

Towards a generalized map algebra: principles and data types

Gilberto Câmara, Danilo Palomo, Ricardo Cartaxo Modesto de Souza, Olga

Regina Fradico de Oliveira

Image Processing Division (DPI) – National Institute for Space Research (INPE)

Av dos Astronautas, 1758 – 12227-001 – São José dos Campos – SP – Brazil

{gilberto, danilo, cartaxo, olga}@dpi.inpe.br

Abstract. Map Algebra is a collection of functions for handling continuous

spatial data, which allows modeling of different problems and getting new

information from the existing data. There is an established set of map algebra

functions in the GIS literature, originally proposed by Dana Tomlin. However,

the question whether his proposal is complete is still an open problem in

GIScience. This paper describes the design of a map algebra that generalizes

Tomlin’s map algebra by incorporating topological and directional spatial

predicates. Our proposal enables operations that are not directly expressible

by Tomlin’s proposal. One of the important results of our paper is to show that

Tomlin’s Map Algebra can be defined as an application of topological

predicates to coverages. This paper points to a convergence between these two

approaches and shows that it is possible to develop a foundational theory for

GIScience where topological predicates are the heart of both object-based

algebras and field-based algebras.

1. Introduction

A map is useful metaphor for dealing with data in geographical information system

(GIS) [Smith 1995; Egenhofer, Glasgow et al. 1999]. Of particular interest in GIS are

maps associated to a continuous variable or to a categorical classification of space (e.g.,

soil maps). These types of maps are called ‘coverages’[Frank, Volta et al. 1992; Volta

and Egenhofer 1993; Erwig and Schneider 2000]. Different functions on coverages such

as overlay and reclassification have been proposed in the literature, composing a set of

procedures called ‘Map Algebra’. They allow the user to model different problems and

to get new information from the existing data set [Berry 1987; Frank 1987; Güting

1988; Huang, Svensson et al. 1992].

 The main contribution to map algebra comes from the work of Tomlin [1990].

Tomlin’s model uses a single data type (a map), and defines three types of functions.

Local functions involve matching locations in different map layers, as in “classify as

high risk all areas without vegetation with slope greater than 15%”. Focal functions

involve proximal locations in the same layer, as in the expression “calculate the local

mean of the map values”. Zonal functions summarize values at locations in a layer

contained in zones defined in another layer, as in the example “given a map of city and a

digital terrain model, calculate the mean altitude for each city.”

 Tomlin’s map algebra has become as a standard way of processing coverages,

especially for multicriteria analysis. In recent years, several extensions to map algebra

66

have been proposed. These include the GeoAlgebra of Takeyama and Couclelis [1997],

an extension of map algebra that allows for flexible definitions of neighborhoods. Pullar

[2001] developed MapScript, a language that allows control structures and dynamical

models to be incorporated into map algebra. Ostlander [2004] suggests how map algebra

could be embedded in a web service. Mennis et al. [2005] propose an extension of map

algebra for spatio-temporal data handling. Frank [2005] discusses how map algebra can

be formalized in a functional programming context and how this approach provides

support both for spatial and spatio-temporal operations. Nevertheless, all extensions

share the ad hoc nature of Tomlin’s original proposal. They accept the foundations of

Tomlin’s algebra as a basis for their work.

 Therefore, one of the open challenges in spatial information science is to develop

a theoretical foundation for map algebra. We need to find out if Tomlin’s map algebra

can be part of a more general set of operations on coverages. We state these questions

as: “What is the theoretical foundation for map algebra?” “Could this theoretical

foundation provide support for a more generic map algebra?”

 A second open issue involves the geometrical representations used in map algebra.

Conceptually, map algebra could be implemented both on raster and vector

representations [Timpf and Frank 1997]. In practice, however, we need topological and

directional definitions suitable for using Tomlin’s algebra with vector data. The absence

of such definitions has limited map algebra implementations to use raster

representations. This brings about a further question: “How can we define a generalized

map algebra suitable for both raster and vector representations?”

