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Abstract. Map Algebra is a collection of functions for handling continuous 

spatial data, which allows modeling of different problems and getting new 

information from the existing data.  There is an established set of map algebra 

functions in the GIS literature, originally proposed by Dana Tomlin. However, 

the question whether his proposal is complete is still an open problem in 

GIScience. This paper describes the design of a map algebra that generalizes 

Tomlin’s map algebra by incorporating topological and directional spatial 

predicates. Our proposal enables operations that are not directly expressible 

by Tomlin’s proposal. One of the important results of our paper is to show that 

Tomlin’s Map Algebra can be defined as an application of topological 

predicates to coverages. This paper points to a convergence between these two 

approaches and shows that it is possible to develop a foundational theory for 

GIScience where topological predicates are the heart of both object-based 

algebras and field-based algebras.  

1. Introduction 

A map is useful metaphor for dealing with data in geographical information system 

(GIS) [Smith 1995; Egenhofer, Glasgow et al. 1999]. Of particular interest in GIS are 

maps associated to a continuous variable or to a categorical classification of space (e.g., 

soil maps). These types of maps are called ‘coverages’[Frank, Volta et al. 1992; Volta 

and Egenhofer 1993; Erwig and Schneider 2000]. Different functions on coverages such 

as overlay and reclassification have been proposed in the literature, composing a set of 

procedures called ‘Map Algebra’. They allow the user to model different problems and 

to get new information from the existing data set [Berry 1987; Frank 1987; Güting 

1988; Huang, Svensson et al. 1992]. 

 The main contribution to map algebra comes from the work of Tomlin [1990]. 

Tomlin’s model uses a single data type (a map), and defines three types of functions. 

Local functions involve matching locations in different map layers, as in “classify as 

high risk all areas without vegetation with slope greater than 15%”. Focal functions 

involve proximal locations in the same layer, as in the expression “calculate the local 

mean of the map values”. Zonal functions summarize values at locations in a layer 

contained in zones defined in another layer, as in the example “given a map of city and a 

digital terrain model, calculate the mean altitude for each city.”  

 Tomlin’s map algebra has become as a standard way of processing coverages, 

especially for multicriteria analysis. In recent years, several extensions to map algebra 
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have been proposed. These include the GeoAlgebra of Takeyama and Couclelis [1997], 

an extension of map algebra that allows for flexible definitions of neighborhoods. Pullar 

[2001] developed MapScript, a language that allows control structures and dynamical 

models to be incorporated into map algebra. Ostlander [2004] suggests how map algebra 

could be embedded in a web service. Mennis et al. [2005] propose an extension of map 

algebra for spatio-temporal data handling. Frank [2005] discusses how map algebra can 

be formalized in a functional programming context and how this approach provides 

support both for spatial and spatio-temporal operations. Nevertheless, all extensions 

share the ad hoc nature of Tomlin’s original proposal. They accept the foundations of 

Tomlin’s algebra as a basis for their work. 

 Therefore, one of the open challenges in spatial information science is to develop 

a theoretical foundation for map algebra. We need to find out if Tomlin’s map algebra 

can be part of a more general set of operations on coverages. We state these questions 

as: “What is the theoretical foundation for map algebra?” “Could this theoretical 

foundation provide support for a more generic map algebra?” 

 A second open issue involves the geometrical representations used in map algebra. 

Conceptually, map algebra could be implemented both on raster and vector 

representations [Timpf and Frank 1997]. In practice, however, we need topological and 

directional definitions suitable for using Tomlin’s algebra with vector data. The absence 

of such definitions has limited map algebra implementations to use raster 

representations. This brings about a further question: “How can we define a generalized 

map algebra suitable for both raster and vector representations?”   

 To respond to these questions, we take the topological predicates of Egenhofer 

and Herring [1991] and the directional predicates of Frank [1992] as a basis for defining 

an algebra for coverages. Since these predicates are a good foundation for spatial query 

languages, it is natural to extend them on a map algebra context. Using these predicates, 

we propose an extended map algebra that includes Tomlin’s as a subset. In what 

follows, we briefly review Tomlin’s map algebra in section 2. In section 3, we present 

our set of map algebra operations. In section 4, we show some examples of its use, 

including some functions that are not expressible in Tomlin’s work. 

