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Abstract. One product of the MODIS sensor (Moderate Resolution Imaging 
Spectroradiometer) is the EVI2 (Enhanced Vegetation Index). It generates 
images of around 23 observations each year, that combined can be interpreted 
as time series. This work presents the results of using two types of features 
obtained from EVI2 time series: basic and polar features. Such features were 
employed in automatic classification for land cover mapping, and we 
compared the influence of using single pixel versus object-based observations. 
The features were used to generate classification models using the Random 
Forest algorithm. Classes of interest included Agricultural Area, Pasture and 
Forest. Results achieved accuracies up to 91,70% for the northern region of 
Mato Grosso state, Brazil.  

1. Introduction 
Since the 50s, Amazon's occupation was characterized by expanding the agriculture 
frontier, which resulted in extensive and accelerated transformations. This period was 
marked by high and continuous deforestation rates, especially in the areas located in the 
so-called “arc of deforestation” (BECKER, 1990, 2009). Currently, in the Amazon, 
large areas of pasture, agriculture, reforestation and secondary vegetation can be found 
and much of the primary forest is limited to protected areas (BECKER, 2009). 

Due to its complexity, there is still no complete understanding of the dynamic of 
landscape evolution in the Amazon region. This is because of the great heterogeneity of 
land use and occupation since the implementation of old governmental colonization 
projects and new federal infrastructure projects. To help in understanding the Amazon 
landscape, INPE (Brazil's National Institute for Space Research), in partnership with 
EMBRAPA (Brazilian Agricultural Research Corporation), produces land cover data 
about Legal Amazon, in a project known as TerraClass – mapping of land use and land 
cover change in legal Amazon deforested areas (COUTINHO et al., 2013). TerraClass 
presents to the society information related to which are the current main activities 
(spatially and numerically) in deforested areas in a specific year. TerraClass information 
is currently available for years 2008, 2010 and 2012.  

To achieve the proposed goal, most of the TerraClass interpretation and 
classification is done visually and manually, which is a very time consuming task. The 
annual agriculture mapping of TerraClass is based on an automatic method, which used 
minimum and maximum values of NDVI (Normalized Difference Vegetation Index) 
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time series. In agricultural areas, vegetation indices present low values in the beginning 
of agricultural cycle and high values in vegetation peaks. The difference between these 
two moments above a certain limit corresponds to agriculture pattern (ADAMI et al., 
2015). Although there are some efforts to automate its methodology, there is still space 
to study more adequate data and methods to improve automatic classification results. 

Since the 70s, acquisition data through remote sensing is a practice of 
increasingly importance and, more and more, is becoming fundamental in the 
knowledge of Earth's phenomena. Interpreting these phenomena only by in situ 
observations would require such an amount of resources (human, time and money).  

Remote sensors, like MODIS (Moderate Resolution Imaging 
Spectroradiometer), have been responsible for systematically collect images of Earth, 
which can be converted into image time series (VUOLO, 2012). MODIS products 
include vegetation indices, capable of providing spatial and temporal comparisons of 
global vegetation conditions. The well-known vegetation indices available are the 
NDVI and the EVI2 (Enhanced Vegetation Index). NDVI is more sensitive to the 
presence of pigments such as chlorophyll, while EVI2 is related to changes in canopy 
structure, such as Leaf Area Index (LAI), vegetation type and vegetation physiognomy 
(HUETE et al., 2002). For this reason, the study of EVI2 time series also allows to 
obtain information about soil cover. 

One of the techniques used to manipulate large amount of observations present 
in a time series is data mining. Data mining consists of a supporting tool, through the 
discovering of correlations, patterns and trends in data, combining technologies of 
pattern recognition, mathematics and statistics (LAROSE, 2014). Such techniques have 
already been employed in remote sensing, combining data mining techniques and 
vegetation indices time series.  

Costa et al. (2015) used EVI data to differentiate pasture and native grassland in 
the Brazilian biome named Cerrado, comparing Support Vector Machine, Multilayer 
Perceptron and Autoencoder algorithms. Others efforts to classify land cover in 
Amazon include the use of Naïve Bayes, Nearest Neighbor and Optimum Path Forest 
algorithms (NOMA et al., 2013; BARBOSA ET AL., 2015). Random Forest algorithm 
is not so usual in  remote sensing applications, but it is a powerful machine learning and 
it as expanding its applicability in land studies by remote sensing (RODRIGUEZ-
GALIANO et al., 2012), even using vegetation indices data (NITZE et al., 2015) for 
image acquisition optimization for land cover classification.  