 To respond to these questions, we take the topological predicates of Egenhofer

and Herring [1991] and the directional predicates of Frank [1992] as a basis for defining

an algebra for coverages. Since these predicates are a good foundation for spatial query

languages, it is natural to extend them on a map algebra context. Using these predicates,

we propose an extended map algebra that includes Tomlin’s as a subset. In what

follows, we briefly review Tomlin’s map algebra in section 2. In section 3, we present

our set of map algebra operations. In section 4, we show some examples of its use,

including some functions that are not expressible in Tomlin’s work.

2. Map algebra: a brief review

2.1. Basic definitions

A map is a function f: G → A, where:

1. The domain is a two-dimensional geographical extent G ⊆ ℜ2 which matches

the planar coordinates of a geographical region in space. The extent G is

partitioned into disjoint regions r1,..., rn, such ∪ ri = G.

2. The range is a set of attribute values whose domain is A.

 For any 2D region r ⊂ G, a map returns a value f (r) = a, where a ∈ A. Note that

this function knows how to calculate the value for any arbitrary region which is inside

the area G. This definition of a map is general enough to include both numerical and

categorical coverages defined in both vector and raster representations (here, we follow

the OGC’s definition of coverage; for more details, see [OGC 1998]).

67

 There are two classes of functions in map algebra. First order functions take

values as arguments (these are the functions associated to the map values). Higher order

functions are functions that have other functions as arguments. Higher order functions

are the basis for map algebra operations [Frank 1997]. Since maps are essentially first-

order functions, operations on maps are applications of higher-order functions on all

elements of a map. An example is “classify as high risk all areas with slope greater

than 15%”. To perform this operation, every element of a map is checked for the

condition ‘slope > 15%’ and those that satisfy it are labeled as ‘high risk areas’. The

combination of the selection predicate and the classification function is the higher-order

function.

 There are two ways to define higher-order functions for map algebra. The first is

to define explicitly a special set of such functions. This is the approach taken by

functional languages [Frank, 1977]. The second is to use implicit definitions. Functions

can act has higher-order if they are applied to all elements of a map. The first approach

is cleaner mathematically, but the second approach is more intuitive and has been more

often used in practice. Examples of such functions include:

• Single argument mathematical functions: log, exp, sin, cosine, tan,
arcsin, arccosine, arctan, sinh, cosineh, tanh, arcsinh,
arccosineh, arctanh, sqrt, power, mod, ceiling, floor.

• Single argument logical function: not.

• Multiargument functions: sum, product, and, or, maximum, minimum,
mean, median, variety, majority, minority, ranking, count.

2.2. Tomlin’s map algebra

Tomlin’s map algebra [1990] defines three types of higher-order functions for

coverages. These functions apply a first-order function to all elements of map, according

to different spatial restrictions:

• Local functions. The value of a location in the output map is computed from the

values of the same location in one or more input maps. They include logical

expressions such as “classify as high risk all areas without vegetation with slope

greater than 15%” (Figure 1.a).

• Focal functions. The value of a location in the output map is computed from the

values of the neighborhood of the same location in the input map. They include

expressions such as “calculate the local mean of the map values” (Figure 1.b). Focal

functions use the condition of adjacency, which matches the spatial predicate touch.

• Zonal functions: The value of a location in the output map is computed from the

values of a spatial neighborhood of the same location in an input map. This

neighborhood is a restriction on a second input map. They include expressions such

as “given a map of cities and a digital terrain model, calculate the mean altitude for

each city” (Figure 1.c). Zonal functions use the condition of topological

containment, which matches the spatial predicate inside.

68

a. Local functions b. Focal functions c. Zonal functions

Figure 1. Tomlin’s higher-order functions for map algebra (source: Tomlin
[1990])

3. A generalized map algebra for coverages

This section presents a proposal that generalizes Tomlin’s algebra. Our proposal only

considers topological and directional relations between areas. A more complete proposal

would also include other types of relations, such as line-area and line-line relations.

However, we consider that a map algebra based on area-area predicates to be a useful

tool for geographical analysis. The proposed map algebra has nonspatial and spatial

higher-order functions. The former are equivalent to Tomlin’s local functions and use

single values in input maps. The latter generalizes Tomlin’s focal and zonal functions

using topological and directional predicates.