2. Map algebra: a brief review 

2.1. Basic definitions 

A map is a function f: G → A, where:   

1. The domain is a two-dimensional geographical extent G ⊆ ℜ2 which matches 

the planar coordinates of a geographical region in space. The extent G is 

partitioned into disjoint regions r1,..., rn, such ∪ ri = G.   

2. The range is a set of attribute values whose domain is A.  

 For any 2D region r ⊂ G, a map returns a value f (r) = a, where a ∈ A. Note that 

this function knows how to calculate the value for any arbitrary region which is inside 

the area G. This definition of a map is general enough to include both numerical and 

categorical coverages defined in both vector and raster representations (here, we follow 

the OGC’s definition of coverage; for more details, see [OGC 1998]). 
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 There are two classes of functions in map algebra. First order functions take 

values as arguments (these are the functions associated to the map values). Higher order 

functions are functions that have other functions as arguments. Higher order functions 

are the basis for map algebra operations [Frank 1997]. Since maps are essentially first-

order functions, operations on maps are applications of higher-order functions on all 

elements of a map. An example is “classify as high risk all areas with slope greater 

than 15%”. To perform this operation, every element of a map is checked for the 

condition ‘slope > 15%’ and those that satisfy it are labeled as ‘high risk areas’.  The 

combination of the selection predicate and the classification function is the higher-order 

function. 

 There are two ways to define higher-order functions for map algebra. The first is 

to define explicitly a special set of such functions. This is the approach taken by 

functional languages [Frank, 1977]. The second is to use implicit definitions. Functions 

can act has higher-order if they are applied to all elements of a map. The first approach 

is cleaner mathematically, but the second approach is more intuitive and has been more 

often used in practice.  Examples of such functions include: 

• Single argument mathematical functions: log, exp, sin, cosine, tan, 
arcsin, arccosine, arctan, sinh, cosineh, tanh, arcsinh, 
arccosineh, arctanh, sqrt, power, mod, ceiling, floor. 

• Single argument logical function:  not. 

• Multiargument functions: sum, product, and, or, maximum, minimum, 
mean, median, variety, majority, minority, ranking, count. 

2.2. Tomlin’s map algebra 

Tomlin’s map algebra [1990] defines three types of higher-order functions for 

coverages. These functions apply a first-order function to all elements of map, according 

to different spatial restrictions: 

• Local functions. The value of a location in the output map is computed from the 

values of the same location in one or more input maps. They include logical 

expressions such as “classify as high risk all areas without vegetation with slope 

greater than 15%” (Figure 1.a). 

• Focal functions. The value of a location in the output map is computed from the 

values of the neighborhood of the same location in the input map. They include 

expressions such as “calculate the local mean of the map values” (Figure 1.b). Focal 

functions use the condition of adjacency, which matches the spatial predicate touch. 

• Zonal functions: The value of a location in the output map is computed from the 

values of a spatial neighborhood of the same location in an input map. This 

neighborhood is a restriction on a second input map. They include expressions such 

as “given a map of cities and a digital terrain model, calculate the mean altitude for 

each city” (Figure 1.c). Zonal functions use the condition of topological 

containment, which matches the spatial predicate inside. 
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a. Local functions b. Focal functions c. Zonal functions 

Figure 1. Tomlin’s higher-order functions for map algebra (source: Tomlin 
[1990]) 

3. A generalized map algebra for coverages 

This section presents a proposal that generalizes Tomlin’s algebra. Our proposal only 

considers topological and directional relations between areas. A more complete proposal 

would also include other types of relations, such as line-area and line-line relations. 

However, we consider that a map algebra based on area-area predicates to be a useful 

tool for geographical analysis. The proposed map algebra has nonspatial and spatial 

higher-order functions.  The former are equivalent to Tomlin’s local functions and use 

single values in input maps. The latter generalizes Tomlin’s focal and zonal functions 

using topological and directional predicates. 

