

Fast Point-Feature Label Placement Algorithm for Real Time

Screen Maps

Missae Yamamoto, Gilberto Camara, Luiz Antonio Nogueira Lorena

National Institute of Space Research - INPE, São José dos Campos, SP, Brazil

São José dos Campos – SP – Brazil

{missae, gilberto}@dpi.inpe.br, lorena@lac.inpe.br

Abstract. The generation of good label placement arrangements is a frequent

problem when producing maps. The objective of a good label placement is to

display the geographic position of the features with their matching label in a

clear and harmonious fashion, following accepted cartographic conventions.

In this work, we propose the fast algorithm for label placement (FALP) for

generation of real time screen maps. FALP is a cost-effective choice, with

good quality performance and excellent runtime performance.

1. Introduction

Point label placement refers to insertion of text in maps and is a challenging problem in

geoinformatics and automated cartography (Wolff and Strijk 1996). Text positioning

requires avoiding overlaps and adherence to cartographic conventions and preferences.

There should be unambiguous association between each text and its matching feature.

Overall, good labeling needs harmony and quality in the resulting maps. The motivation

for research in automated label placement includes:

• Label placement is a fundamental part of producing good maps and essential

item to communicate spatial information;

• Placing text manually in maps is a laborious procedure;

• A good label placing algorithm brings a substantial increase in map productivity;

 Label placement would be much simpler if labels could be pre-computed for

each layer at once and their position stored beforehand. Unfortunately, this is not

possible. Map production frequently requires information from more than one layer. It is

the last step in map production. After the user chooses the output layers, the scale and

the limits of the map, object labels need to be placed effectively.

 Screen maps are created as answers to spatial queries on geographical

information systems (GIS), either in desktop or Web applications. To allow for a

smooth uninterrupted response, the maps must be produced “on the stroke of a key”.

Otherwise, the user gets impatient. Screen map production needs to balance the quality

of label placement with the processing time. Label placement techniques that are of

extremely good quality but need much processing time are not useful for screen maps.

 The most common label placement problem is the point feature label placement

(PFLP) problem. Given a set of places associated to point locations, the PFLP consists

in placing the names of these places in the map with quality and efficiency. This work

122

describes the Fast Algorithm for Label-Placement (FALP) to solve the PFLP. Our

results show the FALP has good performance in label placement processing time and

presents a good label placement quality for a screen map. Given its relative simplicity of

implementation and efficient performance, we believe that FALP method is a good

solution to the PFLP problem for screen maps.

 In Section 2 of the paper, we review the literature on label placement. In Section

3, we present the conflict graph, a structure that represents all conflicts between

candidate labels. Section 4 we introduce the FALP algorithm. Section 5 shows

computational results using instances formed by standard sets of randomly generated

points suggested in the literature.

2. Review of the point label placement problem

There are three different label-placement problems: labeling of point features (cities,

schools, hospital, mountain peaks …), line features (rivers, roads, …), and area features

(countries, states, oceans, …). In this article we focus on placing labels for point

features using combinatorial optimization. We will use three key notions, defined

below:

• Label positions for each point feature. Given a point, a label can be placed on

one of four positions relative to it (see Figure 1). Therefore, a label position is an

ordered pair (point location, relative position). In Figure 1, each box marks a

label position.

• Cartographic preference. Usually, we prefer to place labels at the upper right

corner of the point, and this preference decreases counterclockwise from this

position. The value inside each box in Figure 1 matches the order of

cartographical preference for placing a label. Lower values mark more desirable

positions.

• Objective function. The objective function (f) measures the quality of the label

placement. The quality of labeling depends on the number of overlaps between

labels and the cartographic preference for label placement.

Figure 1. A set of label positions and their cartographic preference (best = 1;
worse = 4)

 We take npos as the number of label positions and take np as the total number of

point features. There are npos
np

possible arrangements, a number which increases

exponentially. Since the set of possible solutions is finite, theoretically we could select

the best solution by enumeration. As the number of points increases this becomes

unfeasible, because of the combinatorial explosion of possible solutions. Marks and

123

Scheiber (1991) have shown the point feature label placement (PFLP) problem is NP-

hard.

 For screen maps, we need algorithms that seek a compromise solution in cost-

benefit, with good quality and a short response time. In our algorithm, we have

considered a limited set of four possible label positions. Our approach can be extended

to account for a larger number of positions. However, a larger set of the label positions

would result in a problem with larger number of possible solutions. In spite of the

apparent better looking results, the growth in problem complexity results in a much

higher computational effort. We consider that a set of four positions to be an acceptable

compromise in terms of cost-benefit analysis.

