

An algebra for modeling and simulation of continuous
spatial changes

André Fonseca Amâncio1, Tiago Garcia de Senna Carneiro1

1Department of Computing – Federal University of Ouro Preto (UFOP) – Ouro Preto –
MG – Brazil.

afancio@gmail.com, tiagogsc@gmail.com

Abstract. Continuous change models are commonly based on the Systems
Dynamics paradigm. However, this paradigm does not provide support for an
explicit and heterogeneous representation of geographic space, nor its
topological (neighborhood) structure. Therefore, using it in modeling spatial
changes still remains a challenge. In this context, this paper presents an
algebra that extends the Systems Dynamics paradigm to the development of
spatially explicit models of continuous change. The proposed algebra provides
types and operators to represent flows of energy and matter between
heterogeneous regions of geographic space. To this end, algebraic sets of
operations similar to those in Map Algebras are introduced, allowing the
representation of local, focal and zonal flows. Finally, case studies are
presented to evaluate the usefulness, expressiveness and computational
efficiency of the proposed algebra.

1. Introduction
Continuous spatial changes describe continuous flows of energy or matter between
regions of geographic space. Although the System Dynamics paradigm (Forrester 1961,
Meadows 2008) is widely used for modeling continuous changes, it does not provide
support for an explicit and heterogeneous representation of geographic space and its
topological structure (neighborhood). For this reason, it needs to be extended to
construct spatially explicit models [Parker et al. 2001] of continuous spatial changes, as
of interactions between society and nature.
 In this work, the types and operators present in map algebras [Tomlin 1990,
Karssenberg et al. 2001, Cordeiro et al. 2009, Schmitz et al. 2013] are used to extend
the Systems Dynamics paradigm. Map algebras generally define three sets of
operations, defined as proposed by Tomlin (1990): (a) Local operations - whose the
value of a location in the output map is calculated from the values of that location in the
input maps; (b) Focal operations - whose the value of a location in the output map is
calculated from the neighborhood values of that location in the input map; And (c) zonal
operations - whose the output values summarize values of regions (neighborhoods)
defined on the input map.
 Models based on Map Algebra and System Dynamics have completely different
syntax, semantics, and execution flows, creating challenges for combining these
paradigms. Models based on map algebras are finite sequences of algebraic expressions
that cause discrete changes in space. The operations are performed synchronously and
immediately, one after the other, as they appear in the model code. Models based on
System Dynamics are formulated in terms of differential equations and use

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

260

infinitesimally small time-steps for numerical integration procedures [Kelly et al. 2013]
that simulate continuous changes over time. Since in many models it is common to find
interdependence between the several differential equations, they need to be computed
simultaneously to avoid error propagation. Therefore, the equations are invoked
asynchronously, that is, when they appear in the model code they are only instantiated
and, they are executed only after all of them have been invoked. In addition, the
combination of these paradigms needs to deal with spatio-temporal dependence
generated by feedback loops [Schmitz et al. 2013]. Feedback loops generate data
dependencies that need to be resolved for the coherence of simulations, that is, during
simulations intermediate states of the variables need to be updated and consisted to
avoid error propagation. Finally, the modeling activity requires the modeler to be a
specialist in the model application domain and in computer programming to be able to
code it in the form of algebraic operations or differential equations. Currently, the
following questions remain: How to promote the expressiveness of modeling tools for
continuous and spatially explicit change simulation? How to combine different
behavioral, spatial and temporal representations in those tools, in a transparent way
for the modeler?
 In this context, this work proposes and evaluates through case studies an algebra
for the development of spatially explicit models of continuous changes that take place in
the geographic space. This algebra extends the Systems Dynamics paradigm with types
and operators that allow the representation of energy and matter flows between
heterogeneous regions of geographic space that could be connected by distinct
topological relationships. To this end, we introduce sets of algebraic operations similar
to those in Map Algebras, allowing the representation of local, focal and zonal flows.
The case studies evaluate the usefulness, expressiveness and computational efficiency
of the proposed algebra.
 This article is structured as follows. Section 2 presents the related works. In
section 3, the algebra is described as a generic instrument for modeling continuous
spatial changes. Section 4 explains how the algebra works. In Section 5, we describe
case studies of simplified models to evaluate the usefulness, expressiveness and
computational efficiency of an implementation of this algebra in the TerraME tool
[Carneiro et al. 2013]. Finally, the discussion of the benefits of using algebra concludes
this work.

