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Abstract: Fault injection is a useful technique for supporting 
system validation. However, the non intrusiveness of fault 
injection mechanisms is a challenge for the test architecture. This 
paper presents a study of fault injection architectures for real 
time systems testing with focus on dependability attributes. In 
order to support testing of embedded real-time systems for space 
applications regarding the use of a complete test methodology, 
from model building to test generation and automatic test case 
execution, a FPGA-based fault injection architecture is proposed. 
The advantages of FPGA-based fault injection architecture are 
highlighted in a case study which uses a fault injection prototype 
developed to emulate failures in the communication channel. 
Fault tolerance is an essential requirement for systems that 
operate in the harsh space environment. The conception and 
execution of fault scenarios supported by fault injection 
mechanisms help the validation of the system behavior regarding 
dependability attributes like robustness. 

Space subsystem testing; fault injection; robustness;  FPGA 
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I.  INTRODUCTION  

Software validation is an important activity in the 
development of any software-intensive system that needs to be 
reliable.  Fault injection is an effective mechanism to evaluate 
the system behavior facing emulated undesirable conditions.  
Software embedded in space systems are dependable 
computing systems which require special attention regarding 
fault tolerance characteristics.  This motivates the use and 
extension of many validation techniques during different 
software development phases. Fault Injection (FI) imposed 
itself as a viable solution to the above problems [16]. Several 
FI techniques have been proposed and practically 
experimented; they can basically be grouped into simulation-
based techniques, software-implemented techniques, and 
hardware-based techniques [16].  Each have pros and cons, 
what make them best applicable in different project context 
and for different objective. 
In the Software document of the engineering branch of 
European Cooperation for Space Standardization – ECSS, it is 
stated: “5.6.4.2 b) The validation tests shall be “black box”, 
i.e. performed on the final software product to be delivered, 
without any modification of the code or of the data” [2]. This 
widely used guideline in space projects sets a requirement that 
make most of the fault injection methods unfeasible at latter 
projects phase of black box software validation testing, since it 

is denied the possibility for source code modification, source 
code adding, or software data modification. 
For the final software product validation as single black box 
software or for validation of the dependability attributes of 
communicating space systems, one should only use the 
provided interfaces of the system. In this scenario a FPGA-
based fault injection architecture is proposed.  It supports the 
use of a formal test methodology based on automatic test 
generation and fault injection test case execution. This 
architecture integrates and extends the methodologies and 
tools used  in [3] and [4] for testing space systems.   
This paper aims at presenting a fault injector prototype for 
interoperability robustness testing, considering deviations in 
communications, developed at INPE and discuss an extension 
of the testing architecture to encompass chip level faults. The 
paper is organized as follow. Section 2 presents a brief 
discussion about fault injection and existing architectures. 
Section 3 presents a fault injector prototype developed and in 
use at INPE, section 4 discuss possible extension of the 
presented fault injector considering the existing test 
methodology and execution environment, and section 5 
presents an extension of the fault injection architecture for 
dependability testing using FPGA. Section 4 concludes the 
paper with future work. 

II. FAULT INJECTION 

Fault injection is done to upset the system under test, in a 
controlled manner, with possible conditions, events or data 
that are undesirable in normal operation, aiming at the 
validation of the system behavior. Test scenarios for fault 
injection must mimic possible occurrences of real undesirable 
conditions, events or data that the system may endure in 
operation. The source of the faults detected in the software 
operation may be: hardware or software. 
Hardware faults occurring during system operation are 
categorized mainly by duration. Permanent faults are caused 
by irreversible device failures within a component due to 
damage, fatigue, or improper manufacturing. Once a 
permanent fault has occurred, the faulty component can be 
restored only by replacement or, if possible, repair. Transient 
faults, on the other hand, are triggered by environmental 
disturbances such as voltage fluctuations, electromagnetic 
interference, or radiation. These events typically have a short 
duration, returning the affected circuitry to a normal operating 