3.1. Conventions used in the paper 

To define our map algebra, we need to define the data types and its functions. Types are 

a means of expressing abstractions in a computer language [Cardelli and Wegner 1985]. 

Types provide support for expressing abstractions by separating between specification 

and implementation. In the following definitions, we adopt some conventions: 

1. Data types, functions and instances use monospaced font. Types are in 

boldface and their instances shown in normal font. For lists associate to 

types, we use list_typename.  

2. Type definitions follow usual conventions for abstract data types. Types have 

an externally viewable set of functions and a set of axioms that are applicable 

to these functions [Guttag 1977]. 

3. Each function has a signature, given as 

    function: typeA ×××× typeB →→→→ out_type. 

TypeA and typeB are the types of the input parameters and out_type is the 

type of the output.  

4. We describe each function in pseudocode. Instructions for flow control (e.g., 

for each) are in boldface. For attribution, we use ‘:=’. For equality test, 

we use ‘==’ and the separator is ‘;’. 
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3.2. The map data type 

Our basic data type is a map. Table 1 shows the definition of the map abstract data type. 

The definition assumes the existence of basic types region, attr_domain and 
comparison. They are, respectively, a 2D region, the domain of the attribute 

associated to the map and a comparison predicate.  

Table 1. The map data type 

Type map uses region, attr_domain  

 Instances used in the description 

m: map  r: region  val: attr_domain    

Function Signature 

getregions map → list_region  

Retrieve the list of regions of a map. 

contains map ×××× region → bool  

Test if a map contains a region. 

overlaps map ×××× region → bool  

Test if a region overlaps the extent of a map. 

insert  map ×××× region ×××× attr_domain →→→→ map  

Given a value and region, insert the value in a map. The shorthand for this 

function is m[r]:= val. 

retrieve map ×××× region → attr_domain  

Given a region, get its attribute value. The shorthand for this function is 

val:= m[r].   

new → map  

Create a new map. 

add map ×××× region → map  

Adds a region to a map. 

remove map ×××× region → map  

Removes a region from a map. 

Axioms ∪(getregions (m)) == G (the extent of the map)   

The union of the regions of the map is its extent. 

 contains (m, r) == true iff r  ⊆ G  

Tests if a region is inside a map’s extent. 
 insert(m,r,val) == error iff contains (m,r) == false 

Inserting values into regions outside a map is impossible. 
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 retrieve (m,r) == error iff contains (m,r) == false 

Retrieving values from regions outside a map is impossible. 

 retrieve (insert (m, r, val), r) == value 

What is inserted can be retrieved.  

 add (m,r) == error iff ((contains (m, r) == true) or 
(overlaps (m,r) == true)) 

Planar enforcement rule: it is not possible to insert a new region whose limits 

are already partially or totally contained in a map. 

 remove (m,r) == error iff (contains (m,r) == false)  

Only regions inside the map’s extent can be removed from a map. 

 remove ((add (m, r), r) == add ((remove (m, r), r) 

Add and remove are complementary. 

 To define the map data type, we also need to address an important problem in map 

algebra: finding the correspondence between regions in two maps. Given a region in the 

output map, a map algebra operation needs to find it in the input maps. Tomlin [1990] 

implicitly assumes there is an exact matching between the input and output maps. 

Although most implementations of map algebra follow this assumption, it is too strict. 

Instead, we consider the following assumptions about regions: 

1. Each region knows its spatial reference system.  

2. Given a region, a map can answer two questions about it. First, it can find out 

if the region is inside its geographical area. If this condition is true, it can 

calculate the value of its attribute function for that region. 

3. Therefore, given a map m and a region r the function m[r] returns a value if 

and only if contains (m,r) is true.  

 These assumptions enable our proposed map algebra to handle different geometric 

representation and different scales and resolutions. Therefore, we can relax the 

assumption made by Tomlin [1990] there is an exact matching between the input and 

output maps. 

