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Abstract. This paper presents a method to generate future scenarios of Land-
Use and Land-Cover (LULC) classification images by implementing an artificial
neural network that can be used to predict urban growth. In this study, LULC
data from 1985 to 2020 with annual intervals, obtained through MapBiomas,
were used. These data were inserted into a neural network integrated with the
MOLUSCE plugin from QGIS to model the possible spatio-temporal changes
to simulate the evolution of LULC. MapBiomas is a powerful tool, that uses
data from time series from Landsat Satellites and machine learning algorithms
to provide reliable products. Our analysis focused on cities that have expanded
greatly over the past two decades according to studies made by IBGE. The re-
sults obtained were better than those presented in related works, obtaining a
kappa value of 0.74 and an accuracy value of at least 80% in all tests performed.

1. Introduction

Urbanization is one of the most evident global changes. In the last 200 years, while the
world population has increased six times, the urban population has multiplied 100 times
[Stalker 2000]. In recent decades, with global urbanization, more than half of the world’s
population lived in cities in 2018, and this proportion is expected to reach 68% by 2050
[UN 2018]. This type of urban expansion and changes in urban land structure has social,
economic, ecological and environmental impacts on urban populations and sustainable ur-
ban development [Stone et al. 2010]. One of the biggest challenges for global sustainabil-
ity is the pressure for natural resources driven by intensive urban expansion and economic
growth. In this perspective, accelerated urbanization without proper planning is one of the
great catalysts contributing to climate change and is an essential factor that compromises
ecosystems and their global functionalities [ Yang et al. 2020]. As a result, the planning
and management in growing urban areas become more complex and difficult. A better
understanding of the process of urban growth and the effects of this growth and land use
change is required for more efficient planning and management [Leao et al. 2004].

Since the land use and land cover (LULC) change project was launched by
the International Geosphere and Biosphere Program (IGBP) and the International Hu-
man Dimensions Program (IHDP) on Global Change [Lambin et al. 2000], land use re-
search programs on a global scale have become central to international climate and
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environmental change research [Liu et al. 2014]. Thematic maps of LULC serves as
a reference for scrutinizing, source administration and forecasting, making it easier
to establish plans that balance preservation, competing uses, and growth compressions
[Kamaraj and Rangarajan 2022].

On another topic, Artificial Intelligence (Al), has had an increasingly important
role in our society in almost every field, including among the territory analysis meth-
ods [Gomes et al. 2019]. Different Al systems use different algorithms and are suitable
for different purposes [Faceli et al. 2011]. LULC dynamics can be typically modeled by
methods that have various implementation complexities and efficiencies [Agarwal 2002]
such as artificial neural networks (ANN) [Basse et al. 2014a]. Its applications are suit-
able for urban and rural environments and it can be applied to different settings. LULC
dynamics often result from a complex inter-system combination of factors, a non-trivial
collective behavior, that cannot be derived from an individual or a simple collection of
systemic analyses [Souza et al. 2022].

Besides being an approach directed towards land usage and cover, we will focus on
the urban mesh changes. As so, this work presents a method for predicting and simulating
structures of the urban mesh that can contribute to planning and analyzing the structure of
the urban mesh. By proposing a way of collecting and reclassifying land usage images,
we can build a database of spacial variables that can be used along with data from other
sources to simulate the expanse of the urban mesh.

Unlike other approaches, we present a method capable of generating good results
using only LULC images that represent the evolution of urban occupation as input. On
the other hand, the method also allows the use of the digital model of terrain elevation
(MDES) and other parameters to seek to improve the results. Therefore it is possible
to achieve results even with only two land cover images. Thus, using the Google Earth
Engine (GEE)! along with MapBiomas? to get LULC, our proposed method can perform
simulations for the entire extension of the national territory, even where getting data would
be complex otherwise. Using the MOLUSCE? interface, it is possible to determine the
correlation between the variables used, thus defining their importance for the forecast.
Perhaps the most relevant point to justify its use is the replicability of the method, its
ready-to-use nature allows users without previous experience to train neural networks to
simulate future scenarios.

2. Related Works

Making predictions related to LULC is a frequently revisited area of study. An effective
approach has immediate consequences in expanding the use of this type of tool. With
the recent advances of studies in the area of machine learning large number of tools that
can be applied in the most diverse areas of knowledge are emerging. [Souza et al. 2022]
developed a simulation and analysis model of LULC change trends for the year 2036,
based on artificial neural networks, in the Chapecé River ecological corridor to provide a
robust tool to support decision-making, land use planning and sustainable development.