3.1. Conventions used in the paper

To define our map algebra, we need to define the data types and its functions. Types are

a means of expressing abstractions in a computer language [Cardelli and Wegner 1985].

Types provide support for expressing abstractions by separating between specification

and implementation. In the following definitions, we adopt some conventions:

1. Data types, functions and instances use monospaced font. Types are in

boldface and their instances shown in normal font. For lists associate to

types, we use list_typename.

2. Type definitions follow usual conventions for abstract data types. Types have

an externally viewable set of functions and a set of axioms that are applicable

to these functions [Guttag 1977].

3. Each function has a signature, given as

 function: typeA ×××× typeB →→→→ out_type.

TypeA and typeB are the types of the input parameters and out_type is the

type of the output.

4. We describe each function in pseudocode. Instructions for flow control (e.g.,

for each) are in boldface. For attribution, we use ‘:=’. For equality test,

we use ‘==’ and the separator is ‘;’.

69

3.2. The map data type

Our basic data type is a map. Table 1 shows the definition of the map abstract data type.

The definition assumes the existence of basic types region, attr_domain and
comparison. They are, respectively, a 2D region, the domain of the attribute

associated to the map and a comparison predicate.

Table 1. The map data type

Type map uses region, attr_domain

 Instances used in the description

m: map r: region val: attr_domain

Function Signature

getregions map → list_region

Retrieve the list of regions of a map.

contains map ×××× region → bool

Test if a map contains a region.

overlaps map ×××× region → bool

Test if a region overlaps the extent of a map.

insert map ×××× region ×××× attr_domain →→→→ map

Given a value and region, insert the value in a map. The shorthand for this

function is m[r]:= val.

retrieve map ×××× region → attr_domain

Given a region, get its attribute value. The shorthand for this function is

val:= m[r].

new → map

Create a new map.

add map ×××× region → map

Adds a region to a map.

remove map ×××× region → map

Removes a region from a map.

Axioms ∪(getregions (m)) == G (the extent of the map)

The union of the regions of the map is its extent.

 contains (m, r) == true iff r ⊆ G

Tests if a region is inside a map’s extent.
 insert(m,r,val) == error iff contains (m,r) == false

Inserting values into regions outside a map is impossible.

70

 retrieve (m,r) == error iff contains (m,r) == false

Retrieving values from regions outside a map is impossible.

 retrieve (insert (m, r, val), r) == value

What is inserted can be retrieved.

 add (m,r) == error iff ((contains (m, r) == true) or
(overlaps (m,r) == true))

Planar enforcement rule: it is not possible to insert a new region whose limits

are already partially or totally contained in a map.

 remove (m,r) == error iff (contains (m,r) == false)

Only regions inside the map’s extent can be removed from a map.

 remove ((add (m, r), r) == add ((remove (m, r), r)

Add and remove are complementary.

 To define the map data type, we also need to address an important problem in map

algebra: finding the correspondence between regions in two maps. Given a region in the

output map, a map algebra operation needs to find it in the input maps. Tomlin [1990]

implicitly assumes there is an exact matching between the input and output maps.

Although most implementations of map algebra follow this assumption, it is too strict.

Instead, we consider the following assumptions about regions:

1. Each region knows its spatial reference system.

2. Given a region, a map can answer two questions about it. First, it can find out

if the region is inside its geographical area. If this condition is true, it can

calculate the value of its attribute function for that region.

3. Therefore, given a map m and a region r the function m[r] returns a value if

and only if contains (m,r) is true.

 These assumptions enable our proposed map algebra to handle different geometric

representation and different scales and resolutions. Therefore, we can relax the

assumption made by Tomlin [1990] there is an exact matching between the input and

output maps.

3.3. Spatial predicates

As we show in section 2, spatial operations in Tomlin’s map algebra use only two

topological predicates (‘touch’ and ‘inside’). We use a more general set of spatial

predicates. For topological predicates, we take the standard set {‘disjoint’, ‘equal’,

‘touch’, ‘inside’, ‘overlap’, ‘contains’, ‘intersects’}, which cover all vector area-area

relations. This set uses the 9-intersection model proposed by Egenhofer and Herring

[1991], as adopted by the Open Geospatial consortium [OGC 1998]. For a rigorous

definition for their application to raster representations, see [Winter 1995] and [Winter

and Frank 2000].

