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Abstract. Monitoring changes on Earth's surface is a difficult task commonly 
performed using multi-spectral remote sensing. The increasing availability of 
remote sensing platforms providing data makes multi-source approaches 
promising, since it can increase temporal revisit rate. However, Digital image 
processing techniques are needed to integrate the data, since sensors can be 
quite different in terms of acquisition characteristics. This work addresses the 
spectral normalizing of three medium spatial resolution sensors: Landsat-
8/OLI, Landsat-7/ETM+ and CBERS-4/MUX, through linear regression and 
linear mixture model approaches. The results showed slight better results 
when using the linear regression approach. 

1. Introduction 
Characterizing Earth's land cover and changes is essential to manage natural resources. 
Understanding the active processes and monitoring crops is vital for the ecosystems 
maintenance [Kuenzer et al., 2015]. Multi-spectral remote sensors estimate geo-
biophysical properties using electromagnetic radiation as a medium of interaction 
[Choodarathnakara et al., 2012] and can help understand these changes [Boriah et al., 
2008]. 

 The Brazilian National Institute For Space Research (INPE) pioneered the free 
provision of medium resolution satellite data, releasing images with no cost of the 
second China Brazilian Earth Resources Satellite (CBERS-2) [Banskota et al., 2014]. 
The adoption of this policy encouraged the United States Geological Survey (USGS) to 
make the Landsat data available in 2008 [Woodcock et al., 2008; Banskota et al., 2014], 
which resulted in a greater amount of accesses and use of orbital images [Wulder et al., 
2012]. 

 Nowadays there are many satellite sensors obtaining information of Earth’s 
surface. However, change detection methods normally use short remote sensing images 
time series, ranging from two to five images, and then they do not take advantage of full 
potential of historical series [Coppin et al., 2004]. This concept of having multiple 
images from different dates grouped in a single multi-dimensional array is known as an 
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image data cube. Integrate the spectral and spatial information with the time component 
provides rich information to detail the space variations along the time [Petitjean et al., 
2012] and can provide pattern observations, which are not found in single time 
observations, such as trends and periodicities [Kuenzer et. al, 2015].  

 In many applications, e.g. crop monitoring [Steven et al., 2003] and change 
detection [Coppin et al., 2004], medium, or even high, spatial resolution images are 
required to provide the detailed information of the surface [Steven et al., 2003]. 
However, sensors revisit rate are long relative to plant active growth period [Steven et 
al., 2003] due to the trade-off between the spatial, radiometric and temporal resolution 
characteristics [Lefsky; Cohen, 2003]. Applications with multiple sensors were 
documented in the past years [Shimabukuro et al., 1991; Pohl; Van Genderen, 1998]. 
Therefore, the recent increasing number of onboard satellite sensors and its data 
availability has made these approaches more promising [Mousivand et al., 2015]. 
However, sensors heterogeneity concerning spectral, directional, radiometric and spatial 
characteristics must be treated in order to make the data compatible [Samain et al., 
2006; Mousivand et al., 2015; Behling et al., 2016]. 

 Samain et al. (2006) organized the multi-source heterogeneous aspects in four 
categories: spatial, temporal, spectral and directional. The optimum approach to deal 
with spatial differences between different sensors would be use multi-scale algorithms, 
which would use each sensor at its native spatial resolution. However, the complexity 
and processing cost of this approach is high. Resampling data to a common reference is 
more appropriate, even though this process may propagate loss of information, when 
data is resampled to the lowest spatial resolution, or introduce inaccurate measures, 
when resampling to the most refined resolution [Samain et al., 2006]. 

 In relation to the temporal aspect, each onboard satellite sensor has its revisit 
time. Combine data from different sources and noise data can make the interval between 
acquisitions irregular. Similarly to the spatial aspect, the optimum approach would be to 
use each data on its native acquisition date. However, to facilitate image manipulation, 
several works in the literature supposes that there are few changes between images 
acquired close by each other. Based on that, an equidistant interval is adopted by 
performing operations, such as average or replacing, on those images and assuming it on 
close dates [Bendini et al., 2016; Vuolo et al., 2017]. 