 Several heuristics and metaheuristics have been used for the PFLP problem. For

an early review of methods, see Christensen et al. (1995), which includes Zoraster's

integer programming algorithm (Lagrangean relaxation) (Zoraster 1990) and Hirsch's

continuous gradient-descent algorithm (Hirsch 1982). Relevant recent proposals include

solutions based on simulated annealing (Christensen et al. 1995), genetic algorithms

(GA) (Verner et al. 1997) and tabu search (Yamamoto et al. 2002). The most recent

result is the constructive genetic approach (Yamamoto and Lorena 2005), that has better

results in label placement quality than all previous methods.

 In this paper, we will consider the PFLP as the problem of placing labels in all

points. We will try to find out the largest subset of labels with no conflicts with good

quality at acceptable runtime. Our algorithm considers that a typical generation of screen

maps consists of three steps:

• The user requests an overview of the area of interest. The software

displays the area, with a suitable choice of labels depicted at that scale.

• The user requests a zoom in an area for detailed analysis. The software

displays the area, and labels invisible at the largest scale are made visible

at this scale.

• The user may zoom for further detail or pan for visualization of

neighboring areas. In the latter case, more labels will be made visible and

the software will try to display them.

 Based on this conception, we consider that label placement on screen maps

needs a preparation stage, where the software will build a list of labels which will be

visible at different scales. This pre-processing phase is outside the scope of this paper.

The proposed algorithm will run at one particular scale, where the visible labels are

known in advance. Therefore, our algorithm should be embedded in a more general

visualization software. In the proposed method, the basic data structure is the conflict

graph, described in the next section.

3. The conflict graph

The conflict graph is a structure that describes conflicts due to label overlap. Each node

of the conflict graph is a label position. Recall from section 2 that we consider a label

position as a pair (point location, relative position). The edges of the graph link

conflicting label positions. Figure 2 shows two points with their label positions and the

124

corresponding conflict graph. A similar idea was proposed by Strijk et al (2000).

However, their algorithm for point label placement based on the conflict graph

(diversified neighborhood search) solves as different label placement problem. Their

label placement algorithm allows label selection for conflicting label position. Our

problem is placing labels in all points. Furthermore, their algorithm does not use the

same refinement steps as ours.

Figure 2. Two points, their label positions and the corresponding conflict graph

 The conflict graph is a graph G = (N, E), where N is a list of nodes and E is a list

of edge. Two nodes are adjacent if both nodes are connected by an edge. Each node

represents a label position, and keeps track of the number of incident edges.

 A conflict arises both from the choice between four label positions for a point

and from the overlap between label positions of different points. In Figure 2, label L2

has three edges due to the conflicts between it and the three other potential positions for

point P1. Label L4 has five edges, three arising from the conflict between other label

positions for point P1, and two arising from the conflict with label positions for point P2.

 The degree of a node is the number of incident edges in that node. The degree is

a measure of label conflicts. The higher the degree of a node, the more difficult it is to

place the associated label on the map. The conflict graph can be mapped to an adjacency

matrix, where rows and columns represent nodes (label positions), and each entry is

either 1 for connected nodes or 0 otherwise. Figure 3 shows the adjacency matrix of the

graph shown in Figure 2. In the adjacency matrix, the degree of each node is the sum of

values in a line or in a column.

 We compute the conflict graph in a pre-processing phase. Our suggestion is to

build one conflict graph for each scale, regardless of the zoom and pan area. Recall that

our conception of a screen map is that, for a given scale, all labels to be displayed are

known. In this way, panning or zooming at the same scale will not need a rebuild on the

conflict graph. Once built, the conflict graph provides quick information on all label

placement conflicts.

 Our algorithm allows labels to have different sizes. This is possible since we test

for overlapping between label boxes when building the conflict graph. The adjacency

matrix indicates if there is conflict between the labels. Figure 2 shows an example of

building an adjacent matrix from labels of different size.

125

Figure 3. Adjacency matrix of Figure 2

4. A fast algorithm for label placement

This section describes the fast algorithm for label placement (FALP). The first step of

the algorithm produces the set S1 of all nonconflicting label positions. The second step

deals with the set S2 of label positions with conflicts. For each location in S2, we choose

the label position that creates the smallest number of additional conflicts. The third and

final step is a local search to improve the results. The algorithm reprocesses all the label

positions selected in steps one and two. It changes a label position if the overlap

between it and its neighbors can be further reduced.

 The aim of the algorithm is producing a map with the smallest possible number

of conflicting labels. Given the set of all labels L and the set of conflicting labels Lc, we

use the following objective function (f):

LLLf cc ⊂= },{#

 The main challenge of label placement is avoiding getting caught in local

minimums of the objective function and thus not being able to reach the global

maximum. Conceptually, the first and second steps of the FALP try to reach the global

maximum. The third step is a set of local adjustments that improves the method’s

performance. By making local changes, we further direct the algorithm towards the

global maximum. Should the third step be performed alone, there would be a large

chance the algorithm would get caught in local minimums. The FALP algorithm works

as follows:

Step 0. Create the conflict graph (done off-line).