71

Figure 2. Topological predicates for area-area based on the 9-intersection
matrix. Adapted from Egenhofer and Herring [1991] as adapted by the Open

Geospatial consortium [OGC 1998]

 The predicates in the minimal set {‘disjoint’, ‘equal’, ‘touch’, ‘inside’, ‘overlap’}

are mutually exclusive and cover all topological cases for area-area relations [Egenhofer

and Herring 1991]. The predicate ‘intersects’ is included for user convenience,

following OGC’s proposal [OGC 1998]., and ‘intersects’ is defined as

 intersects(a,b) ⇔ ! disjoint(a,b)

 We also use the directional predicates ‘north’, ‘south’, ‘east’, ‘west’, ‘center’,

‘northwest’, ‘northeast’, ‘southeast’, ‘southwest’, originally proposed by Frank [1992].

Definition of these predicates for raster data is straightforward [Winter and Frank 2000]

(see Figure 3). For area-area vector representation, Papadias and Egenhofer [1997]

provide a set of suitable definitions for directional predicates. Figure 4 shows examples

of application of semantic predicates.

Figure 3. Directional predicates in raster representation. Source: Winter and

Frank [2000]

72

Figure 4. Examples of spatial predicates

3.4. Nonspatial operations

Nonspatial operations are higher-order functions that take one value for each input map

and produce one value in the output map, using a first-order function as argument. They

are the equivalent to Tomlin’s local operations (see Figure 1.a). These operators include

single argument functions, multiple argument functions, and a selection function, as

described in Table 2.

Table 2. Nonspatial operators

Type nonspatial_operation uses map, attr_domain, func_single,
func_multiple, comp

(comparison is the type of comparison predicates, func_single is the type of

single-varied functions, and func_multiple is the type of multivaried functions)

Instances m1, m2: map maplist: list_map

r: region reglist : list_region

value: attr_domain valuelist: list_attr_domain

func1: func_single funcn: func_multiple

Function Signature

single map ×××× func_single ×××× map →→→→ map

 For all regions in the output map, find the value in the input map and calculate

the output value:

single (m1, func1, m2) {

 for each r in getregions (m2)

 if (contains (m1,r) == true)

 m2[r]:= func1 (m1[r]);

 else

 m2[r] := undefined;

}

73

multiple maplist ×××× func_multiple ×××× map →→→→ map

 For all regions in the output map, find the values in the input maps and calculate

the output value:

multiple (maplist, funcn, m1) {

 for each r in getregions (m1) {

 init valuelist;

 for each m in maplist {

 if (contains (m,r) == true)

 value := m[r];

 else

 value := undefined;

 add value to valuelist;

 }

 m1[r] := funcn (valuelist);

} }

select map ×××× attr_domain ×××× comp ×××× map → map

 For all regions in the output map, find the values in the input map and compare

with a selected value. The resulting map will be a boolean map:

select (map1, value, comp, map2) {

for each r in getregions (map2) {

 if (contains (map1, r))

 map2[r]:= (map1[r] comp val);

 else

 map2[r]:= undefined;

}}

 Nonspatial operations have a shorthand, as shown in Table 3. We also show some

examples of nonspatial operations in Table 4.

Table 3. Convenience shorthand for nonspatial operators

output_map := single_arg_function (input_map);
// for single value functions

output_map := multi_arg_function (input_map_list);
// for multivalued mathematical functions

output_map:= map1 comp map2;
// for logical and comparison operators

output_map := input_map comp value;
// for selection operations

74

Table 4. Examples of nonspatial operators

Informal description Map Algebra Expression

“Find the square root of the topography

map”

topoSqr := sqrt (topography);

“Find the average of deforestation in

the last two years”

defAve := mean (defor2004,
defor2003);

“Select areas higher than 500 meters” high:= (topography > 500);

“Select areas higher than 500 meters

with temperatures lower than 10

degrees”

high_cold := (topo > 500) and
(temp < 10);

3.5. Spatial operations

Spatial operations are higher-order functions that use a spatial predicate. These

functions combine a selection function and a multivalued function, with two input maps