2. Related work
Most extensions of the Systems Dynamics paradigm only replicate systems-based
models in discrete and regular partitions of space to deal with spatial changes,
interconnecting stocks present in these models through spatial neighborhoods. All
changes occur instantly and simultaneously (snapshot). Stocks in a locality are linked to
stocks of same name in neighboring localities, simulating processes of spatial diffusion
or mobility. Generally, the lateral flows are controlled by only one rate fixed by the
modeler, with no way to represent heterogeneous lateral flows. The neighborhoods are
of stationary topology, typically Moore or von Neumann. This type of approach was
called Spatial System Dynamics (SSD) [Ahmad and Simonovic 2004]. Some authors
consider it a simplistic extension of Systems Dynamics, it has a slow execution and is
only appropriate for feedback loops between two models [Swinerd and McNaught 2012,
Sahin and Mohamed 2014]. Therefore, the limitation of these approaches in dealing

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

261

with heterogeneous, non-stationary and anisotropic spaces, under different spatial and
temporal scales, has motivated several innovations [Elsawah et al. 2017]. The Spatial
Modeling Environment (SME) [Maxwell and Costanza 1997] platform was pioneer in
this sense, by representing vertical flows between diverse representations of space and
allocating different models in different regions. To represent more complex interactions
the literature presents approaches based on Individual-Based Modeling [Vincenot et al.
2011], Hybrid Simulations Involving Agent-based [Swinerd and McNaught 2012] and
Discrete Event Simulation [Morgan et al. 2017].
 On the other hand, several papers propose generalizations and extensions of Map
Algebra to represent spatial processes. Camara et al. (2005) present a generalized Map
Algebra that uses spatial topological and directional predicates. Frank (2005) discusses
how Map Algebra can be formalized for programming, extending it to deal with
spatiotemporal data. Cordeiro et al. (2009) extend the Map Algebra by proposing the
concept of Geoalgebra with generalizations for describing layers, regions,
neighborhoods and zones. Schmitz et al. (2013) combine the concepts of Map Algebra
and Model Algebra for the coupling of model components. Camara et al. (2014)
introduce the concept of Fields for representations of continuous spatiotemporal
variables, demonstrating its use in the construction of a novel Map Algebra. Silva and
Carneiro (2016) developed an algebra for models based on spatially explicit agents.
However, the authors of this work have not found in the literature algebras that extend
the System Dynamics paradigm to operate directly on maps, or that extend Map Algebra
to represent continuous flows of energy or matter.
 PCRaster approach extends map algebra for the development of spatio-temporal
environmental models [Burrough 1998, Wesseling et al. 1996]. However, it does not
explicitly represent the flow operator from System Dynamic Theory in its algebra. It is
assigned to the modeler the responsibility to implement a set of operations (map = map
+/- change()) to simulate outflows from one storage or/and inflows to another. Those
operations are interpreted as difference equations computed only once at each
simulation time step, no numerical integration methods are applied. In contrast, we
propose an extension of System Dynamic Theory to the development of geospatial
models, with an explicit representation of flow operations, reducing the modeler
responsibility of properly implement, simulate and compute flows of energy.
 Regarding usability, Frank (2005) and Silva and Carneiro (2016) describe
algebras as facilitators for model specification, since modelers did not need to become
experts in different languages and modeling tools to describe models. The use of a given
algebra allows the description of model components focused on the model objectives
and not on its implementation [Schmitz et al. 2013]. Cardelli (1997) reinforces the idea
that simplifications in models reduce the effort to understand it by future applications
and prevent possible mistakes made by users. Frank (2005) says that the descriptions of
algebra processing steps can be formalized and optimized. Finally, Schmitz et al. (2013)
present evidence that the automation of the interaction routines between space regions,
through algebra native operators guarantees the integrity and improves the readability of
the models.

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

262

3. Types of Algebra Operators
The algebra proposed in this work is a generic tool for modeling continuous spatial
changes, it can be implemented in several tools and languages according to the ideas
presented in Silva and Carneiro (2016). Here, algebra components are specified from
abstractions of their operators [Frank 1999].

