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Abstract. Continuous change models are commonly based on the Systems 
Dynamics paradigm. However, this paradigm does not provide support for an 
explicit and heterogeneous representation of geographic space, nor its 
topological (neighborhood) structure. Therefore, using it in modeling spatial 
changes still remains a challenge. In this context, this paper presents an 
algebra that extends the Systems Dynamics paradigm to the development of 
spatially explicit models of continuous change. The proposed algebra provides 
types and operators to represent flows of energy and matter between 
heterogeneous regions of geographic space. To this end, algebraic sets of 
operations similar to those in Map Algebras are introduced, allowing the 
representation of local, focal and zonal flows. Finally, case studies are 
presented to evaluate the usefulness, expressiveness and computational 
efficiency of the proposed algebra. 

1. Introduction 
Continuous spatial changes describe continuous flows of energy or matter between 
regions of geographic space. Although the System Dynamics paradigm (Forrester 1961, 
Meadows 2008) is widely used for modeling continuous changes, it does not provide 
support for an explicit and heterogeneous representation of geographic space and its 
topological structure (neighborhood). For this reason, it needs to be extended to 
construct spatially explicit models [Parker et al. 2001] of continuous spatial changes, as 
of interactions between society and nature. 
 In this work, the types and operators present in map algebras [Tomlin 1990, 
Karssenberg et al. 2001, Cordeiro et al. 2009, Schmitz et al. 2013] are used to extend 
the Systems Dynamics paradigm. Map algebras generally define three sets of 
operations, defined as proposed by Tomlin (1990): (a) Local operations - whose the 
value of a location in the output map is calculated from the values of that location in the 
input maps; (b) Focal operations - whose the value of a location in the output map is 
calculated from the neighborhood values of that location in the input map; And (c) zonal 
operations - whose the output values summarize values of regions (neighborhoods) 
defined on the input map. 
  Models based on Map Algebra and System Dynamics have completely different 
syntax, semantics, and execution flows, creating challenges for combining these 
paradigms. Models based on map algebras are finite sequences of algebraic expressions 
that cause discrete changes in space. The operations are performed synchronously and 
immediately, one after the other, as they appear in the model code. Models based on 
System Dynamics are formulated in terms of differential equations and use 
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infinitesimally small time-steps for numerical integration procedures [Kelly et al. 2013] 
that simulate continuous changes over time. Since in many models it is common to find 
interdependence between the several differential equations, they need to be computed 
simultaneously to avoid error propagation. Therefore, the equations are invoked 
asynchronously, that is, when they appear in the model code they are only instantiated 
and, they are executed only after all of them have been invoked. In addition, the 
combination of these paradigms needs to deal with spatio-temporal dependence 
generated by feedback loops [Schmitz et al. 2013]. Feedback loops generate data 
dependencies that need to be resolved for the coherence of simulations, that is, during 
simulations intermediate states of the variables need to be updated and consisted to 
avoid error propagation. Finally, the modeling activity requires the modeler to be a 
specialist in the model application domain and in computer programming to be able to 
code it in the form of algebraic operations or differential equations. Currently, the 
following questions remain: How to promote the expressiveness of modeling tools for 
continuous and spatially explicit change simulation? How to combine different 
behavioral, spatial and temporal representations in those tools, in a transparent way 
for the modeler?  
 In this context, this work proposes and evaluates through case studies an algebra 
for the development of spatially explicit models of continuous changes that take place in 
the geographic space. This algebra extends the Systems Dynamics paradigm with types 
and operators that allow the representation of energy and matter flows between 
heterogeneous regions of geographic space that could be connected by distinct 
topological relationships. To this end, we introduce sets of algebraic operations similar 
to those in Map Algebras, allowing the representation of local, focal and zonal flows. 
The case studies evaluate the usefulness, expressiveness and computational efficiency 
of the proposed algebra. 
 This article is structured as follows. Section 2 presents the related works. In 
section 3, the algebra is described as a generic instrument for modeling continuous 
spatial changes. Section 4 explains how the algebra works. In Section 5, we describe 
case studies of simplified models to evaluate the usefulness, expressiveness and 
computational efficiency of an implementation of this algebra in the TerraME tool 
[Carneiro et al. 2013]. Finally, the discussion of the benefits of using algebra concludes 
this work. 