[Han et al. 2015] shows us an application using a Markov model and a Beijing

Thttps://earthengine.google.com/
Zhttps://mapbiomas.org
3https://plugins.qgis.org/plugins/molusce/
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case study to describe the related driving factors from land-adaptive variables, regional
spatial variables and socio-economic variables and then simulate future land use scenarios
from 2010 to 2020. Beijing has undergone rapid urbanization and economic growth since
the economic reforms of 1978, and in 2013, the population was approximately 21.15
million. Within the administrative region, the urban population is 18.25 million, which
accounts for 86.31% of permanent residents. The new population will need new space
and so creates a higher demand for residential land, thus encouraging rapid expansion of
the region's urbanized area. According to the overall land utilization plan in Beijing (2006
—2020), the amount of reserved cultivated land cannot be less than 2147 km? by 2020,
which means that the amount of cultivated land converted to built-up land is very limited.
Thus, an effective application of the proposed method can serve as a powerful tool for
planning.

Another practical use can be seen on [Brovelli et al. 2020] work, which proposes
a way of monitoring forest cover in the Amazon, using Multi-Temporal Remote Sensing
Data and Machine Learning Classification. Emerging countries often suffer from prob-
lems related to the modification of basic infrastructure and its balance with the environ-
ment. Deforestation causes diverse and profound consequences for the environment and
species. Direct or indirect effects can be related to climate change, biodiversity loss, soil
erosion, floods, landslides, etc. As such a significant process, timely and continuous mon-
itoring of forest dynamics is important, to constantly follow existing policies and develop
new mitigation measures. Using the random forest algorithm as well as GEE a machine
learning classification of multispectral satellite imagery on cloud computing service was
implemented.

[de Brito et al. 2021] had a similar approach to ours but used some different tools.
Also using the MapBiomas database, it aimed to implement a cellular automata-based
model using MapBiomas data series as input to develop LULC future scenarios focusing
on human activities drivers in a vital watershed for Paraiba state’s water security. Us-
ing a similar process of imaging and reclassification, our study differs mainly in using
MOLUSCE compared to the SIMLANDER chosen by the authors. The effectiveness of
our method is evident when the first pre-calibration tests performed by De Brito et al.
indicated the accuracy of approximately 56% between the 2015 simulated data and the
MapBiomas reference date and after calibration reached an average accuracy of 84.41%
for the year 2004, both results lower than those achieved by our process.

3. Methodology

Designing our method required using open source or free services and tools for research
purposes. The Brazilian Annual LULC Mapping Project (MapBiomas) is an initiative that
involves a collaborative network of biomes, land use, remote sensing, GIS, and computer
science experts. The GEE was used together with the MapBiomas project toolkit as a
LULC database tool, as well as a way to download them.

We can divide the proposed model for predicting urban growth into three steps.
First, the pre-processing step prepares and processes the raw data obtained through Map-
Biomas, undergoing a reclassification process that is proven to be more effective for the
final simulation. The pre-processed data is the model’s input. The second step, calibra-
tion, has the main goal of establishing the spatial variables for the network training. It
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means interpreting which raster types besides LULC have relevant influence to improve
the final simulation, as well as discover the optimal values for each parameter used. Fi-
nally, the third step intends to validate the results. Thus, Cohen's kappa method is used to
compare the generated maps in simulations/predictions with real data from MapBiomas.
Figure 1 shows the process.

I Pre-Processing
Preparing Data

I % 3:;?::;835 data l " ‘ Reclassification I ‘ . % Resizing

»  Using Earth Engine ' Using QGIS % Using QGIS

I ?l} Calibration

I Soraing Inputs I . Correlation ' Testing
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Figure 1. Steps of the proposed method for predicting urban growth

3.1. Pre-processing

Initially, we explored the MapBiomas toolkit for GEE, because it allows visualizing a va-
riety of different land use classifications. The MapBiomas project relies on the GEE plat-
form and its cloud processing and automated classifiers capabilities to generate Brazil’s
annual land use and land cover time series from 1985 to 2020 (last available collection).
GEE combines a multi-petabyte catalog of satellite imagery and geospatial datasets with
planetary-scale analysis capabilities. Scientists, researchers and developers use GEE to
detect changes, map trends, and quantify differences on the Earth’s surface. GEE is now
available for commercial use, and remains free for academic and research use. The Map-
Biomas data uses the time series from Landsat* satellites. The entire process is based
on machine learning algorithms providing highly reliable products for the entire territo-
rial extension of the country in a free and accessible way. The spatial resolution of the
available satellite images mosaics for each Brazilian biome is 30 m. The mosaics are a
composition of pixels in each set of images for a specific period (e.g. filtering the clouds).
The periods of the year in which the images are selected vary by region (e.g. wet season
in the caatinga biome). We focused on the Brazil subset 6.0 collection. However, Map-
Biomas’ classification method counts almost 50 different classes to represent real-world
data as truthfully as possible (Figure 2). As [Congalton 1991] assert, the use of more gen-
eral categories can be essential when trying to meet predetermined accuracy standards,