 The algebra operators act over spatial types that represent stocks of energy or
matter (attributes) localized in the geographical space. Space topology (neighborhood
and proximity relations) is also represent allowing diffusive flows. Operators are
subdivided into creation operators, responsible for creating and relating types, and flow
operators, responsible for defining how changes occur (behavioral rules) in relation to
time and space. Finally, the execution of operator coordinates the simultaneous and
interleaved execution of changes during simulation.

3.1. Spatial types
There are four spatial types present in the algebra: Cells, CellularSpaces, Trajectories
and Neighborhoods. There are two basic spatial types (Figure 1 (a)): cell and
neighborhood. A Cell represents the stocks of a space location and contains a list of
attributes and a list of neighboring cells. Neighborhoods represent the space
connectivity and can represent areas of influence, adjacency or proximity relations.
Moore and von Neumann [Couclelis 1997] neighborhoods are often used for spatially
explicit modelling.

 CellularSpaces and Trajectories are collections (Figure 1 (b)), that is, they
represent sets of entities of the same type, in this case cells. CellularSpaces represent
regions in the geographic space. All cells in a CellularSpace are composed by the same
set of attributes, which can assume distinct values during simulation. Trajectories are
collections that select and order cells from a CellularSpace, allowing the modeler to
filter the cells on which operators must focus and to establish the order in which those
operators must traverse the CellularSpace performing changes.

Cell: (name, attributes, neighbors)
● name : String
● attributes: [Attribute]
● neighbors: SpatialNeighborhood

SpatialNeighborhood : (type, d, self, cells)

● type: String
● d: (width: Number, lenght: Number)
● self: Boolean
● cells: [Cell]

CellularSpace: (cells, dimension)
● cells: [Cell]
● dimension: (width: Number, lenght: Number)

Trajectory: (cs, selectFunction, sortFunction, cells)

● cs: CellularSpace
● selectFunction: Boolean Function (Cell)
● sortFunction: Boolean Function(Cell, Cell)
● cells:[Cells]

Figure 1. (a) Definition of the neighborhood cell; (b) Definition of collections.

3.2. Creation Operators
Creation operators are intended to ensure that all basic types belong to, at least, one
collection. In this way, after creating basic types, the modeler needs to relate them to a

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

263

collection in order to use than as operands in other operators. Figure 2 presents the
definition of creation operators.

The CellularSpace creation operator uses a Cell instance that provides the
archetype for cloning the other cells it aggregates, the size of the CellularSpace
determines the number of Cells that will be created. A SpatialNeighborhood is created
from a CellularSpace, the type and dimensions of the neighborhood (leght, width), and
from the definition of whether or not the cells are self-contained in their own
neighborhood structures.
createCell: Cell Function (name, attributes)

● name : String
● attributes: [Attribute]

createCellularSpace: CellularSpace
Function(cell, dimension)

● cell: Cell
● dimension: (width: Number, lenght:

Number)

createTrajectory: Trajectory Function(cs, select, sort)
● cs: Cellular Space
● select: Boolean Function(Cell)
● sort: Boolean Function(Cell, Cell)

createSpatialNeighborhood: SpatialNeighborhood Function(cs, type, d, self)
● cs: CellularSpace
● type: String
● d: (width: Number, lenght: Number)
● Self: Boolean

Figure 2. Definition of creation operators

3.3. Flow operator
In this algebra, the Flow operators (FLOW) use only collections (CellularSpace and
Trajectory) as operands. It (Figure 3) represents continuous transference of energy
between regions of space. The differential equation supplied as the first operator
parameter determines the amount of energy transferred between regions.

FLOW (f(), a, b, step, Collection1, “Attribute”, “Neight1”, Collection2, “Attribute”, “Neight2”)
● f(): Differential equation that describes, as a function of one or two parameters, the rate of change (point derivative) of

energy f (t, y) at time t, where t is the simulation current instant time, and y is the past value of the rate of change f ().
● a: Number - Beginning of the integration interval.
● b: Number - End of integration interval.
● step: Number - An infinitesimal time interval used in numerical integration.
● Collection1: Cellular Space or Trajectory - A collection of cells that will be used to calculate and subtract flow output.
● Attribute1: String - Name of the attribute of the cells contained in the collections over which the flow will operate.
● Neight1: Neighborhood - Neighborhood name defined on the source collection of the energy flow. Optional.
● Collection2: Cellular Space or Trajectory - Target collection of energy flow.
● Attribute2: String - Name of the attribute of the cells contained in the collections of the energy flow.
● Neight2: Neighborhood - Neighborhood name defined over the recipient collection of the energy flow. Optional.