2. Related work 
Most extensions of the Systems Dynamics paradigm only replicate systems-based 
models in discrete and regular partitions of space to deal with spatial changes, 
interconnecting stocks present in these models through spatial neighborhoods. All 
changes occur instantly and simultaneously (snapshot). Stocks in a locality are linked to 
stocks of same name in neighboring localities, simulating processes of spatial diffusion 
or mobility. Generally, the lateral flows are controlled by only one rate fixed by the 
modeler, with no way to represent heterogeneous lateral flows. The neighborhoods are 
of stationary topology, typically Moore or von Neumann.  This type of approach was 
called Spatial System Dynamics (SSD) [Ahmad and Simonovic 2004]. Some authors 
consider it a simplistic extension of Systems Dynamics, it has a slow execution and is 
only appropriate for feedback loops between two models [Swinerd and McNaught 2012, 
Sahin and Mohamed 2014]. Therefore, the limitation of these approaches in dealing 
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with heterogeneous, non-stationary and anisotropic spaces, under different spatial and 
temporal scales, has motivated several innovations [Elsawah et al. 2017]. The Spatial 
Modeling Environment (SME) [Maxwell and Costanza 1997] platform was pioneer in 
this sense, by representing vertical flows between diverse representations of space and 
allocating different models in different regions. To represent more complex interactions 
the literature presents approaches based on Individual-Based Modeling [Vincenot et al. 
2011], Hybrid Simulations Involving Agent-based [Swinerd and McNaught 2012] and 
Discrete Event Simulation [Morgan et al. 2017].  
 On the other hand, several papers propose generalizations and extensions of Map 
Algebra to represent spatial processes. Camara et al. (2005) present a generalized Map 
Algebra that uses spatial topological and directional predicates. Frank (2005) discusses 
how Map Algebra can be formalized for programming, extending it to deal with 
spatiotemporal data. Cordeiro et al. (2009) extend the Map Algebra by proposing the 
concept of Geoalgebra with generalizations for describing layers, regions, 
neighborhoods and zones. Schmitz et al. (2013) combine the concepts of Map Algebra 
and Model Algebra for the coupling of model components. Camara et al. (2014) 
introduce the concept of Fields for representations of continuous spatiotemporal 
variables, demonstrating its use in the construction of a novel Map Algebra. Silva and 
Carneiro (2016) developed an algebra for models based on spatially explicit agents. 
However, the authors of this work have not found in the literature algebras that extend 
the System Dynamics paradigm to operate directly on maps, or that extend Map Algebra 
to represent continuous flows of energy or matter. 
 PCRaster approach extends map algebra for the development of spatio-temporal 
environmental models [Burrough 1998, Wesseling et al. 1996]. However, it does not 
explicitly represent the flow operator from System Dynamic Theory in its algebra. It is 
assigned to the modeler the responsibility to implement a set of operations (map = map  
+/- change()) to simulate outflows from one storage or/and inflows to another. Those 
operations are interpreted as difference equations computed only once at each 
simulation time step, no numerical integration methods are applied. In contrast, we 
propose an extension of System Dynamic Theory to the development of geospatial 
models, with an explicit representation of flow operations, reducing the modeler 
responsibility of properly implement, simulate and compute flows of energy. 
 Regarding usability, Frank (2005) and Silva and Carneiro (2016) describe 
algebras as facilitators for model specification, since modelers did not need to become 
experts in different languages and modeling tools to describe models. The use of a given 
algebra allows the description of model components focused on the model objectives 
and not on its implementation [Schmitz et al. 2013]. Cardelli (1997) reinforces the idea 
that simplifications in models reduce the effort to understand it by future applications 
and prevent possible mistakes made by users. Frank (2005) says that the descriptions of 
algebra processing steps can be formalized and optimized. Finally, Schmitz et al. (2013) 
present evidence that the automation of the interaction routines between space regions, 
through algebra native operators guarantees the integrity and improves the readability of 
the models. 
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3. Types of Algebra Operators 
The algebra proposed in this work is a generic tool for modeling continuous spatial 
changes, it can be implemented in several tools and languages according to the ideas 
presented in Silva and Carneiro (2016). Here, algebra components are specified from 
abstractions of their operators [Frank 1999]. 