 Variations in spectral characteristics are harder to deal with, since different 
sensors with similar bandwidth present different responses to the same target 
[Trishchenko et al., 2002]. Based on that, values obtained from different sensors cannot 
be compared directly [Trishchenko et al., 2002]. These differences occur even if sensors 
have similar spectral bands, because the Specral Response Function (SRF) is specific 
for each sensor [Pinto et al., 2016]. In this context, Trishchenko et al. (2002) studied the 
effects of SRF on surface reflectance and NDVI measures comparing moderate 
resolution satellite sensors. They concluded that both measures are sensitive to the 
sensor’s SRF and even for similar sensors a correction procedure is needed. Then, to 
combine data from different sensors it is necessary to equalize their SRFs, especially in 
the visible bands [Holden & Woodcock, 2016]. 

 Bendini et al. (2016) used vegetation indices (EVI and NDVI) to derive 
phenological features of crops using filtered image time series and Random Forest 

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p273-282.

274



  

algorithm to classify agriculture. Holden & Woodcock (2016) used near-simultaneous 
Landsat-8 and Landsat-7 images to analyze consistency of both sensors surface 
reflection, since some spectral bands of Landsat-8 are narrow. The results showed that is 
necessary to normalize their spectral bands, since Landsat-8 visible bands (blue, green 
and red) are darker and near infrared band is brighter in the Landsat-7 satellite. 

 In this context, we proposed to test two methods to normalize spectral bands 
Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX, through linear regression and 
linear mixture model approaches. The approaches are based on statistical [Samain et al., 
2006; Bendini et al., 2016; Holden & Woodcock, 2016; Roy et al., 2016) and spectral 
information [Hubbard; Crowley, 2005; Gao et al., 2006; Zurita-Milla et al., 2008; 
Amorós-López et al., 2013]. 

2. Methodology 
Figure 1 shows a diagram that describes the methodology to pre-process and spectrally 
normalize the images. The study area corresponds to the Path/Row 219/075 and 220/075 
(WRS 2 – Worldwide Reference System 2), which intercept Landsat-7/ETM+ and 
Landsat-8/OLI images simultaneously, and also overlaps CBERS-4/MUX Path/Row 
155/124 (CBERS WRS Path Row). Based on that, six cloud-free images were selected 
to perform the study composing an image data cube, i.e., two images from each sensor 
acquired in 04/07/2015 and 08/29/2015. In the pre-processing step, the images were 
converted to surface reflectance. Surface reflectance product for Landsat-7/ETM+ and 
Landsat-8/OLI images were acquired through USGS EROS Science Processing 
Architecture (ESPA) [USGS, 2017]. CBERS-4/MUX images were converted to top of 
atmosphere (Toa) radiance values and posteriorly to Toa reflectance, using methods 
proposed by Chander et al. (2009) and Pinto et al. (2016). Afterwards, Toa reflectance 
was converted to surface reflectance through atmospheric correction. The CBERS-4 
images were radiometrically corrected and geometrically adjusted and refined by using 
control points and the SRTM 30m v. 2.1 digital elevation model (DEM) (Level 4). The 
atmospheric correction was proceeded using the 6S model (Second Simulation of a 
Satellite Signal in the Solar Spectrum) [VERMOTE et al. 1997]. 

 After this pre-processing step, two spectral normalization methods were tested: 
linear regression and spectral unmixing. Both methods use a reference sensor and 
convert additional images to its pattern. The linear regression approach assumes that 
sensor bands relationship depends on illumination and observation geometry. It is based 
on the principle that calibrated and atmospherically corrected images from similar 
sensors are consistent and comparable, showing a low bias. Based on that, reflectance 
reference values are used to perform regression analysis with reflectance target values, 
resulting in gain and offset coefficients for each band, as illustrated on Figure 2. Steven 
et al. (2003) compared NDVI values from different instruments and obtained a strong 
linear relation between them. In this work, the linear regression coefficients were 
obtained considering the first date and, then were applied to images of second date, for 
each sensor. 

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p273-282.

275



  

 
Figure 1. Methodology diagram. 

 The spectral approach is based on surface spectral signature restoration. It 
assumes that spectral reflectance can be decomposed in components, which are related 
to surface properties [SAMAIN et al., 2006]. Gao et al. (2006) and Zurita-Milla et al. 
(2008) combined moderate and medium spatial resolution sensors using this approach. 
One method that can be used in the spectral approach is spectral unmixing [Zurita-Milla 
et al., 2008]. In this method, endmembers for pre-determined classes, e.g. vegetation, 
soil and water/shadow, are used to transform the spectral image into a combination of 
class-fraction images through linear equations [Shimabukuro & Ponzoni, 2017]: 

 

