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Abstract. This paper describes an application of a meta-learning framework
based on bagged trees. The proposed tool is used to estimate missing weather
values in time series. The framework combines 8 different models of bagged
trees that were optimized by a meta-learning algorithm. One of those 8 mod-
els was trained using only the date and each one of the remaining seven was
calibrated with one weather parameter (max. temperature, min. temperature,
insolation, among others), in addition to the respective date. The results show
improvements in accuracy of the predicted values, achieving values such as R2

= 0.94.

1. Introduction
Climatic forecasting is very relevant, for instance, in agriculture planning, energy gen-
eration, natural disaster alerts, among others. Thus, it is necessary to learn from the
past, considering the historical information, what is possible through stored data. When
it comes to the elaboration of a study, it is important to verify the availability of data.
Thus, using a complete and reliable database it is possible to generate studies with fewer
errors [Bayma and Pereira 2017, Bayma and Pereira 2018]. Inconsistencies and unsatis-
factory volume of data generate a limited or even a false representation of the real picture
[Garcı́a et al. 2009]. Rates of 1-5% of missingness are considered manageable. However,
dealing with rates of 5-15% of missing values requires advanced methods, and over 15%
may lead to significant interpretation losses [Acuna and Rodriguez 2004].

Despite having a large reservoir of climate data in Brazil, relevant institutions,
such as the data division of CPTEC/INPE, do not have continuous information for all
regions of the country [Barbosa and Carvalho 2015]. There are some periods of time
without registration, for different reasons, which can lead to the problems mentioned
above.

Predictive modeling is used to develop models capable of predicting missing val-
ues with great accuracy, but that is not an easy task. Thus, it has motivated several
researches in the area [Yang et al. 2007]. When it comes to modeling the behavior of
weather parameters, it is noticeable that trying to build a model using only a single im-
putation approach (e.g. linear regression) becomes difficult and sometimes ineffective.
Therefore, finding different processes that best describe the problem or even conceiving
multiple ways of dealing with it becomes a more appropriate measure, bringing with it
greater precision [Solomatine and Ostfeld 2008].
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This paper presents as a contribution a proposal of a framework for imputing miss-
ing data, using meta-learning algorithms. The tool uses bagged trees as both base learners
and meta-learner. The base learners suggest the values to be imputed in the gaps, and then
it is used a meta-learner to combine the previously suggested values to generate the most
suitable outputs to fill the data gaps. This proposal increases the accuracy of the outputs
when compared with other related works.

The framework is applied in 10 databases, each one composed of weather time
series. These databases hold weather information from cities located in regions with
different climatic configurations, distributed throughout the Brazilian territory. This ap-
proach aims to bring robustness to the framework, showing that it can deal with climatic
diversity.

This text is organized as follows. Section 2 presents the literature review. Section
3 describes the data acquisition and preprocessing analysis. The Section 4 presents the
regression method and the meta-learning layers. Section 5 describes the proposed frame-
work. Section 6 details the framework validation. Section 7 presents the results and their
analysis. Section 8 presents the conclusions.

2. Literature Review

A lot of studies propose approaches to fill the missing data values in time series. The most
recent ones, generally, apply some computational intelligence tool. The most relevant
works will be presented below, which served as a basis for what was developed in this
study.

[Olcese et al. 2015] presented a method that uses artificial neural networks
(ANNs) to predict missing aerosol optical depth (AOD) values at an AERONET station.
ANNs with different topologies were trained with historical AOD values at two stations
and air mass trajectories passing through both of them, generating 18 different datasets
that were individually used to train 56 ANNs. It was used the coefficient of determination
R2 to compare measured and calculated AOD values to choose the best ones to be used to
calculate the missing values. The model created was capable of imputing missing values
with the average relative error equals to 25% (with 45% of the values having a relative er-
ror of less than 10%) and R2 between 0.67 and 0.86 for the Iberian Peninsula and Eastern
US, respectively.