state without causing any lasting damage (although the system 
state may continue to be erroneous). Transients can be up to 
100 times more frequent than permanents, depending on the 
system’s particular operating environment. Intermittent faults, 
which tend to oscillate between periods of erroneous activity 
and dormancy, may also surface during system operation. 
They are often attributed to design errors that result in 
marginal or unstable hardware. [5] 
Software faults are caused by the incorrect specification, 
design, or coding of a program. Although software does not 
physically “break” after being installed in a computer system, 
latent faults or bugs in the code can surface during operation 
especially under heavy or unusual work-loads and eventually 
lead to system failures. [5] 
The methods and architectures to mimic these faults are, as 
said, normally distinguished as: simulation fault injection; 
software fault injection; and hardware fault injection. 
In simulation fault injection the system under test is immersed 
in a computational environment that may mimic the faults, the 
system under test is normally a simulated model prototype. 
The simulation injection has the benefit of been feasible at 
early development stages of a project and providing ease of 
use and control over the test. The disadvantage is that 
simulation systems are complex by their own, so normally it is 
needed a degree of abstraction in the tests and so forth a 
differentiation from the real system.  
In software fault injection, the objective of software fault/error 
injection techniques is to modify the hardware software state 
of the system under software control, thus causing the system 
to behave as if a hardware fault were present. The argument 
here is that since hardware functionality is largely visible 
through software, faults at various levels of the system can be 
emulated. Hence, this method of fault injection is quite 
versatile because of the ability to alter the state of registers and 
memory, is less expensive in terms of time and effort than 
hardware implemented techniques, and the system under study 
is never damaged during the injection. [6] 
Advantages of software fault injection are flexibility and 
controllability. Code may be altered, inserted or coupled in the 
system under test to deterministically provide the mean of the 
fault. Disadvantage is intrusiveness to enable the software 
injector system. The altered software may not correspond to 
the behavior of the unaltered one. Common methods include 
offline fault injection, where piece of codes are altered to 
provide a faulty code, and online fault injection, where piece 
of codes are inserted or coupled in the software under test to 
provide the mechanism of the fault. 
Hardware fault injection uses separate hardware components 
to stimulate the fault in the system under test. Faults may be 
induced by special hardware, as radiation exposition [7], faults 
may be inserted by hardware signals, as in pin signalizing 
faults [8], or faults may be inserted in the system under test by 
special fault injector hardware in the test target interfaces [3]. 
The advantage of hardware injection is its intrusiveness 
compared to software injection, hardware injection may need 
less or none altered/inserted code, and it does pass to the 
external hardware most of the fault mechanism computational 

load. The disadvantage with these approaches is that the fault 
and error injection requires special hardware. In addition, 
these approaches require accessibility to the hardware of the 
target system which may be difficult or extremely expensive 
to accomplish. Furthermore, this approach has the possibility 
of damaging the system under study. [9] 

III. PROTOTYPE UNDER USE 

Embedded software robustness is a vital requirement in space 
domain applications. A fault injector for robustness testing of 
communicating systems [3] was developed at INPE, as an 
extension of the QSEE project [15]. This fault injector is a 
hardware fault injector that acts at the communication 
channels of the target system via its interfaces with the test 
system. This fault injector, named FEM (Failure emulator 
mechanism), emulate failures in the communication channel 
of interoperable space subsystems without modifying any 
source code of the System Under Testing (SUT).  
The injector acts in the middle of a communication channel 
and can apply corruption of data and timing faults into the 
messages exchanged by the sub-systems (S1 and  S2). Figure 1 
shows the FEM as part of the Test System, improving the 
execution of interoperability test cases with controllability and 
observability [3] in the lower interfaces   
 

 
Figure 1. FEM architecture 

 
FEM was implemented as a hardware fault injector using a 
dedicated 16 bits micro-controller running at 16MHz and 
discrete electronic circuitry. It operates counting messages that 
are transferred in the communication channel in each 
communication way. When injecting faults, the mechanism is 
aware of the structure of the protocol used in the 
communicating channel, and can work byte wise in applying 
faults.  
An unwanted overhead is injected by FEM when analyzing 
bytes transferred. The overhead is less than two bytes time 
transmitted in the communication channel. So a 
communication channel of 9600 bits per second would have, 
in worst case, an unwanted overhead of about two 
milliseconds. 
The fault injector is integrated at the automated test 
environment [4] and supports the execution of the test cases 
automatically generated following the model-based approach 



presented in [3]. The benefit of this fault injector is the very 
small intrusiveness in the SUT. The fault injector is 
transparent when not injecting faults, and adds a negligible 
unwanted time overhead when injecting faults. The 
disadvantages of the injector is its capacity of space coverage, 
the fault injector can only inject faults in the system’s 
communication interfaces, not been able to possible apply 
memory faults, processor faults or other internal system faults. 
Possible faults injected by FEM violate two attributes of the 
messages, its timing and its data. When inserting timing 
deviations in the messages, FEM can manipulate the messages 
to cause: lost messages; messages delays; message ordering 
change; communication channel delay; and messages 
clutching. When manipulating the data of the message, FEM 
can: corrupt data; insert data; duplicate data; and delete data. 
Lost messages are messages with theoretical infinite delay, it 
does not pass from the sender to the receiver. Message delay is 
a deviation delay inserted in the communication interfering 
one message, possibly causing communication timeouts or 
losing synchronism. Message ordering change is a case of a 
major delay deviation applied to a message, making it be 
received after other sent messages. Communication channel 
delay is a delay inserted in the channel, all messages that are 
transferred in it are delayed by some amount of time. Message 
clutching is a specific case of a delay injection in a message or 
a group of messages, making two or more messages clutch 
together and been passed to the receiver in a small interval. 
Data corruption is the application of a single or series of bit 
flips in the message been transferred. Data insertion is the 
stuffing of new bytes in some point of the message. Data 
duplication is the duplication of the message and passing both 
to the receiver after some defined time interval between them. 
This time interval can even be enough to the duplicate 
message being received after other sent messages. Data 
deletion is the removal of some bytes from the message before 
passing it to the receiver. 
In Figure 2 one can see the FEM added to the Test System 
facilities aiming at the validation of the expected robustness 
behavior of the target subsystem (SwPDC) facing delayed 
message received from EPP.  