 The algebra operators act over spatial types that represent stocks of energy or 
matter (attributes) localized in the geographical space. Space topology (neighborhood 
and proximity relations) is also represent allowing diffusive flows. Operators are 
subdivided into creation operators, responsible for creating and relating types, and flow 
operators, responsible for defining how changes occur (behavioral rules) in relation to 
time and space. Finally, the execution of operator coordinates the simultaneous and 
interleaved execution of changes during simulation.  

3.1. Spatial types 
There are four spatial types present in the algebra: Cells, CellularSpaces, Trajectories 
and Neighborhoods. There are two basic spatial types (Figure 1 (a)): cell and 
neighborhood. A Cell represents the stocks of a space location and contains a list of 
attributes and a list of neighboring cells. Neighborhoods represent the space 
connectivity and can represent areas of influence, adjacency or proximity relations. 
Moore and von Neumann [Couclelis 1997] neighborhoods are often used for spatially 
explicit modelling. 

 CellularSpaces and Trajectories are collections (Figure 1 (b)), that is, they 
represent sets of entities of the same type, in this case cells. CellularSpaces represent 
regions in the geographic space. All cells in a CellularSpace are composed by the same 
set of attributes, which can assume distinct values during simulation. Trajectories are 
collections that select and order cells from a CellularSpace, allowing the modeler to 
filter the cells on which operators must focus and to establish the order in which those 
operators must traverse the CellularSpace performing changes. 

Cell: (name, attributes, neighbors) 
● name : String 
● attributes: [Attribute] 
● neighbors: SpatialNeighborhood 

 
SpatialNeighborhood : (type, d, self, cells) 

● type: String 
● d: (width: Number, lenght: Number) 
● self: Boolean 
● cells: [Cell] 

CellularSpace: (cells, dimension) 
● cells: [Cell] 
● dimension: (width: Number, lenght: Number) 

 
Trajectory: (cs, selectFunction, sortFunction, cells) 

● cs: CellularSpace 
● selectFunction: Boolean Function (Cell) 
● sortFunction: Boolean Function(Cell, Cell) 
● cells:[Cells] 

Figure 1. (a) Definition of the neighborhood cell; (b) Definition of collections. 

3.2. Creation Operators 
Creation operators are intended to ensure that all basic types belong to, at least, one 
collection. In this way, after creating basic types, the modeler needs to relate them to a 
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collection in order to use than as operands in other operators. Figure 2 presents the 
definition of creation operators. 

The CellularSpace creation operator uses a Cell instance that provides the 
archetype for cloning the other cells it aggregates, the size of the CellularSpace 
determines the number of Cells that will be created. A SpatialNeighborhood is created 
from a CellularSpace, the type and dimensions of the neighborhood (leght, width), and 
from the definition of whether or not the cells are self-contained in their own 
neighborhood structures. 
createCell: Cell Function (name, attributes) 

● name : String 
● attributes: [Attribute] 

 

createCellularSpace: CellularSpace 
Function(cell, dimension) 

● cell: Cell 
● dimension: (width: Number, lenght: 

Number) 

createTrajectory: Trajectory Function(cs, select, sort) 
● cs: Cellular Space 
● select: Boolean Function(Cell) 
● sort: Boolean Function(Cell, Cell) 

createSpatialNeighborhood: SpatialNeighborhood Function(cs, type, d, self) 
● cs: CellularSpace 
● type: String 
● d: (width: Number, lenght: Number) 
● Self: Boolean 

Figure 2. Definition of creation operators 

3.3. Flow operator 
In this algebra, the Flow operators (FLOW) use only collections (CellularSpace and 
Trajectory) as operands. It (Figure 3) represents continuous transference of energy 
between regions of space. The differential equation supplied as the first operator 
parameter determines the amount of energy transferred between regions.  