Figure 3. Flow Operator Definition

 Flow operations are classified as local, focal and zonal [Câmara et al. 2014] and
their semantics depend on the parameters reported at the moment they are invoked, as
described in Table 1 and illustrated in Figure 4.

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

264

Figure 4. Flow operator examples between two colections

Table 1 - Behavior rule, syntax and semantic definition of the flow operator

RULE SYNTAX SEMANTICS
Flow local execution

Rule: From Cell To Cell

flow(Collection, Collection)
● Collection
● Collection

Each cell in a cellular space transfers part of its attribute stock at
a rate defined by f (t, y) to the spatially corresponding cell
attribute of another cellular space, Figure 4 (a). Example:
precipitation of cloud water to ground.

Flow focal execution

Rule: From Cell To
Neigth Of Cell

flow(Collection, Collection, Neigth)
● Collection
● Collection
● Neight

Each cell in a cellular space transfers part of its attribute stock at
a rate defined by f (t, y) to the attributes of cells in the
neighborhood of the spatially corresponding cell of another
cellular space, Figure 4 (b). Example: Heat dispersion in fire
propagation modeling.

Flow focal execution

Rule: From Neight Of
Cell To Cell

flow(Collection, Neight, Collection)
● Collection
● Neight
● Collection

Each cell from neighborhood of a cell in a cellular space
transfers part of its attribute stock at a rate defined by f (t, y) to
the cell attribute spatially corresponding to the central cell of the
neighborhood of another cellular space, Figure 4 (c). Example:
Condensation of water in clouds.

Flow execução zonal

Rule: From Selected
Cell To Cell

flow(Trajectory, Collection)
● Trajectory
● Collection

Each cell in a trajectory transfers part of its attribute stock at a
rate defined by f (t, y) to the spatially corresponding cell
attribute of another cellular space, Figure 4 (d). Example:
Evaporation of water from a river to clouds.

 Flows from the collection A to the collection B are calculated only for cells in
intersection A ∩ B. Figure 5 illustrates the possible topological relations between
collections and the Flow operator semantics, named by Egenhofer and Herring (1993)
as: a. equal, b.contains, c.inside and d.overlap.

Figure 5. Venn diagram of the topological relation between two collections

 Due to space restrictions, the semantics of some Flow operators are not detailed
in the Table 1, such as flows between distinct trajectories (zonal - example: flow of
water from the mainland to the ocean at a beach), or flows from a trajectory to its
neighborhood (zonal and focal composition - example: heat flowing from fire border),
among others. In the Flow operator, it is possible to construct several combinations of
collection and neighborhood parameters, both in the source or destination of flows.

3.4. Execute operator
The Execute operator described in Figure 6 starts the simulation execution. The
simulation will run until the simulation clock reaches the time received as parameter

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

265

(finalSimulationTime). All flows have the definition of its integration interval, defined
by the lower time and upper time limits. The lowest time limit for all flows is used as
the initial simulation time.

Execute : (finalSimulationTime)
● sinalSimulaionTime: Number

Figure 6. Definition of the execution operator

4. Simulation execution and its implementation in TerraME
The proposed algebra simulator was implemented based on the temporal types of the
TerraME platform: Timer and Event (Figure 7). Timer is a discrete event scheduler that
operates according to Discrete Event Driven Simulation (DEVs) [Wainer 2009]. It
maintains a queue of chronologically ordered events and the current time record of the
simulation. Events are instants in the simulated time in which the modeler the TerraME
platform performs input and output operations, or computations defined by the modeler.
Events are defined by the instant, periodicity, final instant, and action parameters. The
instant parameter determines the moment in the simulation in which the event must
occur, triggering an action defined by the modeler. The periodicity determines the
instant that the event will occur again. The final instant (finalInstant) determines when
the event will cease to occur. The action is a function that implements the behavioral
rules of the model or commands for TerraME to load, view, and store data. The return
value of an action is used as a stop condition, if true the event returns to the Timer
queue at the position determined by its periodicity (event.instant = event.instant +
event.periodicity), otherwise the event is permanently canceled.