[Bayma and Pereira 2018] compared the effectiveness of four imputation meth-
ods, used to fill data gaps in the historical time series from databases of the Brazilian
Institute of Meteorology (INMET)1. The used methods were linear regression, ANNs,
support vector machines and regression bagged trees. To compare the performance of
each model, a part of the data was artificially removed so that the imputation methods
could identify the missing values. In order to emphasize the importance of data imputa-
tion, the study also performed prediction of future data, considering the bases with and
without the imputed data. A total of 20 models were generated by combining the four re-
gression models and five different inputs that represented one scenario without imputation
and four scenarios that represent the imputation of each method. In addition, the k-folds
cross-validation method was implemented for all machine learning techniques to perform

1http://www.inmet.gov.br/
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a statistical test. The study concludes that, when the database was filled with the imputed
data, there was an improvement in the forecast of new climatic values. This improvement
was more significant with the use of bagged trees, both for imputation and for forecasting
future data.

Another relevant approach was proposed in [Assis 2019]. In this work, a frame-
work based on meta-learning methods was presented to identify price trends for the stock
market assets. The implemented tool was based on the WEKA2 API through which 7
regressors were combined to predict values and trends: ANNs, support vector machines,
decision trees, random forest, Bayesian networks, minimum sequential optimization and
genetic programming. The results showed an accuracy with up to 57% and financial
results with gains of up to 100% of the capital value initially invested. The proposed
framework can be used both to identify future values as well as to perform imputation to
past values.

Meta-learning is a relatively new methodology, but its application is becoming
more recurrent. The present study applies the concept of meta-learning to improve regular
learning algorithms in the imputation values task.

3. Data Acquisition and Preprocessing Analysis

3.1. Data Acquisition

The Brazilian Institute of Meteorology (INMET) has more than 400 meteorological sta-
tions spread across the country and provides hourly, daily and monthly data on its website,
in addition to several other resources that go beyond the interests of this work. The data
acquisition for each city studied was made through the INMET website. In this research,
daily data from 10 different meteorological stations were used. The parameters used
were: date, rainfall, maximum temperature, minimum temperature, insolation, evapora-
tion rate, average relative humidity, average compensated temperature, and average wind
speed time-series.

Table 1 shows a summary of the used time series data. The second and third
columns present the start date and end date of each analyzed city. The last column presents
the total number of days used from each database.

Cities Start Date End Date Number of days
Barreiras 01/01/1961 31/12/2019 21548

Belo Horizonte 01/01/1961 31/12/2019 21548
Cruz Alta 01/01/1961 31/12/2019 21548

Cuiabá 01/01/1961 31/12/2019 21548
Curitiba 01/01/1961 31/12/2019 21548

Diamantino 01/01/1961 31/12/2019 21548
Ouricuri 01/10/1975 31/12/2019 16162

Rio Branco 01/06/1969 31/12/2019 18475
São Felix do Xingu 01/09/1972 31/12/2019 17287

São Paulo 01/01/1961 31/12/2019 21548

Table 1. Analyzed periods and total number of days.

2https://www.cs.waikato.ac.nz/ml/weka/
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3.2. Data Preprocessing Analysis
Pearson product-moment correlation, “R”, and the p-value represent dimensionless mea-
sures of the covariance between two variables, which is a scale that ranges from –1 to +1
[Wackerly et al. 2014]. The closer to those limits the correlation value is, the stronger is
the association between the variables compared (their linear dependence). It is 0 whether
there is no correlation between them. Moreover, it is possible to evaluate that relationship
through the p-value, which the closer to 0 the p-value is, the stronger is the correlation
between the variables compared.

[Bayma and Pereira 2017] applied the Pearson correlation method [Pearson 1900]
to analyze the relationship between date and maximum temperature. They found out
that the p-value of the variables month and year are less than the significance level of
0.05, which means that they are strong correlated. Then, they created an approach that
considers just the day, month and year in the imputation process, but the month and year
have a greater relevance in models than the day.