“https://landsat.gsfc.nasa.gov/
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and after the first batch of testing, it was confirmed that using LULC with a large number
of classes can be harmful to the network learning, and hence to the final simulations.

Classes:
I Forest Formation

[ Forest Plantation

[ Grassland

[ Ppasture

[ Mosaic of Uses

= Urban Area

[ Other non Vegetated Areas
I River, Lake and Ocean
[ Other Temporary Crops

[ Coffee

Figure 2. Original Class Distribution

Thereby we recognized the need for a LULC reclassification. Initially, it was
considered using only two classes (urban and non-urban), seeing that our analysis is only
interested in urban mesh changes, but after the second round of experimentation, it was
proven that a too simple reclassification is also damaging on the final simulations.

After the experiments, we concluded that the best option would be to organize the
50 classes into a set of 6 superclasses that successfully encompass the characteristics rep-
resented in each of the divisions previously presented. And again, tests were performed
showing significant improvement in the proposed simulations. The reclassification pro-
cesss is shown at Figure 3. All forest subtypes were reclassified as forest (ID 1). The
same procedure was adopted for the following classes, except for the non-vegetated area:
here the urban area continued to be detached from the remaining non-vegetated area. The
result of the reclassification process can be seen in Figure 4.

According to Exame® magazine, between 2003 and 2013, medium-sized cities
grew faster than any metropolis in the country, so we directed our study to those cities
that had the highest population growth in Brazil in this interval, as shown on Table 1.
We understand that there is a correlation between population growth and expansion of
the urban fabric, and according to studies carried out by [Seto et al. 2011], urban land
expansion rates are higher than or equal to urban population growth rates, suggesting
that urban growth is becoming more expansive than compact. It allows us to conclude
that we made an adequate choice of cities to analyze. It was necessary to use GEE to
download the LULC of each city because it allows us to filter the variables according
to the area of interest in addition to having methods that can be used to download any

Shttps://exame.com/brasil/25-cidades-que-sofreram-um-boom-populacional-no-brasil/
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Figure 3. Reclassification Process

variable individually when using the MapBiomas toolkit. So we were able to use these
methods to import variables already classified and cropped to Google Drive, enabling
the download. Therefore we obtained a vast collection that by itself can potentially be
employed for simulating and predicting.

For constructing the land use image database, each of the selected cities had the 36
raw annual images obtained through the MapBiomas toolkit, that were reclassified after-
ward. However, it was observed in certain cases, a large difference between the extension
of the urban mesh and the municipal perimeter, where the perimeter has significantly
higher proportions than the urban extension itself. That is, it would be included relatively
insignificant data for the study in the analysis. Thus, in these cases, it was necessary to
resize the study area, finishing the pre-processing step.

3.2. Calibration

The calibration step consists of analyzing and selecting the variables that will be used for
network training. We used QGIS and an add-on called MOLUSCE (Modules for Land
Use Change Simulations) to carry out the predictions and simulations. QGIS is open-
source, free software. It is a system of geographic information that permits visualizing,
editing, and analyzing geo-referenced data, but also executing a variety of helpful algo-
rithms on geoprocessing [Guimaries et al. 2021]. QGIS tools, especially its plugins, are
in constant development by a great range of geotechnological sectors. MOLUSCE is one
of the community-made plugins available from QGIS menus and provides a set of algo-
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Figure 4. Reclassification Result

Population Growth | Inicial Population | Final Population
Rio das Ostras 190% 42.024 122.196
Parauapebas 116% 81.428 176.582
Marica 62% 86.038 139.552
Barcarena 60% 68.604 109.975
Parnamirim 59% 143.598 229.414
Rio Verde 57% 124.753 197.048
Macaé 55% 144.207 275.575
Palmas 49% 172.176 257.903
Lauro de Freitas 45% 127.182 184.383
Sdo José de Ribamar 43% 118.725 170.423

Table 1. Population Growth between 2003 and 2013

rithms for land use change simulations such as neural network, linear regression, among
others. MOLUSCE presents a user-friendly interface and has a ready-to-use proposal. It
was developed to investigate a range of applications, including studying temporal LULC
shifts and projecting future land use, anticipating prospective shifts in land cover and for-
est cover, and detecting deforestation in sensitive locations[Aneesha Satya et al. 2020].