Event : (instant, finalInstant, periodicity, action)
● instant: Number
● finalInstant: Number
● periodicity : Number
● action: Boolean Function(Event)

Timer : (currentTime, eventQueue)
● currentTime: Number
● eventQueue: [Event]

Figure 7. Definition of temporal types

 During the simulation, the events are removed from the queue, the simulation
current time is updated (currentTime = event.instant), and then the event action is
performed. Eventually, the event will be rescheduled if its action returns true.

 At the beginning of the simulation, all collections created by the modeler are
synchronized through the TerraME's synchronize() function. That is, temporary copies
of all cells in each collection are created, recording their immediate state. During the
simulation, all readings are performed on the temporary copies of the attributes and the
writes are performed directly on the attributes. This strategy ensures that all
computations start from the same shared and consistent value, ensuring consistency of
the simulations.

 The flow operator is implemented according to Algorithm 1 that evolves in two
stages: (1) Flow Execution - Behavioral rules (BehavioralRules) are executed, that is,
TerraME iterates over all cells of the involved collections, applying the differential
equations (flows) defined by the modeler that receive the temporary values as
parameters, the results of the equations are written directly on the attributes of cells; (2)
Synchronization - Temporary copies of the cells of the collections affected by the flow

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

266

are updated instantly, causing the changes to be persisted and to be noticed by the next
computations. All events present in the algorithm remain re-queued until the end time of
the simulation is reached (timer.currentTime == finalSimulationTime).

5. Case study
Three case studies are used to evaluate the usefulness, expressiveness, and
computational efficiency of the TerraME implementation. Case study 1 uses a simplistic
"Hello World" model to simulate fire propagation in a forest. Case study 2 simulates the
water cycle exemplifying operations frequently used in the representation of continuous
spatial changes. The case study 3 evaluates the response time of the simulator
implemented in this work. More detailed descriptions, as well as other examples and
codes for reproduction of case studies can be found in [ExtraCases 2017].

5.1. Case Study 1
Fire Spread model is composed of a cellular space (lines 3-4) and a von Neumann
neighborhood (line 5) through which fire will propagate. Each cell has the attribute heat
that represents the thermal energy stored in it, initially equal to 0 (green). A cell is
considered to be burning (brown) if its stock is greater than zero. A random fire starting
point is created (line 6), whose value is 1. The flow operator (line 7) simulates heat
going from burning cells to their neighbors according to the exponential differential
equation defined in line 2. Figure 8 shows a series of images with the simulation result.

Figure 8. Heat spread over the cellular space. Green (inert), Brown (Burning).

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

267

5.2. Case Study 2
The simplified water cycle model (Figure 9) is composed of four flow operations: (1)
Cloud water precipitation to the soil - local flow; (2) Evaporation of soil water to the
clouds (with water vapor dispersion) - focal flow; (3) Surface runoff of soil water
through neighborhood - focal flow; and (4) Condensation of water in the clouds - focal
flow.

Figure 9. Illustration of water cycle operations

In this case study, both cloud and soil are represented by 5x5-sized cellular
spaces, which work as water stocks. Algorithm 3 presents the complete model code. All
flows defined in lines 16 to 19 have different start and end times. However, they use
equal step intervals, 1. These flows have behavior governed by exponential differential
equations defined in lines 5 to 8, whose rates are defined in lines 1 to 4.

Flow operator 1 at line 16 transfers water from the cloud to soil, simulating

rainfall. Flow operator 2 at line 17 simulates evaporation, transporting water from soil
to cloud, so that each cell receives a proportion of water proportional to the weights they

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

268

have in the neighborhood. Flow operator 3 at line 18 simulates the water surface runoff
in the soil, transporting water from a cell to its neighbors. Finally, flow operator 4 at
line 19 simulates the condensation of water in the cloud, transferring water from
neighboring cells to the central cell.

 Figure 10 and Figure 11 graphically display the volumes of water stored in the
cloud and soil during simulation. Arrows indicate the start points of flows between
cellular spaces. In Figure 11, precipitation during instants 2 to 7 causes ground
darkening and cloud whitening. In Figure 10, from moment 5, evaporation reduces the
slope of curves by combining its effects with the precipitation. After instant 7,
continuous evaporation causes cloud darkening and ground whitening in Figure 11. The
surface runoff (instants 15 to 19) and condensation (instants 5 to 20) make homogenous
the water stocks in the cells, observed in Figure 11.