Time series can be related to land patterns using feature extraction (GALFORD 
et al., 2008). There are several types of features, such as basic and polar features 
(KÖRTING, 2012), that can be combined to assist in classification models. Thus, this 
work aims to generate classification models to detect land cover testing different time 
series features, in a test area in northern Mato Grosso state, Brazil, which belongs to the 
arc of deforestation. 

2. Methodology 

In Figure 1 we present a flowchart of the employed methodology, which will be better 
explained as follows. 
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Figure 1. Methodology flowchart 

2.1. Study Area 
The study area (Figure 2) chosen for this work is the path-row 227-068 of TM sensor 
Landsat 5 satellite. The scene is located in the northern Mato Grosso (MT), Brazil and 
covers part of eight municipalities: Juara, Nova Canaã do Norte, Itaúba, Tabaporã, Porto 
dos Gauchos, Itanhangá, Ipiranga do Norte and Sinop. The scene belongs to the 
agriculture frontier in the arc of deforestation. MT is one of the three Brazilian states 
with the largest deforested area in the Amazon (MARGULIS, 2003).  

 
Figure 2. Study area: TM sensor (Landsat 5) path-row 227-068. 
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2.2  Time Series Extraction 

The data used in our experiments was obtained from the modified 2-band EVI2 
(Equation 1) from the product MOD13Q1 of MODIS sensor, with spatial resolution of 
250 meters and temporal resolution of 16 days (SOLANO et al., 2010).  

2 = 2.5



                                                (1) 

where  is the Near Infra-red reflectance and   is the reflectance of the red band.                
Because of its temporal resolution, EVI2 generates cycles of around 23 

observations each year, that combined can be interpreted as time series. The 46 (23 for 
2008 and 23 for 2010) EVI2 images were downloaded from 
http://earthexplorer.usgs.gov/. For each year, images were ordered by time (Figure 3) 
and time series were composed for each pixel. 

 
 Figure 3. Per-pixel feature extraction and time series composition (Adapted 
from Eklundh & Jönsson, 2012). 

2.3 . Feature Extraction  

Two approaches were used: per pixel, where each pixel has its respective time series, 
and object-based. Using objects means that the imagery was partitioned into 
homogeneous regions, so spatial, spectral and temporal characteristics can be included 
in the analysis (HAY & CASTILLA, 2006). In this work, objects from TerraClass were 
used to group pixels with similar behavior and their time series were represented by the 
average of all-time series of pixels present in each object. Since TerraClass information 
is available for years 2008 and 2010 (also 2012), we used time series from the years 
2008 and 2010 in our analysis.  

With temporal resolution of 16 days and spatial resolution of 250 m, EVI2 data 
from MODIS generates cycles of around 23 observations each year, that combined can 
be interpreted as time series. Several features can be extracted from each time series. In 
this work, two groups of features were extracted, according to the methodology 
proposed by Körting (2012): the so called basic and polar features. Basic features 
includes statistical measures such as mean, standard deviation, minimum and maximum 
values of the curve (Figure 4).  
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Figure 4. Example of basic features representation. 

Many natural phenomena can be represented by cyclical patterns, such as 
agriculture. Cycles can be characterized by rise and fall oscillations in series. To support 
the cycles visualization, a way of plotting was proposed, adapted from Edsall et al. 
(1997), where each cycle value is projected in angles in the interval 0,2 (Figure 3) 
(KÖRTING, 2012). This projection generates an object with a closed contour, whose 
properties can represent some specific behavior of the original time series.  

  

Figure 5. Example of a cycle in a time series. On left, one time series example. 
On the right, its polar representation according to Körting (2012).  

From the polar visualization of these objects, several features can be generated 
such as eccentricity, angle of orientation, area per season and others. Both basic and 
polar  features are described in the Table below. 

Table 1. Description of basic and polar features from time series. 

Name Description Type Range 
 Amplitude The difference between the cycle’s maximum and 

minimum values. A small amplitude means a stable 
cycle. 

Basic [0, 1] 

 Area Area of the closed shape. A higher value indicates a 
cycle with high EVI values. 

Polar ≥0 

 Area per Season Partial area of the closed shape, proportional to a 
specific quadrant of the polar representation. High 
value in the summer season can be related to the 

Polar ≥0 
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phenological development of a cropland. 
 Circle Returns values close to 1 when the shape is more 

similar to a circle. In the polar visualization, a circle 
means a constant feature. 

Polar [0, 1] 

 Cycle’s maximum Relates the overall productivity and biomass, but it is 
sensitive to false highs and noise. 

Basic [0, 1] 

 Cycle’s mean Average value of the curve along one cycle. Basic [0, 1] 
 Cycle’s minimum Minimum value of the curve along one cycle. Basic [0, 1] 
 Cycle’s std Standard deviation of the cycle’s values. Basic ≥0 
 Cycle’s sum When using vegetation indices, the sum of values 

over a cycle means the annual production of 
vegetation. 