3.3. Spatial predicates  

As we show in section 2, spatial operations in Tomlin’s map algebra use only two 

topological predicates (‘touch’ and ‘inside’). We use a more general set of spatial 

predicates. For topological predicates, we take the standard set  {‘disjoint’, ‘equal’, 

‘touch’, ‘inside’, ‘overlap’, ‘contains’, ‘intersects’}, which cover all vector area-area 

relations. This set uses the 9-intersection model proposed by Egenhofer and Herring 

[1991], as adopted by the Open Geospatial consortium [OGC 1998]. For a rigorous 

definition for their application to raster representations, see [Winter 1995] and [Winter 

and Frank 2000].   

 

71



  

 

Figure 2. Topological predicates for area-area based on the 9-intersection 
matrix. Adapted from Egenhofer and Herring [1991] as adapted by the Open 

Geospatial consortium [OGC 1998] 

 The predicates in the minimal set {‘disjoint’, ‘equal’, ‘touch’, ‘inside’, ‘overlap’} 

are mutually exclusive and cover all topological cases for area-area relations [Egenhofer 

and Herring 1991]. The predicate ‘intersects’ is included for user convenience, 

following OGC’s proposal [OGC 1998]., and ‘intersects’ is defined as  

 intersects(a,b) ⇔ ! disjoint(a,b) 

 We also use the directional predicates ‘north’, ‘south’, ‘east’, ‘west’, ‘center’, 

‘northwest’, ‘northeast’, ‘southeast’, ‘southwest’, originally proposed by Frank [1992]. 

Definition of these predicates for raster data is straightforward [Winter and Frank 2000] 

(see Figure 3). For area-area vector representation, Papadias and Egenhofer [1997] 

provide a set of suitable definitions for directional predicates. Figure 4 shows examples 

of application of semantic predicates. 

 
Figure 3. Directional predicates in raster representation. Source: Winter and 

Frank [2000] 
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Figure 4. Examples of spatial predicates 

3.4. Nonspatial operations 

Nonspatial operations are higher-order functions that take one value for each input map 

and produce one value in the output map, using a first-order function as argument. They 

are the equivalent to Tomlin’s local operations (see Figure 1.a).  These operators include 

single argument functions, multiple argument functions, and a selection function, as 

described in Table 2.  

Table 2. Nonspatial operators 

Type nonspatial_operation uses map, attr_domain, func_single, 
func_multiple, comp 

(comparison is the type of comparison predicates, func_single is the type of 

single-varied functions, and func_multiple is the type of multivaried functions) 

 

Instances m1, m2: map         maplist: list_map 

r: region           reglist : list_region 

value: attr_domain  valuelist: list_attr_domain 

func1: func_single  funcn: func_multiple 

Function Signature 

single map ×××× func_single ×××× map →→→→ map 

 For all regions in the output map, find the value in the input map and calculate 

the output value:  

single (m1, func1, m2) { 

   for each r in getregions (m2) 

     if (contains (m1,r) == true) 

        m2[r]:=  func1 ( m1[r] ); 

     else 

        m2[r] := undefined;  

} 
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multiple maplist ×××× func_multiple ×××× map →→→→ map 

 For all regions in the output map, find the values in the input maps and calculate 

the output value:  

multiple (maplist, funcn, m1) { 

  for each r in getregions (m1) { 

    init valuelist; 

    for each m in maplist { 

     if (contains (m,r) == true) 

         value := m[r];  

     else  

         value := undefined; 

     add value to valuelist;  

   } 

   m1[r] := funcn (valuelist); 

} } 

select  map ×××× attr_domain ×××× comp ×××× map → map 

 For all regions in the output map, find the values in the input map and compare 

with a selected value. The resulting map will be a boolean map:  

select (map1, value, comp, map2) {  

for each r in getregions (map2) { 

    if (contains (map1, r))   

         map2[r]:= (map1[r] comp val);  

    else 

         map2[r]:= undefined; 

}} 

 Nonspatial operations have a shorthand, as shown in Table 3. We also show some 

examples of nonspatial operations in Table 4. 