Figure 10. Graph representing the total water quantity of the model

Figure 11. Representation of the quantity of water contained in each cell of

ground and cloud cellular spaces according to simulation time

5.3. Case study 3
Three abstract models were used to evaluate the computational efficiency of the
implementation of algebra developed in this work, all have flows based on exponential
differential equations: (1) Local - Containing a local flow; (2) Focal - Containing a focal
flow; and (3) Case Study 2 - Containing the 4 flows described in Algorithm 3.
Simulations were performed on the Ubuntu 12.04 operating system on an Intel® Xeon
(R) CPU E5620 2.40GHz x8 32GB memory. The graph in Figure 12 shows the CPU
time consumed by the simulation during model execution for cell spaces containing up
to two million cells.

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

269

Figure 12. (a) CPU chart for simulations of large cell spaces

6. Final considerations
This paper proposes an algebra for the development of spatially explicit models of
continuous changes that evolve in geographic space. This algebra extends the Systems
Dynamics paradigm by introducing a set of algebraic operations similar to those in Map
Algebra, allowing the representation of local, focal, and zonal flows. Experiments
demonstrated how the algebra can be easily used to model and simulate scenarios
containing several simultaneous and interleaved energy flows between heterogeneous
regions of space. The algebra has good expressiveness and is able to concisely represent
models where there are dependences between variables of several differential equations,
that is, feedback loops. Briefly, the algebra contributions can be listed as:

1. Allowing the definition of rules of behavior in a declarative way;
2. Providing operators that act on a high level of abstraction, which use collections

of cells as operands;
3. Allowing the representation of local, focal and zonal spatial flows;
4. Shifting the modeler's focus from model implementation to its conception and

design, since operators encapsulate implementation difficulties;
5. Allowing to model and to simulate changes involving spatiotemporal

discretizações of different scales (extent and resolution).
 These contributions facilitate the modeling and simulation of continuous spatial
changes by reducing the programming fundamentals required during model
development, reducing errors arising from implementation of feedbacks,
synchronization of simultaneous flows and mechanisms to avoid the propagation of
errors due to numerical integrations methods. The results also show that it is possible to
use personal computers to simulate flows between millions of cells in a reasonably time.
The simulation times grow linearly with the number of cells. Future work includes
evaluating the use of this algebra for modeling and simulation of other models found in
literature and improving current implementation to simulate large-scale models over
high-performance hardware architectures.

References

Aguiar, A. P. D. de, Câmara, G., Monteiro, A. M. V., Souza, R. C. M. de. (2003)
Modelling Spatial Relations by Generalized Proximity Matrices, In: V Simpósio
Brasileiro de Geoinformática – GeoInfo 2003, Campos do Jordão, SP, Brasil.

Ahmad, S., Simonovic, S.P., (2004). Spatial system dynamics: new approach for
simulation of water resources systems. J. Comput. Civil Eng. 18, 331e340.

Burrough, P.A. (1998). Dynamic Modelling and Geocomputation. In: Geocomputation:

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

270

A Primer. Edited by P. A. Longley, S.M. Brooks, R. McDonnell, B. Macmillan.
John Wiley & Sons Ltd.

Busch, J. (2013). Continuous Simulation with Ordinary Differential Equations. Seminar
paper, University of Hamburg. Department of Informatics. Scientic Computing.

Câmara, G., Palomo, D., de Souza, R. C. M., & de Oliveira, O. R. F. (2005). Towards a
generalized map algebra: Principles and data types. In GeoInfo (pp. 66-81).

Cardelli, L. (1997). Type Systems. Handbook of Computer Science and Engineering. A.
B. Tucker, CRC Press: 2208-2236.

Carneiro, t. G. S., Maretto, e. V., Câmara, g. (2008) Irregular Cellular Spaces:
Supporting Realistic Spatial Dynamic Modeling over Geographical Databases. In:
Simpósio Brasileiro de GeoInformática, Rio de Janeiro, RJ. Simpósio Brasileiro de
GeoInformática. 1: 1, 2008. v.1. p.1 - 1

Carneiro, T. G. S., Câmara, G. (2009) An Introduction to TerraME. INPE Report, 2009,
version 1.2. Available in: <http://www.terrame.org/>

Carneiro, T. G. S., DE Andrade, P. R., Câmara, G., Monteiro, A. M. V., Pereira, R. R.
(2013) An extensible toolbox for modeling nature–society interactions,
Environmental Modelling & Software, Volume 46, Agosto 2013, Pg. 104-117.