FLOW (f(), a, b, step, Collection1, “Attribute”, “Neight1”, Collection2, “Attribute”, “Neight2”) 
● f(): Differential equation that describes, as a function of one or two parameters, the rate of change (point derivative) of 

energy f (t, y) at time t, where t is the simulation current instant time, and y is the past value of the rate of change f (). 
● a: Number - Beginning of the integration interval. 
● b: Number - End of integration interval. 
● step: Number - An infinitesimal time interval used in numerical integration. 
● Collection1: Cellular Space or Trajectory - A collection of cells that will be used to calculate and subtract flow output. 
● Attribute1: String - Name of the attribute of the cells contained in the collections over which the flow will operate. 
● Neight1: Neighborhood - Neighborhood name defined on the source collection of the energy flow. Optional. 
● Collection2: Cellular Space or Trajectory - Target collection of energy flow. 
● Attribute2: String - Name of the attribute of the cells contained in the collections of the energy flow. 
● Neight2: Neighborhood - Neighborhood name defined over the recipient collection of the energy flow. Optional. 

Figure 3. Flow Operator Definition 

 Flow operations are classified as local, focal and zonal [Câmara et al. 2014] and 
their semantics depend on the parameters reported at the moment they are invoked, as 
described in Table 1 and illustrated in Figure 4. 
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Figure 4. Flow operator examples between two colections 

Table 1 - Behavior rule, syntax and semantic definition of the flow operator 

RULE SYNTAX SEMANTICS 
Flow local execution  
 
Rule: From Cell To Cell 

flow(Collection, Collection) 
● Collection  
● Collection 

Each cell in a cellular space transfers part of its attribute stock at 
a rate defined by f (t, y) to the spatially corresponding cell 
attribute of another cellular space, Figure 4 (a). Example: 
precipitation of cloud water to ground. 

Flow focal execution 
 
Rule: From Cell To 
Neigth Of Cell 

flow(Collection, Collection, Neigth) 
● Collection 
● Collection 
● Neight  

Each cell in a cellular space transfers part of its attribute stock at 
a rate defined by f (t, y) to the attributes of cells in the 
neighborhood of the spatially corresponding cell of another 
cellular space, Figure 4 (b). Example: Heat dispersion in fire 
propagation modeling.  

Flow focal execution 
 
Rule: From Neight Of 
Cell To Cell 

flow(Collection, Neight, Collection) 
● Collection 
● Neight 
● Collection 

Each cell from neighborhood of a cell in a cellular space 
transfers part of its attribute stock at a rate defined by f (t, y) to 
the cell attribute spatially corresponding to the central cell of the 
neighborhood of another cellular space, Figure 4 (c). Example: 
Condensation of water in clouds. 

Flow execução zonal 
 
Rule: From Selected 
Cell To Cell 

flow(Trajectory, Collection) 
● Trajectory 
● Collection 

Each cell in a trajectory transfers part of its attribute stock at a 
rate defined by f (t, y) to the spatially corresponding cell 
attribute of another cellular space, Figure 4 (d). Example: 
Evaporation of water from a river to clouds. 

 Flows from the collection A to the collection B are calculated only for cells in 
intersection A ∩ B. Figure 5 illustrates the possible topological relations between 
collections and the Flow operator semantics, named by Egenhofer and Herring (1993) 
as: a. equal, b.contains, c.inside and d.overlap. 

 
Figure 5. Venn diagram of the topological relation between two collections 

 Due to space restrictions, the semantics of some Flow operators are not detailed 
in the Table 1, such as flows between distinct trajectories (zonal - example: flow of 
water from the mainland to the ocean at a beach), or flows from a trajectory to its 
neighborhood (zonal and focal composition - example: heat flowing from fire border), 
among others. In the Flow operator, it is possible to construct several combinations of 
collection and neighborhood parameters, both in the source or destination of flows. 

3.4. Execute operator 
The Execute operator described in Figure 6 starts the simulation execution. The 
simulation will run until the simulation clock reaches the time received as parameter 
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(finalSimulationTime). All flows have the definition of its integration interval, defined 
by the lower time and upper time limits. The lowest time limit for all flows is used as 
the initial simulation time. 