Step 1. Apply maximum nonconflict labeling algorithm to get the set S1 (label

positions without conflict).

126

Step 2. Take the set S2 to be all points not contained in S1. For each point in S2,

choose a label position with minimum conflict.

Step 3. Take the solution S to be S1 ∪ S2. Calculate the value of the objective

function f for S. If there are no conflicts, exit. Otherwise, make S* = S

and repeat the steps below t times:

• Apply local search to all points in S* to produce a new potential

solution S*.

• Calculate the value of f for S*. If f (S*) < f (S), take S = S*.

 In our tests, a value of t=5 has proved to be enough for good results. We

describe the maximum nonconflict labeling algorithm (step 1) below.

4.1. The maximum nonconflict labeling algorithm

Given a conflict graph, the maximum nonconflict labeling algorithm produces a set of

points and their matching label positions without conflicts. This algorithm is an

improved version of a similar idea from (Strijk et al. 2000). The algorithm builds an

adjacency matrix from the conflict graph, as pictured in Figure 3. Each line of the matrix

will be one label position. The algorithm orders the label positions in ascending order of

degree. The degree of each label position is the number of conflicts for that label. If two

or more label positions have the same degree, they are ordered according to their

corresponding points. The label position whose corresponding point has less available

label positions left in the matrix is ranked higher.

 At each step, the algorithm takes the label with smallest degree. It removes this

label from the matrix and places it in the solution set. For each chosen label, it cuts out

all label positions which are in conflict with it. The process is then repeated until the

matrix is empty. The algorithm works as follows:

Step 0. The nonconflict set S1 is empty. The active node set L* is equal to the

full node set N.

Step 1. If the active node set L* is empty, exit with S1 as the result. Otherwise,

do steps 2 to 5.

Step 2. Calculate degrees of all nodes in L*.

Step 3. Select lmin, the node of smallest degree on L*. Place it in the nonconflict

set S1.

Step 4. Remove lmin and all nodes adjacent to it from L*.

Step 5. Go to step 1.

 As an example, we consider an arrangement of six points, where each point has

four label positions, given in Table 1.

127

Table 1 – Example arrangement

Point Label position Label size (characters)

P1 L01, L02, L03, L04 10

P2 L05, L06, L07, L08 7

 P3 L09, L10, L11, L12 6

P4 L13, L14, L15, L16 9

P5 L17, L18, L19, L20 15

P6 L21, L22, L23, L24 13

Figure 4 – Adjacency matrix for example (iteration 1)

Iteration 1 L* = {L01, L02, L03, ..., L24}

select L24 S1 = {(P6, L24)} (smallest degree label from L*)

 We cut out L21, L22, L23 and L24 from L*

128

 L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20

L01 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L02 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L03 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0

L04 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0

L05 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0

L06 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

L07 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1 1 1

L08 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1

L09 0 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0

L10 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0

L11 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1

L12 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1

L13 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1

L14 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1

L15 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1

L16 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1

L17 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1

L18 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1

L19 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1

L20 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0

Figure 5 – Adjacency matrix for example (iteration 2)

Iteration 2 L* = {L01, L02, L03, ... , L20}

select L02 S1 = {(P6, L24), (P1, L02)} (smallest degree labels from L*)

 We cut out L01, L02, L03, L04 and L06 from L*

 L05 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20

L05 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0

L07 1 0 1 0 1 1 0 1 1 0 0 1 1 1 1

L08 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1

L09 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0

L10 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0

L11 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1

L12 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1

L13 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1

L14 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1

L15 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1

L16 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1

L17 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1

L18 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1

L19 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1

L20 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0

Figure 6 – Adjacency matrix for example (iteration 3)

Iteration 3 L* = {L05, L07, L08, ... , L20}

select L05 S1 = {(P6, L24), (P1, L02), (P2/L05)}

 We cut out L05, L07, L08, L09, L10 and L17 from L*

129

 L11 L12 L13 L14 L15 L16 L18 L19 L20

L11 0 1 1 1 1 1 1 1 1

L12 1 0 1 0 0 1 0 0 1

L13 1 1 0 1 1 1 0 0 1

L14 1 0 1 0 1 1 1 1 1

L15 1 0 1 1 0 1 0 1 1

L16 1 1 1 1 1 0 0 0 1

L18 1 0 0 1 0 0 0 1 1

L19 1 0 0 1 1 0 1 0 1

L20 1 1 1 1 1 1 1 1 0

Figure 7 – Adjacency matrix for example (iteration 4)

Iteration 4 L* = {L11, L12, L13, L14, L15, L16, L18, L19, L20}

select L12 S1= {(P6, L24), (P1, L02), (P2/L05), (P3/L12)}

 We cut out L11, L12, L13, L16 and L20 from L*

P3 has label positions {L11, L12} and P5 has label positions {L18,

L19, L20}, therefore we choose L12 and not L18.