Cordeiro Cerveira, J. P., Câmara, G., Moura de Freitas, U., & Almeida, F. (2009). Yet
another map algebra. Geoinformatica, 13(2), 183-202.

Couclelis. H. (1997). From cellular automata to urban models: new principles for model
development and implementation, Environment and Planning: Planning & Design,
Vol. 24:165–174, 1997.

Egenhofer, M. J., & Herring, J. (1990). Categorizing binary topological relations
between regions, lines, and points in geographic databases. The, 9(94-1), 76.

Elsawah, S., Pierce, S. A., Hamilton, S. H., Van Delden, H., Haase, D., Elmahdi, A.,
and Jakeman, A. J. (2017). An overview of the system dynamics process for
integrated modelling of socio-ecological systems: Lessons on good modelling
practice from five case studies. Environmental Modelling and Software, 93, 127-
145.

ExtraCases (2017) Extra case study of an algebra for modeling and simulation of
continuous spatial changes. Available in: < http://bit.ly/2gCmXrg>.

Forrester, J.W. (1961) Industrial dynamics. MIT Press Cambridge, MA.
Frank, A. U. (1999). One step up the abstraction ladder: Combining algebras-from

functional pieces to a whole. In International Conference on Spatial Information
Theory, pages 95–107. Springer.

Frank, A. (2005). Map algebra extended with functors for temporal data. Perspectives in
conceptual modeling, 194-207.

Kelly, R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., ElSawah, S., Hamilton, S.
H., and van Delden, H. (2013). Selecting among five common modelling approaches
for integrated environmental assessment and management. Environmental modelling
& software, 47, 159-181.

Law, A. M. and Kelton, W. D. (2000). Simulation modeling and analysis (Vol. 3). New
York: McGraw-Hill.

Maxwell, T., and Costanza, R. (1997). An open geographic modeling environment.
Simulation, 68(3), 175-185.

Meadows, D. H. (2008). Thinking in systems: A primer. Chelsea green publishing.

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

271

Morgan, J. S., Howick, S., and Belton, V. (2017). A toolkit of designs for mixing
Discrete Event Simulation and System Dynamics. European Journal of Operational
Research, 257(3), 907-918.

Parker, D. C., T. Berger, et al. (2001). Agent-Based Models of Land-Use and Land-
Cover Change. Report and Review of an International Workshop. L. R. No.6. Irvine,
California, USA.

Sahin, O., and Mohamed, S. (2014). Coastal vulnerability to sea-level rise: a spatial–
temporal assessment framework. Natural hazards, 70(1), 395-414.

Silva, W. S. F.; Carneiro, T. G. S., (2016) An algebra for modelling the simultaneity in
agents behavior in spatially explicit social-environmental models. GeoInfo -
Brazilian Symposium on Geoinformatics.

Schmitz, O., Karssenberg, D., De Jong, K., De Kok, J. L., & De Jong, S. M. (2013).
Map algebra and model algebra for integrated model building. Environmental
modelling & software, 48, 113-128.

Schmitz, O., de Kok, J. L., & Karssenberg, D. (2016). A software framework for
process flow execution of stochastic multi-scale integrated models. Ecological
Informatics, 32, 124-133.

Swinerd, C., and McNaught, K. R. (2012). Design classes for hybrid simulations
involving agent-based and system dynamics models. Simulation Modelling Practice
and Theory, 25, 118-133.

Tomlin, C. D. (1990) Geographic Information Systems and Cartographic Modeling.
Vincenot, C. E., Giannino, F., Rietkerk, M., Moriya, K., and Mazzoleni, S. (2011).

Theoretical considerations on the combined use of system dynamics and individual-
based modeling in ecology. Ecological Modelling, 222(1), 210-218.

von Neumann, J., (1966). Theory of Self-Reproducing Automata. Edited and completed
by A.W. Burks., Illinois.

Wainer, G. A. (2009). Discrete-event modeling and simulation: a practitioner's
approach. CRC press.

Wesseling, C.G., Karssenberg, D., van Deursen, W.P.A. and Burrough, P.A., (1996),
Integrating dynamic environmental models in GIS: the development of a Dynamic
Modelling language. Transactions in GIS, 1, pp. 40-48, Link.

Proceedings XVIII GEOINFO, December 04th to 06nd, 2017, Salvador, BA, Brazil. p260-272.

272