Basic ≥0 

 Eccentricity Return values close to 0 if the shape is a circle and 1 
if the shape is similar to a line. 

Basic [0,1] 

 First slope 
maximum 

It indicates when the cycle presents some abrupt 
change in the curve. The slope between two values 
relates the fastness of the greening up or the 
senescence phases. 

Basic [-1, 1] 

 Gyration radius Equals the average distance between each point 
inside the shape and the shape’s centroid. Smaller 
values stand for shapes similar to a circle. 

Polar ≥0 

 Polar balance The standard deviation of the areas per season, 
considering the 4 seasons. Small value point to 
constant cycles, e.g. the EVI of water (with a small 
Area), or forest (with a medium Area). 

Polar ≥0 

2.4. Samples Selection, Classification and Evaluation 
After the feature extraction, the automatic classification was made on software WEKA 
3.6 (HALL et al., 2009). We used the Random Forest algorithm, which creates a set of 
decision trees used to classify the full data set. The use of this algorithm in remote 
sensing applications is relatively new, but it has proven to be powerful in land-cover 
classification (RODRIGUEZ-GALIANO et al., 2012). The number of decision trees to 
be used is defined by the domain's expert. In our experiments we defined this parameter 
empirically, based on the accuracy of results and the time needed (computational cost) 
to classify all data. Models were built using training samples from the year 2008 and 
reevaluated in 2010. To evaluate the classification accuracy in 2008, we divided the 
samples in two subsets. 66% of the data was used for training and 34% was used for 
testing.  Three interest classes were discriminated: Forest, Pasture and Agriculture.   

In the Random Forest algorithm, data are partitioned randomly in many subsets 
by the Bootstrap technique (resampling with replacement), in which some records may 
appear several times in the same subset while others do not appear even once. Each 
subset generates a decision tree and all the decision trees have a vote with a certain 
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weight to contribute in the decision about the class that will be assigned to the object 
(HAN et al., 2011). 

We also tested different combination of features: 
 • Time Series, Basic Features and Polar Features; 
 • Basic and Polar Features; 
 • Time Series and Basic Features; 
 • Time Series and Polar Features; 
 • Only Time Series; 
 • Only Basic Features; 

  • Only Polar Features. 
The classification generated by TerraClass is based on the interpretation of 

Landsat TM scenes, therefore objects from TerraClass were produced at the scale of 
30m, differently from our input data from MODIS, whose spatial resolution is 250m. 
Land cover patterns from TerraClass include Annual Agriculture, Clean Pasture, Dirty 
Pasture, Forest, Urban Area, Mining, Occupation Mosaic, Regeneration with Pasture, 
Reforestation, Non Forest, Hydrography and Secondary Vegetation. Since there are 
different types of pasture, and also other classes which are unable to be recognized in 
MODIS spatial resolution, it was necessary to made some masking and a 
reclassification, where “Clean Pasture” and “Dirty Pasture” became a single class 
named Pasture. At Table 2, the reclassification made in TerraClass data to facilitate the 
comparison with the automatic classification. Those classes included in “Others” were 
not analyzed in the automatic classification, therefore their pixels were masked. Then it 
was considered that the image is composed only by the three targets of interest. 

Table 2. Reclassification of TerraClass data for validation 

TerraClass Reclassification 
Annual Agriculture Agriculture 

Clean Pasture Pasture Dirty Pasture 
Forest Forest 

Urban Area 

Others 

Mining 
Occupation Mosaic 

Regeneration with Pasture 
Reforestation 
Non Forest 

Hydrography 
Secondary Vegetation 

To test the model accuracy, we used evaluation and performance measures. As 
an evaluation measure of classification, one Error Matrix per year was generated for 
each approach. 
 
 

Proceedings XVI GEOINFO, November 29th to December 2nd, 2015, Campos do Jordão, Brazil. p 174-185.

180



3. Results and Discussion 
The behavior of EVI2 time series in the study area can be seen in Figure 6, by pixel and 
object-based approach. These curves were generated with the mean of all the pixels or 
object time series for each class. High EVI2 values are observed on the periods between 
January and April, as well between October and December. This behavior reflects what 
is expected for the vegetation on this region, according to the annual seasonality, 
decreasing in greenness through the dry season and increasing during the rainy season, 
with an annual mean of 0.46 EVI2 and a maximum around 0.6 EVI2. The agriculture 
system had a more complex behavior, showing peaks next to 0.7 EVI2 between 
December – January, and March – April, and higher standard deviation (0,2).  Similar 
values were found by Galford et al. (2008) in a study for detect croplands in Mato 
Grosso using time series wavelet analysis. In the Figure 6a we can see a more constant 
behavior in forest, around 0.5 EVI2, while in Figure 6b we observe that the forest mean 
temporal behavior was similar to pasture. 