Table 3. Convenience shorthand for nonspatial operators 

output_map := single_arg_function (input_map); 
// for single value functions 
 
output_map := multi_arg_function (input_map_list); 
// for multivalued mathematical functions 
 
output_map:= map1 comp map2; 
// for logical and comparison operators 
 
output_map := input_map comp value; 
// for selection operations 
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Table 4. Examples of nonspatial operators 

Informal description Map Algebra Expression 

“Find the square root of the topography 

map” 

topoSqr := sqrt (topography); 

“Find the average of deforestation in 

the last two years” 

defAve := mean (defor2004, 
defor2003); 

“Select areas higher than 500 meters” high:= (topography > 500); 

“Select areas higher than 500 meters 

with temperatures lower than 10 

degrees” 

high_cold := (topo > 500) and 
(temp < 10); 

3.5. Spatial operations 

Spatial operations are higher-order functions that use a spatial predicate. These 

functions combine a selection function and a multivalued function, with two input maps 

(the reference map and the value map) and an output map.  Spatial operations generalize 

Tomlin’s focal and zonal operations and have two parts: selection and composition.  For 

each location in the output map, the selection function applies a spatial predicate on the 

matching location in the input map. The result is a set of values that satisfy the 

predicate. The composition function uses the selected values to produce the result 

(Figure 5).   The selection function takes a region in the output map and finds the 

matching region on the reference map. Then it applies the spatial predicate between the 

reference map and the value map and creates a set of values. These values are the input 

for the multivalued function. The implicit assumption is that the geographical area of the 

output map is the same as reference map. The spatial operation is described in Table 5. 

 

 

Figure 5. Spatial operations (selection + composition). Adapted from Tomlin [1990]. 
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Table 5. Spatial operations 

Type spatial uses spat_pred, func_multiple, map 

(func_multiple is the type of multivalued functions) 

(spat_pred is the type of spatial predicates) 

 

Instances m1, refmap, m2 : map       r1, r2 : region           

v_list: list_attr_domain   func: func_multiple    

pred: spat_pred 

Function Signature 

spatial map ×××× map ×××× pred ×××× func_multiple ×××× map →→→→ map 

 Given a region in the reference map, it finds all regions in the value map 

that satisfy the spatial predicate. For all such regions, include the values 

of the attribute function in a list. The list is the input to a multivalued 

function which creates the result. 

spatial (m1, refmap, pred, func, m2) {  

  for each r in getregions (refmap) { 

     init v_list; 

     for each r1 in getregions (m1) { 

          if pred (r,r1) 

               add m1[r1] to v_list; 

     } 

     m2 [r] = func (v_list);  

} } 

  

 The spatial operations have a convenience notation shown in Table 6. 

Table 6. Convenience notation for spatial operations 

output_map:= multi_arg_function(value_map spat_pred ref_map); 

 The parameters for the spatial operations are: 

• output_map is the map to be filled with the new values. 

• multi_arg_function is a multiargument function as given in section 3.5.  

• value_map is the map whose values are used to calculate the result.  

• spat_pred is the spatial predicate (section 3.4). 

• ref_map is the reference map used as a basis for applying the spatial 

predicate.  
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4. Examples and comparison with Tomlin’s map algebra 

In this section, we give some examples and compare our proposal to Tomlin’s map 

algebra. First, we consider the operation: “Find the local sum of regions in a 

deforestation map”. In Tomlin’s algebra, this is a focal operation (Figure 1.b). 

Considering the deforestation map (defor) as input and the local sum map (lsum) as 

output, we state the operation as: 

lsum := sum (defor touch lsum); 

 

Figure 6. Local sum of deforestation  

 Note one interesting feature: the result (lsum)  is also the reference map for the 

spatial predicate (defor touch lsum). This syntax may seem odd at first sight, but 

it follows from the generality of the proposal. By taking the reference map and the result 

map to be the same, we ensure the outcome satisfies the required condition (“local 

mean”). Had we used a third map as a reference, the result would be different if this map 

would not have the same spatial partitioning as the output map.   