(the reference map and the value map) and an output map. Spatial operations generalize

Tomlin’s focal and zonal operations and have two parts: selection and composition. For

each location in the output map, the selection function applies a spatial predicate on the

matching location in the input map. The result is a set of values that satisfy the

predicate. The composition function uses the selected values to produce the result

(Figure 5). The selection function takes a region in the output map and finds the

matching region on the reference map. Then it applies the spatial predicate between the

reference map and the value map and creates a set of values. These values are the input

for the multivalued function. The implicit assumption is that the geographical area of the

output map is the same as reference map. The spatial operation is described in Table 5.

Figure 5. Spatial operations (selection + composition). Adapted from Tomlin [1990].

75

Table 5. Spatial operations

Type spatial uses spat_pred, func_multiple, map

(func_multiple is the type of multivalued functions)

(spat_pred is the type of spatial predicates)

Instances m1, refmap, m2 : map r1, r2 : region

v_list: list_attr_domain func: func_multiple

pred: spat_pred

Function Signature

spatial map ×××× map ×××× pred ×××× func_multiple ×××× map →→→→ map

 Given a region in the reference map, it finds all regions in the value map

that satisfy the spatial predicate. For all such regions, include the values

of the attribute function in a list. The list is the input to a multivalued

function which creates the result.

spatial (m1, refmap, pred, func, m2) {

 for each r in getregions (refmap) {

 init v_list;

 for each r1 in getregions (m1) {

 if pred (r,r1)

 add m1[r1] to v_list;

 }

 m2 [r] = func (v_list);

} }

 The spatial operations have a convenience notation shown in Table 6.

Table 6. Convenience notation for spatial operations

output_map:= multi_arg_function(value_map spat_pred ref_map);

 The parameters for the spatial operations are:

• output_map is the map to be filled with the new values.

• multi_arg_function is a multiargument function as given in section 3.5.

• value_map is the map whose values are used to calculate the result.

• spat_pred is the spatial predicate (section 3.4).

• ref_map is the reference map used as a basis for applying the spatial

predicate.

76

4. Examples and comparison with Tomlin’s map algebra

In this section, we give some examples and compare our proposal to Tomlin’s map

algebra. First, we consider the operation: “Find the local sum of regions in a

deforestation map”. In Tomlin’s algebra, this is a focal operation (Figure 1.b).

Considering the deforestation map (defor) as input and the local sum map (lsum) as

output, we state the operation as:

lsum := sum (defor touch lsum);

Figure 6. Local sum of deforestation

 Note one interesting feature: the result (lsum) is also the reference map for the

spatial predicate (defor touch lsum). This syntax may seem odd at first sight, but

it follows from the generality of the proposal. By taking the reference map and the result

map to be the same, we ensure the outcome satisfies the required condition (“local

mean”). Had we used a third map as a reference, the result would be different if this map

would not have the same spatial partitioning as the output map.

 A second example would be the statement “given a map of cities and a digital

terrain model, find the average height of each city”. This is a zonal operation in

Tomlin’s map algebra (Figure 1.c). Considering the digital terrain model (dtm_map) as

the input map and the cities map (cities_map) as the reference, the operation is

expressed as:

ave_city_height := average (dtm_map inside cities_map);

 In this case, the output map will have the same spatial partitioning as the cities

map. For each region in the output map, the algorithm finds the matching region in the

cities map (which is trivial), and then applies the ‘inside’ predicate between this region

and all regions in the digital terrain model (DTM). The result will be a set of regions

with associated values. Then, it applies a multivalued function (in this case, average)

to get the result.

 A third example is: “Given a map of a native reservations and a deforestation

map, find the sum of deforestation in the native reservations”. This is also a zonal

operation in Tomlin’s classification (Figure 1.c). Taking the map of native reservations

(reserves) as the reference map and the deforestation map (defor) as the value map,

we express the operation as:

77

deforRes := sum (defor inside reserves);

Deforestation map (grid) and native
reservations (polygons)

Result (deforRes)

Figure 7. Calculation of deforestation in native reservations

 The above examples show how the proposed map algebra expresses the spatial

functions of Tomlin’s map algebra, using ‘touch’ and ‘inside’. Operators that use

topological predicates other than ‘touch’ and ‘inside’ have no equivalent in Tomlin’s

algebra. The following are part of our map algebra and are not directly expressible by

Tomlin’s algebra: (a) operations involving the ‘overlap’, ‘contains’ and ‘intersects’
predicates; (b) operations involving directional predicates.