Execute : (finalSimulationTime) 
● sinalSimulaionTime: Number 

Figure 6. Definition of the execution operator 

4.  Simulation execution and its implementation in TerraME 
The proposed algebra simulator was implemented based on the temporal types of the 
TerraME platform: Timer and Event (Figure 7). Timer is a discrete event scheduler that 
operates according to Discrete Event Driven Simulation (DEVs) [Wainer 2009]. It 
maintains a queue of chronologically ordered events and the current time record of the 
simulation. Events are instants in the simulated time in which the modeler the TerraME 
platform performs input and output operations, or computations defined by the modeler. 
Events are defined by the instant, periodicity, final instant, and action parameters. The 
instant parameter determines the moment in the simulation in which the event must 
occur, triggering an action defined by the modeler. The periodicity determines the 
instant that the event will occur again. The final instant (finalInstant) determines when 
the event will cease to occur. The action is a function that implements the behavioral 
rules of the model or commands for TerraME to load, view, and store data. The return 
value of an action is used as a stop condition, if true the event returns to the Timer 
queue at the position determined by its periodicity (event.instant = event.instant + 
event.periodicity), otherwise the event is permanently canceled.  

Event : (instant, finalInstant, periodicity, action) 
● instant: Number 
● finalInstant: Number 
● periodicity : Number 
● action: Boolean Function(Event) 

Timer : (currentTime, eventQueue) 
● currentTime: Number 
● eventQueue: [Event] 

Figure 7. Definition of temporal types 

 During the simulation, the events are removed from the queue, the simulation 
current time is updated (currentTime = event.instant), and then the event action is 
performed. Eventually, the event will be rescheduled if its action returns true. 

 At the beginning of the simulation, all collections created by the modeler are 
synchronized through the TerraME's synchronize() function. That is, temporary copies 
of all cells in each collection are created, recording their immediate state. During the 
simulation, all readings are performed on the temporary copies of the attributes and the 
writes are performed directly on the attributes. This strategy ensures that all 
computations start from the same shared and consistent value, ensuring consistency of 
the simulations. 

 The flow operator is implemented according to Algorithm 1 that evolves in two 
stages: (1) Flow Execution - Behavioral rules (BehavioralRules) are executed, that is, 
TerraME iterates over all cells of the involved collections, applying the differential 
equations (flows) defined by the modeler that receive the temporary values as 
parameters, the results of the equations are written directly on the attributes of cells; (2) 
Synchronization - Temporary copies of the cells of the collections affected by the flow 
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are updated instantly, causing the changes to be persisted and to be noticed by the next 
computations. All events present in the algorithm remain re-queued until the end time of 
the simulation is reached (timer.currentTime == finalSimulationTime). 

 

5. Case study 
Three case studies are used to evaluate the usefulness, expressiveness, and 
computational efficiency of the TerraME implementation. Case study 1 uses a simplistic 
"Hello World" model to simulate fire propagation in a forest. Case study 2 simulates the 
water cycle exemplifying operations frequently used in the representation of continuous 
spatial changes. The case study 3 evaluates the response time of the simulator 
implemented in this work. More detailed descriptions, as well as other examples and 
codes for reproduction of case studies can be found in [ExtraCases 2017]. 

5.1. Case Study 1 
Fire Spread model is composed of a cellular space (lines 3-4) and a von Neumann 
neighborhood (line 5) through which fire will propagate. Each cell has the attribute heat 
that represents the thermal energy stored in it, initially equal to 0 (green). A cell is 
considered to be burning (brown) if its stock is greater than zero. A random fire starting 
point is created (line 6), whose value is 1. The flow operator (line 7) simulates heat 
going from burning cells to their neighbors according to the exponential differential 
equation defined in line 2. Figure 8 shows a series of images with the simulation result. 

 

 
Figure 8. Heat spread over the cellular space. Green (inert), Brown (Burning). 
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5.2. Case Study 2 
The simplified water cycle model (Figure 9) is composed of four flow operations: (1) 
Cloud water precipitation to the soil - local flow; (2) Evaporation of soil water to the 
clouds (with water vapor dispersion) - focal flow; (3) Surface runoff of soil water 
through neighborhood - focal flow; and (4) Condensation of water in the clouds - focal 
flow. 

