
 1

Validation of Reasoning and Decision-Making of a

Satellite Autonomous On-board Software

Fabrício de Novaes Kucinskis
INPE - Instituto Nacional de Pesquisas Espaciais

Avenida dos Astronautas, 1758
São José dos Campos / SP – 12227-010 – Brasil

fabricio@dea.inpe.br

Abstract - We have been working at INPE on the concept

of goal-based operations. This means commanding our

satellites through goals (i.e. "take pictures of 'x' place,

store them and send me later"), instead of sequences of

commands. When receiving a goal, the satellite reasons

to convert it to the appropriate commands.

Goal-based operations involve the increase of the

satellite's autonomy. To accomplish this, we are

developing an on-board service that manages a

knowledge base, and a replanning application that

reasons over this knowledge to decide the best way to

achieve a goal. However, autonomous applications

present a challenge for validation: how can one validate

a system that is made to take actions that would be

expected from a human operator?

This paper describes a work in progress on the increase

of the operational autonomy of INPE’s satellites, and

presents our concerns and approach regarding the

validation of the autonomous on-board software.

1. INTRODUCTION

The number of projects for autonomous software on-board

spacecrafts has been increasing in recent years, showing a

clear trend for the adoption of goal-based and autonomous

operations in space missions in a near future.

Following this trend, we at the Brazilian National Institute

for Space Research (INPE, in the Portuguese acronym) have

developed a prototype for a model-based, on-board

autonomous replanning software [1].

This first experience gave birth to a wider approach, an

‘autonomy kernel’ in the form of an on-board service. This

service, called the Internal State Inference Service (ISIS),

manages a knowledge base and provides states inference,

resources profiling, constraint propagation and simple

temporal networks features for on-board autonomous

applications that perform tasks such as prognosis and goal-

based mission replanning.

One of the aspects of this work that we are concerned with is

the verification and validation (V&V). Due to the capability

of autonomous software to reason and make decisions based

on the knowledge base, without the interference of human

operators, the need to verify and validate them is even

greater than for non-autonomous software. However, little is

found in the literature regarding V&V for autonomous

software.

This paper presents our concerns and approach regarding

V&V for ISIS and its first consumer, an on-board replanning

application fondly named LetMeDo.

2. THE INTERNAL STATE INFERENCE SERVICE

AND THE ON-BOARD REPLANNING

ARCHITECTURE

ISIS [2] is an on-board service that, roughly speaking,

provides knowledge about the domain for on-board

applications. Such applications can consume the services to

reason over this knowledge and make decisions, increasing

the autonomy of future INPE’s satellites. Examples of

consumers are prognosis
1
 applications and on-board

replanners.

ISIS comprises a structural and behavioral model of a given

domain/discipline in the space segment, such as payload

operation or attitude control. The domain depends on the

purpose of the applications that will consume the service.

The service gives access to the model both from ground as

well as from another on-board application. Through ISIS it

is possible to start an inference session, to query future

satellite states, to submit changes on the actions that will

take place (to perform ‘what-if’ scenario analysis), and

more. It is also possible to update the model, in order to

correct it or reflect a new behavior of the satellite (faulty

equipment, for example).

The first consumer we are developing for the service is a

general-purpose on-board replanner. This replanner, called

1
1
 A prognosis on-board application is one that tries to forecast future error

conditions, by inferring the future states from the current state and the

predicted/scheduled actions. Once a possible future error is predicted, the

application can warn the authority (the operations personnel or a

reconfiguration mechanism) in order to perform the preventive actions.

 2

LetMeDo, applies Constraint Satisfaction Problems (CSP)

techniques over the model to achieve a set of given goals.

The goals are defined by a ‘Problem Composer’ as violated

constraints to be solved.

After receiving the problem to solve, LetMeDo starts an

ISIS inference session and performs queries and scenario

analysis over the model. If a solution is found, the

replanning is finished with success. The resulting software

architecture, as well as the data flow between the

components, are shown in Figure 1.

It is important to notice that both ISIS and LetMeDo are

generic components that contain domain-specific elements –

the on-board model and heuristics for the class of problem

to solve. The Problem Composer is also domain-specific.

By its nature, a model-based system is meant to deal with

complex problems, difficult to predict in detail or represent

with simple sets of rules. Ultimately, a good model-based

software should be able to solve problems that aren’t even

expected, nor completely known in advance. How to verify

and validate software with such characteristics?