Aiming to characterize the correlation among the weather parameters, the correla-
tion coefficients test was performed on the 10 cities’ databases. Table 2 shows the average
of the results. The main diagonal is set to 1, since it means the correlation between the
parameter with itself. The other cells represent the p-value among the variables identified
in each row and column. The p-values that are less than 0.05, indicate that the couple of
variables has a statistically significant correlation [Bolboaca and Jäntschi 2006].

R MaT MiT I ER ACT ARH AWS
R 1 0.00 0.09 0.00 0.00 0.02 0.00 0.17

MaT 0.00 1 0.00 0.00 0.00 0.00 0.00 0.09
MiT 0.09 0.00 1 0.05 0.03 0.00 0.00 0.10

I 0.00 0.00 0.05 1 0.00 0.00 0.00 0.09
ER 0.00 0.00 0.03 0.00 1 0.00 0.00 0.07

ACT 0.02 0.00 0.00 0.00 0.00 1 0.00 0.02
ARH 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00
AWS 0.17 0.09 0.10 0.09 0.07 0.02 0.00 1

R - Rainfall – MaT - Maximum Temperature – MiT - Minimum Temperature –
I - Insolation – ER - Evaporation Rate – ACT - Average Compensated Temperature –
ARH - Average Relative Humidity – AWS - Average Wind Speed

Table 2. Average p-values of the 10 cities.

The Table 3 shows the distribution of the gaps, detailing the percentages by
database parameters. In the first column, it is presented the cities studied in this work.
The remaining columns indicate the percentage of records in which 0, 1, 2, 3, 4, 5, 6,
7 or 8 parameters are available. The second column (“0”) indicates the percentage of
records in which there is a lack of values for the all 8 parameters of the database, i.e.
there is not any weather value in the record. The third column (“1”) indicates the per-
centage of records where 1 of the 8 weather parameters is available, and so on. The last
column indicates the percentage of complete records, that is, none of the eight parameters
is missing.

This study presents a better performance in the cases in which there are from 1
to 7 weather parameters, since the framework seeks to take advantage of the existing
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61



parameters to infer the others, especially those that have a high correlation value with the
existing parameters in the record.

Cities Quantity of weather parameters
0 1 2 3 4 5 6 7 8

Barreiras 12.572% 0.009% 0.074% 1.615% 2.409% 12.711% 2.418% 21.362% 46.830%
Belo Horizonte 7.444% 0.005% 0.005% 0.023% 0.088% 0.469% 0.334% 3.021% 88.611%

Cruz Alta 12.256% 0.065% 0.028% 0.715% 5.694% 1.638% 1.063% 18.401% 60.140%
Cuiabá 3.007% 0.023% 0.107% 0.691% 1.703% 11.259% 11.880% 17.241% 54.089%

Curitiba 0.650% 0.005% 0.014% 0.975% 2.836% 0.464% 0.575% 8.869% 85.614%
Diamantino 8.275% 0.023% 0.037% 0.733% 2.497% 4.799% 20.763% 39.748% 23.125%

Ouricuri 22.658% 0.037% 0.012% 0.099% 0.526% 12.096% 2.128% 7.945% 54.498%
Rio Branco 0.698% 2.425% 0.081% 4.141% 0.774% 1.846% 6.490% 23.648% 59.897%

São Felix do Xingu 19.194% 2.493% 0.289% 0.978% 0.445% 6.207% 5.733% 17.181% 47.481%
São Paulo 1.402% 0.181% 0.065% 0.111% 0.051% 0.900% 0.367% 25.752% 71.171%

Table 3. Percentage between the days with missingness and the total number of

days of each city’s database.

3.3. The Construction of Train and Test Datasets
As presented in [Bayma and Pereira 2017, Bayma and Pereira 2018], the learning meth-
ods present a better performance using a window of 5 years of data from the time series.
For instance, to fill a gap in a month, a maximum of the last 5 years of data should be
used to train the learning methods. Therefore, different intervals of 5 years were selected
to apply the framework. A limit of 5% of missing values was admitted to provide more
intervals without much distortion of the real picture to the study.