 
Figure 2. Test Environment 

IV. FAULT INJECTOR EXTENSION 

Aiming at the generalization and extension of the fault 
injection mechanism presented in last section, a new 
architecture is proposed based on a FPGA infrastructure.  The 
architecture takes into consideration the existing automated 
test executor presented in [4] and the model-based approach 
for test generation, named InRob, presented in [3]. InRob 
creates service-based interoperability models of the 
communicating systems and extend these models to cope with 
robustness testing. Based on the cause-effect rationale the 
InRob approach guides the addition of states and transitions in 
the nominal models of interoperability in order to represent the 
expected robustness behavior of each SUT subsystem facing 
delayed message received from the other communicating 
subsystem. This approach can be extended to be equally 
applicable to some other types of faults, even considering fault 
at chip level. The process of extending models to encompass 
fault behavior is presented in [1]. The models would be 
extended to represent system behavior related to undesirable 
events of memory and processor faults, such as bit flip. From 
those extended models, one can generate test cases 
automatically and automate the execution. of dependability 
testing. 
The test execution automation using the new fault injector 
would be a challenge because the automatic test engine would 
have to have some control over the fault mechanism in order 
to guarantee traceable test results. Actually, the QSEE-Tas 
tool for automatic test execution [4], supports pin insertion 
emulated faults in a system under test, as it uses multiple ports 
for communication and to control the system under test. The 
tool can be extended to control not only the system under test 
but also an additional tool to inject faults in processor and 
memory levels, that would be the new proposed fault injector 
executor. 
The extended test architecture should be able to use FEM fault 
injection capabilities, and also inject memory and processor 
level faults in the system under test, as well as be able to use 
the existing methodology and test execution tools. 

V. PROPOSED ARCHITECTURE 

The new proposed FPGA-based architecture takes advantage 
of the available soft-cores computers to space systems, as 
LEON, and the capability of the FPGA to emulate micro-chip 
hardware. The architecture would use a FPGA to emulate the  
space system’s target micro-chip, and also provide hardware 
circuitry provision to create into the FPGA a mechanism to 
generate faults in specific points of the LEON emulated chip 
or memory areas.  Figure 3 depicts the use of the FPGA to 
emulate the target micro-chip and to create to fault injector 
mechanism that will have access to processor and memory 
points of the emulated chip. 
In this scenario, some of the FPGA pins would be used by the 
emulated target chip as its IO ports, and some pins of the 
FPGA would be used to control the fault injection mechanism. 
Since both emulated micro-chip and the fault injector resides 
inside the same FPGA, an alternate route may be created from 



the fault injector to points of memory or processor areas, to 
create controlled faults as bit flips at chip level. 
 

 
Figure 3. FPGA circuit with emulated chip and fault 

injector 
 

The real time embedded space software would be loaded in 
the FPGA emulated micro-chip and be able to run unmodified.  
The benefits of this architecture is that no modification is 
necessary in the software, and that the fault injector can be 
seen as a parallel running hardware, using the characteristics 
of parallel processing of FPGAs, with access to chip inside 
circuitry, the fault injection can be deterministic in time and 
space when injecting faults, that means that the fault would the 
triggered at a predicted time and in a known point of the 
emulated chip. 
The fault injector circuit would be commanded by dedicated 
FPGA pins, making it possible to be automated by testing tool, 
and letting emulated target chip IO ports free to be 
manipulated by FEM. 
Some limitation of this architecture is that the target micro-
chip circuit is emulated by the FPGA. Even thou the logic of 
the micro-controller is the same as the real micro-controller, 
the circuit and its physical operation is not. In this case, it is 
the circuit and physical operation of the FPGA.  
This architecture would provide an emulated micro-chip, 
capable of loading the developed space software, and ready 
for use in dependability tests, since it is not target software 
dependent.  The test bed would extend the actual possible fault 
capabilities of the test environment integrating itself with a 
complete test methodology and realizing a general and ready 
to use test bed for validation of space software. 

VI. FUTURE WORK 

The use of FPGA for speeding up fault simulation can be 
found in [10], [11], [12], [13] and [14]. The closest one found 
is [16], which uses FPGA to emulate circuits, and implements 
a mechanism concurrent to the test emulated circuit to insert 
faults in it.  An extension of his referred work is the use of a 
soft core for faults injection in operating space software, and 
the proposed FPGA-based architecture would be integrated to 
a complete testing process.  
Theoretical analysis was done for the proposed architecture, 
and it was considered feasible. It is important now to  evaluate 
FPGA development environments for creating experiments. 
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