 A second example would be the statement “given a map of cities and a digital 

terrain model, find the average height of each city”. This is a zonal operation in 

Tomlin’s map algebra (Figure 1.c). Considering the digital terrain model (dtm_map) as 

the input map and the cities map (cities_map) as the reference, the operation is 

expressed as: 

ave_city_height := average (dtm_map inside cities_map); 

 In this case, the output map will have the same spatial partitioning as the cities 

map. For each region in the output map, the algorithm finds the matching region in the 

cities map (which is trivial), and then applies the ‘inside’ predicate between this region 

and all regions in the digital terrain model (DTM). The result will be a set of regions 

with associated values. Then, it applies a multivalued function (in this case, average) 

to get the result.  

 A third example is: “Given a map of a native reservations and a deforestation 

map, find the sum of deforestation in the native reservations”. This is also a zonal 

operation in Tomlin’s classification (Figure 1.c). Taking the map of native reservations 

(reserves) as the reference map and the deforestation map (defor) as the value map, 

we express the operation as: 
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deforRes := sum (defor inside reserves); 
  

 

Deforestation map (grid) and native 
reservations (polygons) 

 

Result (deforRes) 

Figure 7. Calculation of deforestation in native reservations 

 The above examples show how the proposed map algebra expresses the spatial 

functions of Tomlin’s map algebra, using ‘touch’ and ‘inside’. Operators that use 

topological predicates other than ‘touch’ and ‘inside’ have no equivalent in Tomlin’s 

algebra. The following are part of our map algebra and are not directly expressible by 

Tomlin’s algebra: (a) operations involving the ‘overlap’, ‘contains’ and ‘intersects’ 
predicates; (b) operations involving directional predicates.  

 One example is the statement:   “Given a map containing a road and a 

deforestation map, calculate the mean of the deforestation along the road”. We have 

this input maps: deforestation (defor) and road. We select the areas that satisfy the 

condition of intersection and take the mean of the resulting values. These steps are 

illustrated in Figure 8. The expression is  

defRoad := mean (defor intersects road); 

 

Figure 8. Calculation of the average deforestation along a  oad 
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 We present a comparison between the spatial operators and the focal and zonal 

expressions in Tomlin’s map algebra in Table 7, where some operations have no direct 

equivalent in his algebra. In fairness to Tomlin, we should remember that his proposal 

mainly considers raster representations with the same spatial resolution, where some of 

these conditions would not be relevant. For example, the ‘overlap’ predicate would not 

be applicable in his case. 

Table 7. Comparison of spatial operators with Tomlin’s map algebra 

Informal Description Generalized Map Algebra Tomlin 

“Local mean of topography” lmean:= mean (topo touch 
lmean) 

FOCALMEAN OF 
TOPOGRAPHY 

“Given a map of cities and 

a topography map, 

calculate the mean altitude 

for each city.” 

altcit:= mean (topo 
inside city) 

ZONALMEAN OF 
TOPOGRAPHY 
WITHIN CITIES  

 

“Given a set of national 

forests, calculate the 

deforestation at the edges of 

each forest” 

defBord:= sum (defor 
overlaps forests) 

(no equivalent) 

“Caculate the mean of the 

deforestation along the 

road”  

defRoad := mean (defor 
intersects road); 

 

(no equivalent) 

“Find the deforestation to 

the north of the Amazon”.  

defNorth:= sum (defor 
north amazon) 

(no equivalent) 

5. Conclusions 

This paper presents a generalized map algebra and compares it to the classical proposal 

by Tomlin. Our map algebra uses topological and directional spatial predicates. It 

expresses all Tomlin’s algebra operations and enables operations that are not directly 

expressible by his proposal. Further generalizations of the proposed algebra are possible 

by involving the full set of topological operations. The next step in our work is to 

design, implement and validate a language that supports the proposed map algebra for 

spatial databases. 

 One of the important results of our paper is to show that Tomlin’s Map Algebra 

can be seen as an application of topological predicates to coverages. Previously, 

topological operations on individual objects and those involving coverages have been 

dealt separately in GIScience theory. This paper points to a convergence between these 

two approaches and shows that it is possible to develop a foundational theory for 

GIScience where topological operations are the heart of both operations on objects and 

operations on fields. This theory would tie different types of spatial operations together 

into a single unified basis. 
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