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Abstract. In this work we make use of the first-order partial q-derivatives of a
function of n variables to calculate the q-gradient vector and take the negative
direction as the search direction of unconstrained optimization methods. We
present a q-version of the classical steepest descent method called the q-steepest
descent method. This q-version is reduced to the classical version whenever the
parameter q, that is used to calculate the q-gradient vector, is equal to 1. We
applied the classical steepest descent method and the q-steepest descent method
to an unimodal and a multimodal test function.
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1. Introduction

It is well-known that along the direction given by the gradient vector, the objective func-
tion f(x) increases most rapidly. If the optimization problem is to minimize an objec-
tive function, then it is intuitive to use the steepest descent direction −∇f(x) as the
search direction in the optimization methods. Here we introduce the q-gradient vec-
tor that is similar to the usual gradient vector, but instead of the usual first-order par-
tial derivatives we use the first-order partial q-derivatives obtained from the Jackson’s
derivative, also referred to as q-difference operator, or q-derivative operator or simply
q-derivative. Frank Hilton Jackson gave many contributions related to basic analogues
or q-analogues, especially on basic hypergeometric functions [Chaundy 1962], and in
the beginning of nineteenth century he generalized the concepts of derivative and in-
tegration in the q-calculus context and created the q-derivative and the q-integration
[Jackson 1908, Jackson 1909, Jackson 1910a, Jackson 1910b]. In the q-derivative, in-
stead of the independent variable x of a function f(x) be added by a infinitesimal value,



it is multiplied by a parameter q that is a real number different from 1. And in the limit,
q → 1, the q-derivative tends to the usual derivative. Our proposal approach has two
advantages. On the one hand, the closer to 1 the value of the parameter q is, the closer to
the classical gradient vector the q-gradient vector will be. For monomodal poorly scaled
functions, to use a direction close, but not equal, to the steepest descent direction can
reduce the zigzag movement towards the solution. On the other hand, when q 9 1 the
negative of the q-gradient vector can make any angle with the negative of the classical
gradient vector and the direction search can point to any direction. It can be interesting
for multimodal functions because the search procedure can escape from local minima.
In this work we use the q-gradient vector based on the q-derivative and use its negative
as search direction in optimization methods. The paper is organized as follows. In the
Section 2 the q-gradient vector is defined. In the Section 3 we present a q-version of the
classical steepest descent method. Section 4 deals with the performance of the q-steepest
descent method and the classical steepest descent method for numerical examples. And
the Section 5 contains final considerations.

2. The q-gradient vector
Let f(x) be a real-valued continuous function, the q-derivative of f is given by

Dqf(x) =
f(x)− f(qx)

(1− q)x
, (1)

where x 6= 0 and q 6= 1. The parameter q is usually taken as a fixed real number 0 < q <
1. However, this hypothesis can be weakened and q be a fixed real number different from
1 [Koekoev and Koekoev 1993]. And when q → 1, the q-derivative tends to the usual
derivative.

Note that the q-derivative is not defined at x = 0. Therefore, for
real-valued functions differentiable at x = 0, the q-derivative can be given by
[Koekoev and Koekoev 1993]

Dqf(x) =


f(x)−f(qx)

(1−q)x , x 6= 0, q 6= 1

df(0)
dx , x = 0 .

(2)

For a real-valued continuous function of n variables the gradient vector of f is
the vector of the n first-order partial derivatives of f . Similarly, the q-gradient vector
of f is the vector of the n first-order partial q-derivatives of f . Before introducing the q-
gradient vector it is convenient to define the first-order partial q-derivative of a real-valued
continuous function of n variables differentiable at x = 0 with respect to the variable xi

[P. M. Rajkovic and Stankovic 2005]

Dq,xi
f(x) =

f(x1, . . . , xi−1, xi, xi+1 . . . , xn)− f(x1, . . . , xi−1, qxi, xi+1, . . . , xn)

(1− q)xi

, (3)

with xi 6= 0 e q 6= 1. A modified notation was used. Similarly to the Equation (2), we can



define the first-order partial q-derivative of f considering the xi = 0 and q = 1 as follows

Dq,xi
f(x) =



f(x1,...,xi−1,xi,xi+1...,xn)−f(x1,...,xi−1,qxi,xi+1...,xn)
(1−q)xi

, xi 6= 0, q 6= 1

∂f
∂xi

(x1, . . . , xi−1, 0, xi+1 . . . , xn), xi = 0

∂f
∂xi

(x1, . . . , xi−1, xi, xi+1 . . . , xn), q = 1 .

(4)

Therefore, let f(x) be a real-valued continuous function of n variables and dif-
ferentiable at x = 0, and the parameter q = (qi, . . . , qi, . . . , qn). We introduce here the
q-gradient as

∇qf(x) = [Dq1,x1f(x) . . . Dqi,xi
f(x) . . . Dqn,xnf(x)] . (5)

And in the limit, qi → 1, for all i (i = 1, . . . , n), the q-gradient vector returns to the usual
gradient vector.

3. The q-steepest descent method

A general optimization strategy is to consider an initial set of variables, x0, and apply
an iterative procedure given by xk = xk−1 + αksk, where k is the iteration number, x
is the vector of variables, α is the steplength and s is a search direction vector. This
process continues until either no additional reduction in the value of the objective func-
tion can be made or the solution point has been approximated with sufficient accuracy
[Vanderplaats 2007].