The data collected by each one of the 10 selected meteorological stations was
splitted into three datasets: learners training set, meta-learning training set and validation
set. It was ensured that no data used in the training was also part of the validation amount.
Around 40% of the data was used to train the base learners, 40% was used to train the
meta-learner and 20% for validating the final outputs.

4. Theoretical Foundations
4.1. Machine Learning
[Bishop 2006] describes the machine learning algorithm as being the task to represent
a database as belonging to a function Y (x̄), where a vector of independent variables x̄
is taken as input and generates the output Y as a function of x̄. The function Y (x̄) is
determined during the training stage, also called the learning phase, which uses a part
of the available data for the calculation. Once trained, new entries can have their set
of images determined through this type of algorithm. This ability to determine correct
outputs for unprecedented input values is called “generalization”.

In the present work, the machine learning method used to correlate the weather
parameters and to infer the missing values is the bagged trees [Witten et al. 2005]. This
method is presented below with its respective configuration.

4.1.1. Regression Tree and Bagged Trees

According to [Witten et al. 2005], decision trees employ the “divide to conquer” ap-
proach. The name “tree” comes from the relationship of learning nodes with the branches
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and leaves of a real tree. Each node represents a test of the attributes for decision making.
Typically, the test consists of comparing the attribute with a constant or a range of values.
Each leaf node represents an average value among all the values of the training set to
which the leaf applies to.

The difference between classification trees and regression trees refers to the con-
tent of their results. While the first one seeks to find classes among the data, the second
one seeks numerical results according to the training set. In this work, the interest is in
finding numerical values for weather parameters imputation, so the research turns to the
regression trees. As the attributes are numeric, the test usually consists of determining
whether a given value is less than or greater than a predefined constant, which generates
each a binary division or whether this value is below, within or above a range, which gen-
erates a division into three nodes. The test is applied successively with different constants
or intervals. Figure 1 represents a regression tree.

Figure 1. Scheme of a generic regression tree.

This work uses the concept of “Bootstrap Aggregating”, sometimes known by
the acronym “Bagging”, so that the grouping of regression trees occurs, which tends
to minimize the effects of overfitting [Witten et al. 2005]. The generated models had a
maximum number of divisions of the branch node equals to 3 per tree, which characterizes
trees that are not very deep.

4.2. Meta-Learning
The multi-classifiers may be described as a knowledge’s combination of an ensemble of
classifiers seeking for more accurate decisions [Kuncheva 2014]. Some multi-classifiers
are: voting, ranking, mixture of experts and meta-classifiers. The last one is based on
learning about the base classifiers to obtain a knowledge about which one may be the
most efficiently applied [Brazdil et al. 2008]. In the context of this paper it was used
regressors instead of classifiers, hence, they are given the term meta-learners.

[Kuncheva 2014] emphasizes that the meta-learning process implies in an increase
in complexity. However, the authors still mention that combining an ensemble of base
learners with less complex approaches becomes more straightforward than finding pa-
rameters’ combination that best describes the problem’s complexity.

5. The Meta-Learning Framework to Fill Missing Values
The proposed framework consists of 8 base learners (level 0), which suggest the values
to be imputed in the gaps, and then a meta-learner (level 1) combines the previously
suggested values to generate the most suitable outputs to fill the data gaps.

Figure 2 represents a scheme of the layers of the meta-learning, where the left
hand side shows the N base learners in which is applied N different inputs, being one
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input for each learner, and the right hand side shows a meta-learner that receives as input
the outputs of the previous learners generating the optimized output.

Figure 2. A scheme of the generated framework.

The framework is divided into two stages, where each one is represented by a
block in the scheme in Figure 3. Those stages are: the learning stage, the meta-learning
stage.