3. THE LACK OF ADEQUATE V&V TECHNIQUES

FOR AUTONOMOUS SPACE SYSTEMS

Since the beginning of ISIS design, we have been concerned

with the V&V process for autonomous software. So, we

made a survey on V&V techniques for autonomous space

systems.

Little information was found, mostly pointing that the

current V&V techniques aren’t enough for the given

problem. As Brat and Jónsson [3] stated, “our current

validation techniques struggle with existing mission systems

and now we are faced with validating autonomous systems

that can exhibit a much larger set of behaviors”.

In 2001, the Research Institute for Advanced Computer

Science (RIACS) and the Carnegie Mellon University

organized a workshop to discuss and identify the main

challenges of V&V for autonomous systems in future NASA

missions [4]. Participants from the V&V and autonomous

and adaptive systems communities were invited, as well as

NASA engineers.

The attendees pointed the limitations of V&V techniques

and ranked a set of good practices and promising

techniques, but made clear that the possible solutions were

still far from be able to deal with autonomous systems.

One of the topics over which the workshop attendees

identified more work to be done was the V&V for model-

based systems (do not confuse it with ‘model-based V&V’).

According to them, there is the need to define and gain

experience in the Software Enginnering process for model-

based systems, which represent a significant part of the

autonomous software being developed in the space field.

They asked what kind of requirements would a customer

Figure 1 - The replanning process and on-board components

 3

expect? How could these requirements be expressed and

verified conveniently? Is it possible to develop or specialize

a theory and practice for this kind of system?

According to the workshop conclusions, a natural approach

would be to decompose the V&V problem across the three

core components of a typical model-based system for

spacecrafts: 1) the ‘plant’ (spacecraft or flight software), 2)

the engine and 3) the model. This approach seemed

interesting for our work.

Furthermore, two of the raised questions are in line with our

concerns: how does one verify/validate a model? And, given

a ‘valid’ model, how to verify/validate the decisions of the

autonomous system? The attendees left those questions

open.

4. OUR APPROACH FOR THE VALIDATION OF THE

AUTONOMOUS BEHAVIOR

Based on the RIACS ‘divide-and-conquer’ approach for

autonomous systems, we’ve decided to split our V&V

problem into smaller parts. The first thing to separate was

the ‘V’ from the ‘V’.

Verification

There are many concepts for verification, but all of them

agree on one point: it is always performed against the

products of the software development process, mainly

against the requirements. However, this is not that simple for

autonomous systems: Pecheur et al. [4] reported that “stating

formal requirements for autonomous and adaptive systems is

hard and, as such, not something often done during system

development at NASA”.

So, we started an effort to improve the quality and level of

detail of our requirements, making them as formal as

possible. This culminated into dozens of definitions and

almost two hundred technical requirements. An analysis of

these requirements has shown that the current Software

Engineering techniques are adequate to verify them.

It seems that the fact that an on-board software will show

autonomous behaviour does not impact its verification.

Validation, however, is a very different problem.

Validation

To validate is to determine if a product (in our case, an

autonomous software) fulfills the customers’ expectations.

Generally speaking,, the customer expects that an

autonomous software makes the right decisions, the ones

that he would make in its place. It’s clear that ‘the right

decision’ is an abstract concept, difficult to validate,

especially when this decision can happen under unpredicted

situations.

Returning to the ‘divide-and-conquer’ idea, we’ve divided

our software architecture in components to deal with

separately, in terms of validation: 1) the service, 2) the

model and 3) the replanner and Problem Composer.

We noticed that there is nothing special, in terms of

autonomy, related to the service. It’s an ordinary monitoring

and control software that can be validated through the

current Software Engineering techniques.

The other components of our architecture are responsible for

the autonomous behavior and, as such, we didn’t know in

advance how to perform their validation. How can one

validate software that is made to take actions that would be

expected from a human operator?

Our tentative answer was to submit the on-board knowledge,

reasoning and decisions to the operators in a gradual

process: we first validate the knowledge before allowing it

to be used, and them we start validating the reasoning – that

will not perform any autonomous action until it is enabled to

do so.

Model Validation

We validate the model by creating a Model Validator

application. Every time a new satellite’s commands schedule

(the operations plan) is received from ground or changed by

the on-board replanner (after it is allowed to run), the Model

Validator runs inference sessions based on the on-board

model.

The results of the inference sessions are a set of timelines

with the predicted states of the satellite, from 'now', to the

last scheduled command. Then, the Model Validator will

start acquiring, at regular intervals, the observed states to

compare with the predicted ones.

