded into the Payload Data Handling Computer (PDC) which communicates with
the On-Board Data Handling (OBDH) Computer, the satellite platform computer.

We analyzed two deliverables to detect incompleteness: SWPDC’s Software Require-
ments Specification and PDC-OBDH Communication Protocol Specification. The pri-
mary characteristic is the PDC’s operation mode (opmode) which has four possible val-
ues, i.e. valprim = {initiation, safety, nominal, diagnosis}. We selected only the
main operation mode of PDC, the Nominal Operation Mode (valprim3 = nominal),
for the analysis. Then, we selected four secondary characteristics, i.e. sec =
{service, cmd, resp, action} where: service represents services supported by SWPDC;
cmd are commands defined in the PDC-OBDH Communication Protocol Specification;
resp are responses defined in the PDC-OBDH Communication Protocol Specification;
and action represents some actions that SWPDC shall perform.

The model created for valprim3 = nominal has 71 reachable states. We used the
NuSMV Model Checker. After generating and simulating the model, we created 70 CTL
properties according to the Absence Pattern and Globally Scope. For instance, in order
to verify whether the command TRANSMIT SCIENTIFIC DATA (valsec24 = txSci)
is present in the software specifications, this CTL property is created: ∀□¬(opmode =
nominal ∧ cmd = txSci). We repeated this template of CTL property for each valsecjk
where 1 ≤ j ≤ 4. By applying Model Checking, we detected 5 incompleteness defects.

In order to generate CTL properties in accordance with the Soft Response and Prece-
dence Patterns we must choose some secondary characteristics. We selected the most
relevant secondary characteristic: the commands that the OBDH can send to PDC
(sec2 = cmd). We then defined 5 clusters of selected valsec2k and applied 2-permutations
of n considering each of these 5 clusters. Based on each permutation t we gener-
ated a pair of CTL properties: propertySoftRespt/propertyPrect. For instance, for
cluster1 = {txSci, retAnsw, txSciEBuf, txSciinc}, 12 permutations were created due
to 2-permutations of n: {txSci, retAnsw}, . . . , {txSciinc, txSciEBuf}. Thus, pairs of



XI Workshop de Computação Aplicada (WORCAP 2011) – Instituto Nacional de Pesquisas Espaciais (INPE)

CTL properties were generated as follows:

∀□((opmode = nominal ∧ cmd = txSci)→
∃♢(opmode = nominal ∧ cmd = retAnsw)),

¬∃[¬(opmode = nominal ∧ cmd = txSci) ∪ ((opmode = nominal ∧
cmd = retAnsw) ∧ ¬(opmode = nominal ∧ cmd = txSci))].

We generated 146 CTL properties according to the Soft Response Pattern and Globally
Scope, and 146 CTL properties in accordance with the Precedence Pattern and Glob-
ally Scope. We detected 16 incompleteness defects due to the combination of these two
patterns/pattern scopes. In total, we produced 362 CTL properties and detected 21 incom-
pletenesses in accordance with the following distribution: (i) impact’s attributes of ODC
- Installability = 9; Documentation = 3; Usability = 9; (ii) defect’s severity - Low = 16;
Medium = 1; High = 4.

4. Conclusions
This paper extends SOLIMVA, a methodology aiming at model-based test case gener-
ation considering NL requirements deliverables, to address incompleteness in software
specifications. We used a combination of three techniques to achieve this goal: Model
Checking, k-permutations of n values of variables, and specification patterns.

We proposed an approach to generate properties independently of the requirements in the
software specifications because the goal was to find defects (incompleteness) in the soft-
ware specifications. Moreover, specification patterns are not used in the traditional man-
ner where, based on a requirement, a pattern and the scope within the pattern that mostly
characterize such requirement are identified and properties are then generated in Linear
Temporal Logic (LTL), CTL. Instead, we identify characteristics and use combinatorics
in conjunction with specification patterns to generate properties. In addition, a different
interpretation of pattern/pattern scope is provided aiming at detecting incompleteness de-
fects. Our proposal has demonstrated its feasibility by its application to a representative
case study in the space domain and the detection of incompleteness defects.

References
Baier, C. and Katoen, J.-P. (2008). Principles of model checking. The MIT Press, Cam-

bridge, MA, USA. 975 p.

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1999). Patterns in property specifications
for finite-state verification. In Proceedings..., pages 411–420, New York, NY, USA.
International Conference on Software Engineering (ICSE), ACM.

Santiago Júnior, V. A. and Vijaykumar, N. L. (2011). Generating model-based test
cases from natural language requirements for space application software. Soft-
ware Quality Journal, pages 1–67. DOI: 10.1007/s11219-011-9155-6, URL:
http://dx.doi.org/10.1007/s11219-011-9155-6.

van Lamsweerde, A. (2000). Requirements engineering in the year 00: a research per-
spective. In Proceedings..., pages 5–19, New York, NY, USA. International Conference
on Software Engineering (ICSE), ACM.