To choose the model that we would use to perform the simulations, several options
were considered. It can be said that every model has its own specialty for addressing the
composite issues of LULC. Among these models, cellular automata (CA) are common
approaches to simulate LULC and can effectively represent nonlinear spatially stochastic
land-use change processes [Batty et al. 1997]. CA are powerful approaches for under-
standing land-use systems and their integral dynamics [Wu 2002], especially when in-
tegrated with other tools, such as ANNs [Basse et al. 2014b]. The Cellular Automata-
Atrtificial Neural Network (CA-ANN) works on what-if scenarios. Therefore, it can
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Year: 1986 | Year: 1987 | Year: 1988 | Year: 1989
Year: 1986 - 0.97522 0.95814 0.94643
Year: 1987 - - 0.97861 0.95761
Year: 1988 - - - 0.97498
Year: 1989 - - - -

Table 2. Pearson’s Coeficient

be useful for planning [Araya and Cabral 2010] and land-use change simulation studies
[Pahlavani et al. 2017]. The Cellular Automata model employs the transition probabilities
from the ANN learning process to describe the LULC changes.

The first step for modeling is to insert the LULCs for the starting date and end of
the analysis, in addition to any other spatial variables that you want to use, such as MDES,
distance from streets, and other intermediate LULC variables. The plugin compares the
geometries of the inserted rasters to get a direct relationship between everything that was
entered. Besides correlating the extension and pixel size data, the plugin relies on Pear-
son’s coefficient to simulate a linear correlation between the variables chosen. According
to its definition, Pearson’s correlation coefficient is the ratio between the covariance of
two variables and the product of their standard deviations. Thus, it is essentially a nor-
malized measurement of the covariance, such that the result always has a value between
-1 and 1. As the covariance itself, the measure can only reflect a linear correlation of vari-
ables and ignores many other types of relationships or correlations. Thus, as illustrated
on Table 2, we have a point value that indicates how theoretically relevant each of the
variables represents for training and simulation.

After the preliminary tests, we could see that the intermediate LULCs by them-
selves have a great impact on training, as well as the MDE, the distance from streets, and
the distance from rivers. Having calculated Pearson’s coefficient, we can proceed to the
next step of the process, which is to generate the transition matrix. The transition matrix
plays an essential role in analyzing temporal changes within a set of LULC categories.
The matrix represents the proportions of pixels changing from one land use category to
another. Its rows represent the categories in the initial year, while the columns indicate
the same order of LULC categories in the final year. The diagonal entries indicate the size
of class stability, and each off-diagonal entry represents the size of the transition from one
class to a different class. Values close to 1 in diagonal entries represent the stability of a
category. Researchers mostly use transition matrices to compare the temporal changes in
different regions.

After creating the matrices, we can generate a map that represents the changes
identified in each of the classes from the transition matrix. For each original LULC class, a
new class will be generated, representing the change from one state to another. Therefore,
we have that in an example of 4 classes we will have 4 x 4 possible transitions. Each of
these transitions receives a code that identifies the change made. The output from the area
analysis stage is the change map, indicated on Figure 5, where each pixel is an integer
value that indicates its transition.

The next step is to choose the model that will be used to make the forecasts. A
CA-ANN model in MOLUSCE is a reliable tool for predicting future LULC that may
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Figure 5. Changes Map

be used in land use planning and management. This approach is being used for predict-
ing the spatial LULC shift because it estimates the pixel’s current condition based on
its initial situation, adjacent neighborhood eventuality and changeover laws. Moreover,
this accurately depicts nonlinear spatial stochastic LULC change processes and produces
complex patterns [Saputra and Lee 2019]. The ANN assumes 5 input parameters in ad-
dition to the constants that can only be accessed directly in the source code, and their
calibration represents an important step to ensure that we can get the best possible result
from the simulations. The Neighbourhood variable sets the count of neighboring pixels
around the current pixel. Size 1 means 9 pixels (3x3). Learning rate, momentum and max
iterations number define learning parameters. The higher the learning rate and momen-
tum, the faster the learning, but the process can be unstable. Hidden Layers takes a list of
numbers: N' N2 ... N*, where N is the number of neurons in the first hidden layer, N2
in the second, and so on. After several tests, we used the following parameters: Neigh-
bourhood: 5px; Learning Rate: 0.100; Maximum Iterations: 1000; Momentum: 0.050;
Hidden Layers: 10.