1 

where ρi is the pixel reflectance value in band i; a, b, and c are vegetation, soil and 
water/shadow proportion, respectively; vegi, soili and shadowi are vegetation, soil and 
water/shadow endmembers and ei is the error in band i. Based on that, endmemembers 
obtained for a reference image can be applied in target images to construct a synthetic 
image [Gevaert; García-Haro, 2015], as illustrated on Figure 3. In this work, the 
endmembers for each class (vegetation, soil and water/shadow) were selected on each 
image, and used to obtain the class fraction images. Using Landsat-8/OLI as reference, 
the fraction images were used to the inversion of the process and generate synthetic 
images on different dates. The main advantage of this approach is that the class 
proportions instead of sensor spectral responses are used to restore each band. 
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Nevertheless, this approach is dependent on the endmember selection [Zurita-Milla et 
al., 2008]. 

 
Figure 2. Linear regression spectral normalization diagram. 

   

 
Figure 3. Spectral Unmixing normalization diagram. 
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3. Results and Discussion 
 Table 1 shows gain and offset values for each band obtained by regression 
method. They were used to transform Landsat-7/ETM+ and CBERS-4/MUX images 
into synthetic Landsat-8/OLI images, in the same date. Landsat-7/ETM+ was more 
consistent with Landsat-8/OLI than CBERS-4/MUX, as one can be observed in the gain 
values. 

Table 1. Linear regression coefficients (gain and offset) for Landsat-8/OLI with 
CBERS-4/MUX and Landsat-8/OLI with Landsat-7/ETM+ in the blue, green, red 
and near infrared bands. 

 
 In the spectral unmixing experiment, Figure 4 shows endmember reflectance 
values for Lansat-8/OLI. Vegetation showed a greater response in the green band in 
comparison to the blue and red bands, with a peak in the near infrared, characteristic of 
vegetation targets [Jensen, 2007]. While soil class also had a typical exposed soil 
spectral response. 

 
Figure 4. Spectral unmixing endmembers on Landsat-8/OLI sensor, collected 
for the classes vegetation (green curve), soil (yellow curve) and water/shadow 
(blue curve) in 4 multi-spectral band blue, green, red and near infra-red band. 

 We used Pearson’s correlation to evaluate similarity among resulted images. 
Firstly we compared the synthetic images obtained through spectral unmixing to the 
reference images of both dates. Then, the synthetic images obtained throug linear 
regression for the second date were compared to the same reference images. The 
resulted Pearson’s correlation coefficients are presented in Table 2. 
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Table 2. Pearson correlation coefficients obtained by normalizing, through 
linear spectral unmixing and through linear regression, Landsat-8/OLI (L8), 
Landsat-7/ETM+ (L7) and CBERS-4/MUX (C4) imagery from 04/07/2015 and 
08/29/2015. 

 
 The results showed that shorter wavelength bands such as Blue and Green band 
are less inter-correlated than longer wavelength bands, such as Red and Near Infrared. 
This is probably due to atmospheric interference in shorter wavelength bands that was 
not completely suppressed by atmosphere correction [Jensen, 2007] as well as to the 
difference in the sensor spectral responses. Landsat-8/OLI and Landsat-7/ETM+ 
presented higher correlation than CBERS-4/MUX with Landsat-8/OLI. This similarity 
can be explained by the fact that Landsat-8/OLI is a continuity mission of Landsat-
7/ETM+ and then is processed by similar methods. However, CBERS-4/MUX has 
potential to be used in time series analysis combined with Landsat 8 and Landst 7. 
Besides, linear regression spectral normalization approach presented slight better results 
than unmixed method. 

4. Conclusion 
In this work, we analyzed the spectral normalization of. Landsat-8/OLI, Landsat-
7/ETM+ and CBERS-4/MUX based on linear regression and unmixing approaches in 
order to help overcome the lack of observations by merging multiple sensors data. The 
results showed that the used sensors have potential to be used in a multi-source, since 
the images were highly correlated. The correlation coefficients showed that shorter 
wavelength bands are less inter-correlated than longer wavelength bands and that 
Landsat-7/ETM+ is more correlated to Landsat-8/OLI than CBERS-4/MUX. 

The spectral normalization of Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX 
through linear regression spectral normalization approach presented slight better results 
than the unmixed method. Based on that, when spectrally normalizing Landsat-8/OLI, 
Landsat-7/ETM+ and CBERS-4/MUX sensors, the linear regression approach is 
recommended. 
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