If deviations between the expected (modeled) and the

observed behaviors are detected, the model is flagged as

'invalid', and its use in the replanning process will not be

allowed anymore. The results of this comparison are also

sent to ground as reports to the operations personnel, which

will analyze them and determine which corrections shall be

made on the model. This will be repeated until no more

relevant deviations are detected.

If there is no deviation between the predicted and the

observed behaviors, the model can be considered valid – but

not forever. The spacecraft ages, and hence the model has to

reflect this. If on-board hardware fails, for example, the

model will not be able to predict this new behavior. So, the

Model Validator runs continuously, sending alerts to ground

when it detects behavioral deviations that didn’t exist

before. This triggers a new validation process, to detect what

has changed in the satellite and let the ground personnel to

update the model.

 4

Replanner Decisions Validation

After the validation of the knowledge (model) is performed,

it is possible to validate the reasoning (replanner).

As we can’t risk to put the mission in jeopardy by an

incorrect autonomous decision made by the replanner, its

validation (and, together with it, the Problem Composer) is

performed ‘off-line’. The validation is based on the gain of

confidence, by the operations personnel, on the reasoning

performed on-board. The main idea is to allow the replanner

to decide what actions to take, but not – at first – to execute

those actions.

With the model validated, the Problem Composer can define

the goals to achieve and call the replanner. This will start the

replanning process, querying the model (through ISIS) to

perform ‘what-if’ scenario analysis, in order to solve the

received problems – or else, to achieve the goals.

After the replanning is finished, being it successful or not,

the replanner will not execute the resulting plan. Instead, it

will send reports to the ground about the goals received, the

resulting modifications on the plan to achieve them, and

some key parameters that had driven the reasoning process.

The operations personnel will them determine the quality of

the results the autonomous software provided. If they are not

good enough, adjustments on the replanner, or even on the

model, will be considered.

We’ll keep a log of the operator’s impressions and, when

they consider that the replanner’s responses are consistently

adequate, the execution of the replanners actions can be

enabled. Our expectation is that this process will show to the

operations personnel what ISIS and the on-board replanner

could do, if they let them to. That’s why we called it

LetMeDo.

It’s still not clear to us yet if a change on the model should

imply on a new validation process for the replanner. At first

our answer would be ‘no’, as the search algorithms and

heuristics will be the same. But a new model leads to new

paths taken on the search process, which could be not taken

before. So it is recommended to re-validate the replanner

after any change on the model.

6. FINAL REMARKS

In this paper, we presented our concerns with the

verification and validation of the on-board autonomous

software that are being developed for future INPE’s

satellites.

In our project, we managed to narrow the V&V problem for

autonomous software to the validation of the components

that are responsible for the autonomous behavior: the on-

board model and the replanner.

We came to the conclusion that the current Software

Engineering techniques are adequate to the verification of

such system.

For the validation of the autonomous behavior, however, we

couldn’t find any appropriate method. So, we decided to

apply different approaches for each component of the

autonomous architecture.

For the validation of the on-board knowledge, we compare

the predicted behavior with what is observed. For the

reasoning, we’ll submit the decisions to the operations team.

The software will be allowed to execute autonomously only

after it gains enough confidence to do so.

The validation of autonomous systems is still an open field

to explore, and we hope that our solutions could help on the

maturing of concepts in direction of a more formal

approach.

ACKNOWLEDGEMENTS

The author thanks the Inertial Systems for Space

Applications (SIA) project funded by the Research and

Projects Financing (FINEP) for the financial support.

REFERENCES

[1] F. N. Kucinskis and M. G. V. Ferreira, “Dynamic

Allocation of Resources to Improve Scientific Return

with Onboard Automated Replanning”, in Space

Operations: Mission Management, Technologies, and

Current Applications, Progress in Astronautics and

Aeronautics Series, v. 220, Chapter 20, pp. 345-359,

AIAA, September 2007.

[2] F. N. Kucinskis and M. G. V. Ferreira, “Taking the

ECSS Autonomy Concepts One Step Further, in Space

Operations: Exploration”, in Proceedings of the 11th

International Conference on Space Operations,

Hunstville, April 2010.

[3] G. Brat and A. Jónsson, “Challenges in Verification and

Validation of Autonomous Systems for Space

Exploration”, in Proceedings of IJCNN’05: Performance

of NeuroAdaptive and Learning Systems: Assessment,

Monitoring, and Validation, 2005.

[4] C. Pecheur, W. Visser and R. Simmons, “RIACS

Workshop on the Verification and Validation of

Autonomous and Adaptive Systems”, in AI Magazine,

Volume 22, Number 3. AAAI, 2001.