In the first stage, level 0, the base learners are trained using the base learners
training set. The base learners are in charge of generating models capable of calculating
the missing value from a given day based on the date and one of the weather parameters of
the same day. Each model generated by each one of the 8 bagged trees must be fed with
the inputs used in the learning stage. This ensemble allows that, for a given day, there are
8 different predictions available for the same missing parameter.

There are 8 base learners (level 0) that match each input. To generate those inputs,
the framework removes the parameter that represents the one that is being imputed along
the iteration, remaining 8 out of 9 types of inputs: (1) date, (2) date + rainfall, (3) date +
maximum temperature, (4) date + minimum temperature, (5) date + insolation, (6) date
+ evaporation rate, (7) date + average relative humidity, (8) date + average compensated
temperature and (9) date + average wind speed. Both inputs and the output represent
records of the same day. In each iteration, a different weather parameter is imputed.

Subsequently, in the second stage, level 1, the meta-learner is trained using the
meta-learner training set. That set of inputs are applied to the models generated in the
learning stage to generate level 0 imputation. The level 0 outputs of the 8 models, in
addition to the date of the day they refer to, become the inputs to feed the meta-learner. It
seeks to learn from the group of base learners’ knowledge to generate a model capable of
combining those level 0 outputs to calculate an optimized one that is more accurate.

In the end, there are 9 trained models, being one of them in charge of giving the
very best output. The trained ensemble is, then, validated.

6. Validation Methods
Aiming to measure the quality of the imputed data, the coefficient of determination
R2 was used to determine how well the models can reproduce the actual outputs
[Homma and Saltelli 1996]. This coefficient compares the difference between the cal-
culated value and the actual value, weighting the result with the difference between the
average and the actual value. The closer to 1 the coefficient of determination R2 is, the
better the model calculates the dependent variable.
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Figure 3. Scheme of the framework.

R2 = 1�
PN

i=1(ŷi � yi)2
PN

i=1(y � yi)2
(1)

where yi is the i-th actual value, ŷi is the i-th calculated value and y is the average of the
N actual values.

To perform the validation test, artificial gaps were created in the dataset. In order
to simulate the real scenario where the lack of data occurs randomly, a total of 20% of
the database was randomly chosen to validate the trained models. The predicted outputs
were compared to the actual values using the coefficient determination R2 test.

To simulate different scenarios with different combinations of parameters miss-
ingness, artificial gaps in the inputs were created by removing some parameter in the
inputs. It creates 8 different scenarios: no weather parameter available; one weather pa-
rameter available; two weather parameters available; three weather parameters available;
four weather parameters available; five weather parameters available; six weather param-
eters available; seven weather parameters available. The gaps were replaced by a constant
which is a value that is completely out of the bounds of all variable used in this study to
simulate �1, as suggested by [Han et al. 2011]. It was chosen the constant �9999.

Working as a second validation method, the algorithm was applied in databases
from cities with different climatic characteristics, being each couple of meteorological
stations located in each one of the 5 Brazilian regions: north, northeast, midwest, south,
southeast. For each database, the methodology adopted was performed 30 times to gen-
erate sufficient material to make statistic analysis.

7. Results And Analysis
Due to space restrictions, since there are plenty of results to be analyzed in this study,
as the framework is applied to 10 cities using 8 different inputs, all the results pre-
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sented below refer only to the Belo Horizonte station. The results from the other sta-
tions will be summarized and available as appendix at the following address: https:
//ufsj.edu.br/marconi/geoinfo2020_-_paper_1.php. As soon as this
article is published, the source code will also be made available at that same address.