In the steepest descent method the search direction sk is given by the negative of
the gradient vector at the point xk, −∇f(xk), and the steplength αk can be found by a
one-dimensional search performed in the direction sk. Similarly, the search direction for
the q-steepest descent method is given by negative of the q-gradient vector −∇qf(xk)
(Equation (5)). Besides that, we have to obtain the parameter q ∈ Rn. Our strategy
is to generate random numbers by log-normal distribution with a fixed mean µ = 1
and a variable standard deviation σ. The initial standard deviation σ0 should be a real
positive number different from zero and during the iterative procedure it is reduced to
zero by σk = β · σk−1, where β is the reduction factor. When σ tends to 0, the parameter
q tends to 1 and the q-gradient vector tends to the usual gradient vector. In other
words, when σ → 0 the q-steepest descent method is reduced to the classical steepest
descent method. We have chose this distribution because of its multiplicative effects
[E. Limpert and Abbt 2001]. In addition, only positive numbers can be generated, when
σ decreases with µ = 1 the mode approaches to 1, and the skewed shape distribution
for µ = 1 shows the same likelihood for a log-normal random number to occur in the
intervals (0, 1) or (1,∞). The optimization algorithm for the q-steepest descent method
is given below.



Algorithm 1
Step 1: Initialize randomly the set of variables x0 ∈ Rn, set the mean µ = 0,
the initial standard deviation σ0 and the reduction factor β.
Step 2: Set k := 1.
Step 3: Generate the parameter q = (q1, . . . , qi, . . . , qn) by a log-normal
distribution with mean µ and standard deviation σk.
Step 4: Compute the search direction sk = −∇qf(xk).
Step 5: Find the steplength αk by one-dimensional search.
Step 6: Compute xk+1 = xk + αksk.
Step 7: If the stopping conditions are reached, then STOP; Otherwise go to Step 8.
Step 8: Reduce the standard deviation σk = β · σk−1.
Step 9: Set k := k + 1, and go to Step 3.

4. Numerical Examples
We applied the classical steepest descent method and the q-version presented here
(Algorithm 1) for the same functions, initial set of variables, stopping condi-
tion, and strategy to find the steplength. We considered the unimodal Rosen-
brock function [Shang and Qiu 2006] and the highly multimodal Rastrigin function
[Ballester and Carter 2004]. We generated 50 different initial variables x0 by a uniform
distribution in the interval (−2.048, 2.048) for the Rosenbrock function, and the interval
(−5.12, 5.12) for the Rastrigin function, and we used the same set for the steepest descent
method and the q-steepest descent method. The stopping condition was the maximum
number of function evaluations 105. And for the one-dimension searches we used the
golden section method by the code found in [W. H. Press and Flannery 1996] with the
fractional precision tolerance equal to 10−8. The steplength used to bracket the mini-
mum before applying the golden search method in [W. H. Press and Flannery 1996] was
set at 1% of the interval width considered to generate the initial points of each function.
For the numerical derivatives we used the Ridder’s method whose code is also found in
[W. H. Press and Flannery 1996]. Besides that, we considered the parameter q numeri-
cally equal to 1 when q ∈ [1− tol, 1 + tol] with tol = 10−4.

The Rosenbrock function is a well-known test function for numerical optimization
problems given by

f(x) = 100(x2 − x2
1)

2 + (1− x1)
2. (6)

The minimum is x∗ = (1, 1) with f(x∗) = 0. We used the mean µ = 1 and initial
standard deviation σ0 = 0.5 with reduction factor β = 0.999 for generating the parameter
q in the Step 3 of the Algorithm 1. The performance results for the Rosenbrock function
are shown in Figure 1.

It can be seen from the results shown in Figure 1 that the steepest descent method
converges more slowly than the q-steepest descent method. When the stopping condition
is reached, the mean of the best function values for the steepest descent method is equal
to 4.0813 · 10−4 and for the q-steepest descent method it is equal to 4.9961 · 10−10. Then,
the q-steepest descent method has a better performance than the classical method.

The Rastrigin function is given by

f(x) = 10n+
n∑

i=1

(xi − 10 cos(2πxi)), (7)



Figure 1. Average of the best function values, found in 50 independent runs
of each algorithm, versus the number of function evaluations for Rosenbrock
function.

where n is the number of variables. The global minimum is located at x∗ = 0 with
f(x∗) = 0. We set the mean µ = 1 and initial standard deviation σ0 = 5.0 with reduction
factor β = 0.995 for generating the parameter q. The Figure 2 shows the performance
results for the Rastrigin function with two variables.

Figure 2. Average of the best function values, found in 50 independent runs of
each algorithm, versus the number of function evaluations for Rastrigin function.

The Figure 2 displays the premature convergence of the steepest descent method.
It was expected because the methods based on gradient vector move toward the local
minimum closest to the initial point [Nocedal and Wright 1999]. As you can see, the q-
steepest descent method has a slowly convergence. However, in the q-steepest descent
method among 50 different initial points, 42 reached the global minimum of the Rastrigin
function. The mean of the best function values for the steepest descent method is equal to
16.5958 and for the q-steepest descent method it is equal to 0.1989.

5. Final Considerations
In this work we used the q-gradient vector based on the first-order partial q-derivatives
of a function of n variables and took its negative direction as the search direction in the



q-version of the steepest descent method called the q-steepest descent method. For the
monomodal Rosenbrock function the steepest descent method converged more slowly
than the q-steepest descent method. And for the highly multimodal Rastrigin function the
q-steepest descent method moved toward the global minimum for several initial points.
The performance results show the advantage of using the negative of the q-gradient vector
as the direction search in unconstrained optimization methods with a stochastic strategy
for the parameter q. Particularly, for the multimodal function it could be seen that the
q-steepest descent method has mechanisms to escape from the many local minima and
move toward the global minimum.
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