 One example is the statement: “Given a map containing a road and a

deforestation map, calculate the mean of the deforestation along the road”. We have

this input maps: deforestation (defor) and road. We select the areas that satisfy the

condition of intersection and take the mean of the resulting values. These steps are

illustrated in Figure 8. The expression is

defRoad := mean (defor intersects road);

Figure 8. Calculation of the average deforestation along a oad

78

 We present a comparison between the spatial operators and the focal and zonal

expressions in Tomlin’s map algebra in Table 7, where some operations have no direct

equivalent in his algebra. In fairness to Tomlin, we should remember that his proposal

mainly considers raster representations with the same spatial resolution, where some of

these conditions would not be relevant. For example, the ‘overlap’ predicate would not

be applicable in his case.

Table 7. Comparison of spatial operators with Tomlin’s map algebra

Informal Description Generalized Map Algebra Tomlin

“Local mean of topography” lmean:= mean (topo touch
lmean)

FOCALMEAN OF
TOPOGRAPHY

“Given a map of cities and

a topography map,

calculate the mean altitude

for each city.”

altcit:= mean (topo
inside city)

ZONALMEAN OF
TOPOGRAPHY
WITHIN CITIES

“Given a set of national

forests, calculate the

deforestation at the edges of

each forest”

defBord:= sum (defor
overlaps forests)

(no equivalent)

“Caculate the mean of the

deforestation along the

road”

defRoad := mean (defor
intersects road);

(no equivalent)

“Find the deforestation to

the north of the Amazon”.

defNorth:= sum (defor
north amazon)

(no equivalent)

5. Conclusions

This paper presents a generalized map algebra and compares it to the classical proposal

by Tomlin. Our map algebra uses topological and directional spatial predicates. It

expresses all Tomlin’s algebra operations and enables operations that are not directly

expressible by his proposal. Further generalizations of the proposed algebra are possible

by involving the full set of topological operations. The next step in our work is to

design, implement and validate a language that supports the proposed map algebra for

spatial databases.

 One of the important results of our paper is to show that Tomlin’s Map Algebra

can be seen as an application of topological predicates to coverages. Previously,

topological operations on individual objects and those involving coverages have been

dealt separately in GIScience theory. This paper points to a convergence between these

two approaches and shows that it is possible to develop a foundational theory for

GIScience where topological operations are the heart of both operations on objects and

operations on fields. This theory would tie different types of spatial operations together

into a single unified basis.

79

Acknowledgments

Gilberto Camara’s work is partially funded by CNPq (grants PQ - 300557/19996-5 and

550250/2005-0) and FAPESP (grant 04/11012-0). Danilo Palomo’s and Olga Oliveira’s

work is funded by CAPES. Gilberto Câmara would like to thank Andrew Frank for

many stimulating discussions on the subjects of map algebra and functional

programming.

References

Berry, J. K. (1987). "Fundamental Operations in Computer-Assisted Map Analysis."

International Journal of Geographical Information Systems 1(2): 119–136.

Cardelli, L. and P. Wegner (1985). "On Understanding Type, Data Abstraction, and

Polymorphism." ACM Computing Surveys 17(4): 471-552.

Egenhofer, M., J. Glasgow, O. Gunther, et al. (1999). "Progress in Computational

Methods for Representing Geographic Concepts." International Journal of

Geographical Information Science 13(8): 775-796.

Egenhofer, M. and J. Herring (1991). Categorizing Binary Topological Relationships

Between Regions, Lines, and Points in Geographic Databases. Orono, ME,

Department of Surveying Engineering, University of Maine.

Erwig, M. and M. Schneider (2000). Formalization of Advanced Map Operations. 9th

Int. Symp. on Spatial Data Handling Beijing, IGU.