Figure 4 shows the coefficient of determination R2 between the measured and the
calculated for the base learner (BL) that considers fewer variables and the meta-learning
in 8 distinct scenarios: (0) when there is not any weather parameter and only the date
is used to generate all the outputs of the base learners; (1) when there is only one pa-
rameter available to increase the calculation; (2) when there are two parameters available
to increase the calculation; (3) when there are three parameters available to increase the
calculation; (4) when there are four parameters available to increase the calculation; (5)
when there are five parameters available to increase the calculation; (6) when there are
six parameters available to increase the calculation; (7) when there are seven parameters
available to increase the calculation. Except for the average wind speed and rain fall, the
average of the coefficient of determination of the parameters increases, demonstrating the
effectiveness of considering more variables than only the date when trying to calculate
the missing values. There are some parameters that present improvement of more than
30% when it is the only information that is missing, for instance, insolation (49%), aver-
age compensated temperature (36%), maximum temperature (53%) and average relative
humidity (38%).

Figure 4. The coefficient of determination R2 of the base learner that considers

fewer variables and the meta-lerning applied in 8 different scenarios when imput-

ing each weather parameter - Belo Horizonte station.

Figure 5 shows how the coefficients of determination of the base learner (BL)
that only uses the date and the meta-learning in the different scenarios are distributed
when calculating the average compensated temperature. Note that the boxplots with big
areas (2, 3, 4 and 5) occurs because there is no differentiation among which weather
parameters were available to generate the outputs, in other words, when parameters with
lower correlation are used to estimate the missing data, it may lead to damages to the
calculation and when the ones with high correlation are used, it may increase the results.
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Figure 5. The coefficient of determination R2 of average compensated tempera-

ture - Belo Horizonte station.

Figure 6 shows, in percentage, the comparison between the meta-learning and the
base learner that only uses the date as input. It represents the probability that the result
generated by the meta-learner is better than the approach that considers fewer variables, as
presented by [Bayma and Pereira 2017, Bayma and Pereira 2018, Assis 2019]. It is pos-
sible to see that the meta-learning is affected by the different weather scenarios analyzed
and the presence of parameters with low correlation. However, except for the average
wind speed and rain fall, the meta-learning shows better results than the base learner with
fewer inputs in at least seventy percent of the executions. In the best scenario, the meta-
learning reaches better results 100% of the time, except for the average wind speed.

Figure 6. Comparison between the meta-learning (proposed approach) and learn-

ing process [Bayma and Pereira 2017]. The x axis present the number of weather

parameters used in the meta-learning. The y axis presents the percentage of

improvement of meta-learning compared to leaning process - Belo Horizonte sta-

tion.
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Through Figure 6 it is possible to conclude that, for example: except for average
wind speed, whenever there are 7 weather parameters available, the meta-learner’s output
is better than the base learner’s prediction; and except for average wind speed, when there
are 3 weather parameters available, for more than 70% of the inputs the meta-learner’s
predictions are better than the base learner’s predictions.

8. Conclusions
Computational resources, such as machine learning, plays an important role in model-
ing physical phenomena through less complex analysis that consider reduced numbers of
variables that affects the system. Due to that, this resource can be used in meteorology to
look for meteorological events models.

In this work, it is demonstrated through the analysis of coefficient of determination
R2, that meta-learning can increases the accuracy in imputing missing values in weather
time series. Even though the meta-learner’s output may not be better than the best level 0
model’s output for any type of input, it diminishes or get rid of the possibility of choosing
an inadequate single model.

It is noticeable that the more information is available, the better the results will be.
Nevertheless, the results demonstrate that the meta-learner can recognize which parame-
ters or which combinations of inputs can generate the most suitable values to fill the data
gaps.

The low values of R2 characteristic of rainfall and average wind speed may be due
to their complex behavior and the low correlation with the other parameter (in the case of
the average wind speed).

Despite the complexity of the climatic dynamics of the different regions impacts
the recognition of patterns of different parameters, this approach takes advantage of the
available information, which provides a better representation of the real picture of a given
date and, consequently, of certain parameters. Moreover, the present paper modeled the
complex weather parameters behaviors through less complex approaches, getting rid of
the hard work of finding out the very best combination of independent variables to infer
the dependent variable missing values.
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