 
Figure 6. (a) EVI2 time series of both target by pixel based, with 65897, 219069 
and 100335 for pasture, forest and agriculture respectively. (b) EVI2 time series 
of both target by object based approach, using 1685 segments for pasture, 
1402 for forest and 492 for agriculture. 

In our first experiment, resumed in Table 3, we tuned the Random Forest 
algorithm, by finding the best number of decision trees to be used. These performances 
were observed utilizing the full data (time series, polar and basic features) for the year 
2008. The accuracy had little increase (less than 1%) while increasing the Number of 
Trees, and the Time to Build the Model almost doubled when compared to the previous. 
Thus, such little improvement in classification associated with the higher computational 
cost do not justify the use of more trees in the model. Therefore, it was chosen the 
number of 20 decision trees in all models used in the next results. 

Table 3. Number of Trees and Performance Comparison 

Number of Trees 10 20 50 100 
Correctly Classified Instances (%) 90,97 91,3526 91,6056 91,6321 

Time to Build Model (seconds) 257,73 482,14 1182,94 1941.07 

Similarly to the obtained accuracies from Sato et al. (2013), the algorithm of 
Random Forest was satisfactory to distinguish patterns of land cover, although these 
authors have only used one Landsat image with four remote sensing products: MLME 
(Linear Spectral Mixture Model), NDVI (Normalized Difference Vegetation Index), 
NDWI (Normalized Water Index) and SAVI (Soil-Adjusted Vegetation Index). 
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The results of the second experiment are resumed in Table 4. The percentage of 
correctly classified instances for each approach shows that, in the situation studied in 
this work, both basic and polar features were efficient in distinguish Agriculture, 
Pasture and Forest, although using only the time series produced a better result 
(91,70%). All seven approaches obtained accuracies near 90%. Usually, the hit rate is 
higher in 2008, because the model was built in this year.  

Table 4. Correctly Classified Instances (%) for each approach 

 Per Pixel Object-Based 
 2008 2010 2008 2010 

Time Series, Basic 
Features and Polar 

Features 
91,35 88,39 72,62 56,82 

Basic and Polar 
Features 89,52 87,52 69,72 58,21 

Time Series and 
Basic Features 91,43 88,34 72,62 57,37 

Time Series and 
Polar Features 

91,39 88,06 72,56 57,82 

Only Time Series 91,70 88,09 72,31 54,22 

Only Basic Features 89,38 87,00 69,65 57,14 

Only Polar Features 84,84 83,33 64,96 53,77 
 

Another important aspect is the fact that classification per pixel resulted in better 
accuracies (around 90%) than object based classification (around 60%). In Figure 7, the 
reference data from TerraClass and our result using automatic classification (only time 
series) can be compared.  
 

 

Figure 7. Comparation between Automatic Classification 2010 and its reference, 
TerraClass 2010. Elements of class 'Others' were not classified. 
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To have a more specific analysis for each class of interest, at Table 5 each class 
is represented and values are referring to the average of the seven approaches. As 
noticed before, in general the classification per pixel had a better performance, however 
when we observe the class Pasture, it shows that object based approaches increased 
correctly classified instances, which means that including spatial parameter in analyzes 
should improve its  identification.  

Table 5. Correctly classified instances (%) for each interest class. 

 Per pixel Object-based 
 2008 2010 2008 2010 

Forest 95.82 92.81 37.65 20.75 
Pasture 75.43 74.4 88.14 92.09 

Agriculture 85.99 83.52 46.79 36.38 

Despite the well-known good performance of object based classifications, in this 
case Forest and Agriculture had a better identification behavior when pixels time series 
were analyzed separately. According to Seyler, (2002), Pasture is a difficult class to be 
identified by only satellite sensor data. Because of the great quantity of mixed elements 
in its composition, like grass, trees, bush and others, it was harder to characterize it only 
by its behavior in time series.  
 
4. Conclusions 
Both basic and polar features from time series were satisfactory for the identification of 
the three interest classes. Forest and Agriculture classification had a great performance 
when using per pixel strategy, while Pasture was better differentiated when the object 
based approach were used. Random Forest algorithm showed to be robust enough to 
make a good separation between EVI2 patterns.  

Although the automatic classification produced similar results to TerraClass 
data, it was inappropriate to make comparisons between mapped area for each approach 
because of the different spatial resolutions.   

In future works, it is intended to analyze new interest classes and test results of 
segmentations that can include temporality of time series.  
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