3.3. Validation

Finally, after training the network, we can generate the simulation. The time interval
for the generated simulations is the same interval defined when selecting the inicial and
final LULC.. That is, if we use a 10 years interval (Initial = 2000 and final = 2010) each
iteration of the simulation will also represent an interval of 10 years. The generated LULC
maintains the same classes previously represented in the same representation scheme. It
is important that we can validate the results of the simulations, and MOLUSCE has the
last step that applies the concept of Cohen’s kappa, which serves as a point indicator of
performance. Cohen’s kappa coefficient is a statistic used to measure inter-rater reliability
for qualitative items. Is generally considered a more robust measure than the simple
percentage agreement calculation, as it takes into account the possibility of agreement
occurring by chance. Therefore, a simple and effective way to measure the reliability of
the method was to perform the simulations for the year 2020 and compare them with the
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Kappa Coeficient
Barbacena 0.82748
Barcarena 0.83193
Lauro de Freitas 0.78486
Palmas 0.84707
Parauapebas 0.81884
Parnamirim 0.75129
Rio das Ostras 0.86332
Rio Verde 0.85729

Table 3. Simulation Results Validation

maps already produced by MapBiomas, calculating the kappa value for the comparison.

We used an extensive testing method to evaluate what would be the best way
to generate the predictions. So, we iterate through pre-defined values for each of the
variables, testing all combinations for them. In this way, we evaluated the values that
generated a higher kappa with a reasonable training time. Another important point was to
repeat the same process for all the cities previously selected, showing that the method is
not biased for a specific case.

The proposed method obtained good results in the predictions, as can be seen
in Table 3. The lowest kappa achieved by all tests in the 10 cities was 0.75. With the
model well established, we can finally generate simulated maps for any future year that is
interesting, showing a reliable way to create a basis for geo-economic studies.

To reach one more stage of validation, we applied the proposed method in situa-
tions already analyzed by other authors. Then, we compared the results directly, according
to the kappa achieved in the validation, which shows similar or better results even with
the use of a smaller number of spatial variables. It is evident that the proposed model
is effective in simulating future scenarios. Thus, together with the calibration of the al-
gorithm used, we achieved the aim of presenting an easily replicable method of great
informational value. A clear example can be observed when we analyze the study carried
out by [de Brito et al. 2021] which shows lower Kappa values in all iterations performed,
as seen in Table 4.

4. Conclusions

It is undeniable that studies in geo-computing depend on countless variables for an au-
thentic representation of real situations. Even though each forecast relates directly to the
spatial variables used, the implementation we used proposes a simple way of obtaining
and preparing spatial variables for the entire extension of Brazil.

The proposed process went through several stages of improvement so that the
results were the best, considering an implementation simple to be replicated. First, the
use of over ten cities in all test steps contributed to the notion that it did not bias the
method for certain regions. The experiments carried out concerning the clustering and
reclassification of land use were a step to ensure a distribution with enough classes to
achieve a satisfactory result. Testing three different classification types, the original with
almost 50 classes, a simplistic reclassification with only two classes, and finally, the set
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Upper Paraiba River Watershed | Debrito’s Kappa | Achieved Kappa
Year: 2005 0.748 0.759
Year: 2006 0.709 0.773
Year: 2007 0.666 0.775
Year: 2008 0.623 0.766
Year: 2009 0.597 0.742
Year: 2010 0.562 0.786
Year: 2011 0.546 0.808
Year: 2012 0.523 0.801
Year: 2013 0.513 0.829
Year: 2014 0.518 0.796
Year: 2015 0.515 0.783
Year: 2016 0.533 0.796
Year: 2017 0.535 0.812
Year: 2018 0.544 0.786

Table 4. Methods Comparison

of 6 superclasses, for all the proposed cities produced a range of results large enough
to decide on the best representation to use. A similar method was also used to define
the values of the variables used by MOLUSCE to produce a realistic simulation with a
viable network training time. In a trial-and-error-like approach, we tested several values
for each of the individual variables for later exchanging with each other, thus testing all
combinations of pre-selected values.

The tool is available at: https://github.com/mariocasp/sim_
expansao_urb
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