 
Figure 9. Illustration of water cycle operations 

In this case study, both cloud and soil are represented by 5x5-sized cellular 
spaces, which work as water stocks. Algorithm 3 presents the complete model code. All 
flows defined in lines 16 to 19 have different start and end times. However, they use 
equal step intervals, 1. These flows have behavior governed by exponential differential 
equations defined in lines 5 to 8, whose rates are defined in lines 1 to 4. 

 
Flow operator 1 at line 16 transfers water from the cloud to soil, simulating 

rainfall. Flow operator 2 at line 17 simulates evaporation, transporting water from soil 
to cloud, so that each cell receives a proportion of water proportional to the weights they 
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have in the neighborhood. Flow operator 3 at line 18 simulates the water surface runoff 
in the soil, transporting water from a cell to its neighbors. Finally, flow operator 4 at 
line 19 simulates the condensation of water in the cloud, transferring water from 
neighboring cells to the central cell. 

 Figure 10 and Figure 11 graphically display the volumes of water stored in the 
cloud and soil during simulation. Arrows indicate the start points of flows between 
cellular spaces. In Figure 11, precipitation during instants 2 to 7 causes ground 
darkening and cloud whitening. In Figure 10, from moment 5, evaporation reduces the 
slope of curves by combining its effects with the precipitation. After instant 7, 
continuous evaporation causes cloud darkening and ground whitening in Figure 11. The 
surface runoff (instants 15 to 19) and condensation (instants 5 to 20) make homogenous 
the water stocks in the cells, observed in Figure 11. 

 
Figure 10. Graph representing the total water quantity of the model 

 
Figure 11. Representation of the quantity of water contained in each cell of 

ground and cloud cellular spaces according to simulation time 

5.3. Case study 3  
Three abstract models were used to evaluate the computational efficiency of the 
implementation of algebra developed in this work, all have flows based on exponential 
differential equations: (1) Local - Containing a local flow; (2) Focal - Containing a focal 
flow; and (3) Case Study 2 - Containing the 4 flows described in Algorithm 3. 
Simulations were performed on the Ubuntu 12.04 operating system on an Intel® Xeon 
(R) CPU E5620 2.40GHz x8 32GB memory. The graph in Figure 12 shows the CPU 
time consumed by the simulation during model execution for cell spaces containing up 
to two million cells. 
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Figure 12. (a) CPU chart for simulations of large cell spaces 

6. Final considerations 
This paper proposes an algebra for the development of spatially explicit models of 
continuous changes that evolve in geographic space. This algebra extends the Systems 
Dynamics paradigm by introducing a set of algebraic operations similar to those in Map 
Algebra, allowing the representation of local, focal, and zonal flows. Experiments 
demonstrated how the algebra can be easily used to model and simulate scenarios 
containing several simultaneous and interleaved energy flows between heterogeneous 
regions of space. The algebra has good expressiveness and is able to concisely represent 
models where there are dependences between variables of several differential equations, 
that is, feedback loops. Briefly, the algebra contributions can be listed as: 

1. Allowing the definition of rules of behavior in a declarative way; 
2. Providing operators that act on a high level of abstraction, which use collections 

of cells as operands; 
3. Allowing the representation of local, focal and zonal spatial flows; 
4. Shifting the modeler's focus from model implementation to its conception and 

design, since operators encapsulate implementation difficulties; 
5. Allowing to model and to simulate changes involving spatiotemporal 

discretizações of different scales (extent and resolution). 
 These contributions facilitate the modeling and simulation of continuous spatial 
changes by reducing the programming fundamentals required during model 
development, reducing errors arising from implementation of feedbacks, 
synchronization of simultaneous flows and mechanisms to avoid the propagation of 
errors due to numerical integrations methods. The results also show that it is possible to 
use personal computers to simulate flows between millions of cells in a reasonably time. 
The simulation times grow linearly with the number of cells. Future work includes 
evaluating the use of this algebra for modeling and simulation of other models found in 
literature and improving current implementation to simulate large-scale models over 
high-performance hardware architectures. 
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