Frank, A. (1987). Overlay Processing in Spatial Information Systems. AUTO-CARTO

8, Eighth International Symposium on Computer-Assisted Cartography. N. R.

Chrisman. Baltimore, MD: 16-31.

Frank, A. (1992). "Qualitative Spatial Reasoning about Distances and Directions in

Geographic Space." Journal of Visual Languages and Computing 3(4): 343-371.

Frank, A. (1997). Higher order functions necessary for spatial theory development.

Auto-Carto 13, Seattle, WA, ACSM/ASPRS.

Frank, A. (2005). Map Algebra Extended with Functors for Temporal Data. Perspectives

in Conceptual Modeling: ER 2005 Workshops, Klagenfurt, Austria, Springer.

Frank, A., G. Volta and M. McGranaghan (1992). Formalization of Families of

Categorical Coverages, University of Maine.

Güting, R. (1988). Geo-Relational Algebra: A Model and Query Language for

Geometric Database Systems. Advances in Database Technology—EDBT '88

International Conference on Extending Database Technology, Venice, Italy. J.

Schmidt, S. Ceri and M. Missikoff. New York, NY, Springer-Verlag. 303: 506-

527.

Guttag, J. (1977). "Abstract Data Types And The Development Of Data Structures."

Communications of the ACM 20(6): 396-404.

Huang, Z., P. Svensson and H. Hauska (1992). Solving Spatial Analysis Problems with

GeoSAL, a Spatial Query Language. 6th Int. Working Conf. on Scientific and

Statistical Database Management.

80

Mennis, J., R. Viger and D. Tomlin (2005). "Cubic Map Algebra Functions for Spatio-

Temporal Analysis." Cartography and Geographic Information Science 32(1):

17-32.

OGC (1998). OpenGIS Simple Features Specification for SQL. Boston, Open GIS

Consortium.

OGC (1998). The OpenGIS Specification Model: The Coverage Type and Its Subtypes.

Wayland, MA, Open Geospatial Consortium.

Ostländer, N. (2004). Interoperable Services for Web-Based Spatial Decision Support.

7th AGILE Conference on Geographic Information Science, Heraklion, Greece,

AGILE.

Papadias, D. and M. Egenhofer (1997). "Hierarchical Spatial Reasoning about Direction

Relations." GeoInformatica 1(3): 251-273.

Pullar, D. (2001). "MapScript: A Map Algebra Programming Language Incorporating

Neighborhood Analysis." GeoInformatica 5(2): 145-163.

Smith, B. (1995). On Drawing Lines on a Map. Spatial Information Theory—A

Theoretical Basis for GIS, International Conference COSIT '95, Semmering,

Austria. A. Frank and W. Kuhn. Berlin, Springer Verlag. 988: 475-484.

Takeyama, M. and H. Couclelis (1997). "Map Dynamics: Integrating Cellular Automata

and GIS through Geo-Algebra." International Journal of Geographical

Information Systems 11(1): 73-91.

Timpf, S. and A. Frank (1997). Using hierarchical spatial data structures for hierarchical

spatial reasoning. Spatial Information Theory - A Theoretical Basis for GIS (Int.

Conference COSIT'97), Berlin, Springer-Verlag.

Tomlin, C. D. (1990). Geographic Information Systems and Cartographic Modeling.

Englewood Cliffs, NJ, Prentice-Hall.

Volta, G. and M. Egenhofer (1993). Interaction with GIS Attribute Data Based on

Categorical Coverages. Spatial Information Theory, European Conference

COSIT '93, Marciana Marina, Elba Island, Italy. A. Frank and I. Campari. New

York, NY, Springer-Verlag. 716: 215-233.

Winter, S. (1995). Topological Relations between Discrete Regions. Advances in

Spatial Databases—4th International Symposium, SSD ‘95, Portland, ME. M.

Egenhofer and J. Herring. Berlin, Springer-Verlag. 951: 310-327.

Winter, S. and A. Frank (2000). "Topology in Raster and Vector Representaion."

GeoInformatica 4(1): 35-65.

81

	cb: VII Simpósio Brasileiro de Geoinformática, Campos do Jordão, Brasil, 20-23 novembro 2005, INPE, p. 66-81.