 L14 L15 L18 L19

L14 0 1 1 1

L15 1 0 0 1

L18 1 0 0 1

L19 1 1 1 0

Figure 8 – Adjacency matrix for example (iteration 5)

Iteration 5 L* = {L14, L15, L18, L19}

select L15 S1 = {(P6, L24), (P1, L02), (P2/L05), (P3/L12), (P4/L15)}

 We cut out L14, L15 and L19 from L*

 L18

L18 0

Figure 9 – Adjacency matrix for example (iteration 6)

Iteration 6 L* = {L18}

select L18 S1= {(P6, L24), (P1, L02), (P2/L05), (P3/L12), (P4/L15),

(P5/L18)}

 We cut out L18 from L*

 Iteration 7 L* = { }

130

 In the above example the maximum non-conflict set was S1 = {(P6, L24), (P1,

L02), (P2, L05), (P3, L12), (P4, L15), (P5, L18)}, and all six points have labels without

conflicts.

4.2. Processing of labels with conflicts

The second step of the FALP processes all the labels, since the maximum nonconflict

labeling algorithm cannot solve all conflicts. We take as input the set S = S1 ∪ S2. The

set S1 is the set of pairs (point, label position) without overlapping produced by the first

step of FALP. The set S2 contains all points that do not have a label assigned to them.

The procedure takes the set S2 and chooses the best label position for each point in the

set. The label position is chosen as to have the least conflicts. The algorithm works as

follows:

Step 0. Take S* = S, where S = S1 ∪ S2,

Step 1. If S2 is empty, exit with S* as the solution. Otherwise, continue.

Step 2. For each point pi. in S2, do step 3.

Step 3. For each label position lk of the point pi, do steps 4 and 5.

Step 4. Calculate gk, the number of all active labels that overlap with lk.

Step 5. Take the label with the smallest gk to be the best label position for point

pi. Update S* with this pair (point, label position).

Step 6. Go to step 2.

 The output of this algorithm is the set S* where all points have been assigned a

label position. Some of these label positions may still be in conflict with other, and this

requires a further refinement step, described below. As an example, we consider an

arrangement of six points, where each point has four label positions, given in Table 1.

For each point pi the candidate list will be composed of the pair (pi, gk) .

Step 0 S* = {(P1, L02), (P2, L05), (P3, 0), (P4, L14), (P5, 0), (P6, L23)}

 S2 = {(P3,0), (P5, 0)}

Step 1 Process the set S2.

Step 2.1 Point P3 has candidate labels L = {(L09, 1), (L10, 2), (L11, 1), (L12,0)}

 Choose L12 as the best label

 Update S* = {(P1, L02), (P2, L05), (P3, L12), (P4, L14), (P5, 0), (P6,

L23)}

Step 2.2 Point P5 has candidate labels L= {(L17, 3), (L18, 1), (L19, 1), (L20, 2)}

 Choose L18 as the best candidate

 Update S* = {(P1, L02), (P2, L05), (P3, L12), (P4, L14), (P5, L18), (P6,

L23)}

 In the above example the solution was S = {(P1, L02), (P2, L05), (P3, L12), (P4,

L14), (P5, L18), (P6, L23)}, and there is 2 labels with overlaps: L14 and L18. This

overlapping can be improved using the algorithm of the next section.

131

4.3. Local search algorithm

The third and final step of the FALP is a local search procedure that examines each

point, comparing its label position to that of its neighbors. It changes a label position if

this brings a reduction of conflicts in the local region. The method is repeated until no

further improvements are possible or up to a maximum number of predefined iterations.

In our tests, we found that five iterations are enough to produce good maps. The local

search algorithm takes as input the complete solution S, where all points have a

designated label position. It performs a set of local adjustments to improve the solution:

Step 0. Take S* = S.

Step 1. Repeat T times steps 2 to 6.

Step 2. For each point pi in S* and for each label position lk of the point pi, do

steps 3 and 4.

Step 3. Calculate gk, the number of all active labels that overlap with lk.

Step 4. If gk is zero, go to step 2. Otherwise, continue.

Step 5. Take the label with the smallest gk to be the best label position for point

pi. Update S* with this pair (point, label position). Go to step 2.

 The result of this algorithm is a new solution set S*. In each iteration, this

algorithm will not change labels already assigned with no conflicts. It will try to update

only those with conflicts. However, an update done in a previous step may create

conflicts in the next iteration. For this reason, this local search algorithm will only work

in situations close to the global maximum. In our tests, we found that taking T=5 is

enough for good results. As an example, we consider an arrangement of six points,

where each point has four label positions, as given in Table 1. For each point pi the

candidate list will be composed of the pair (pi, gk).

Iteration 1 S* = {(P1, L02), (P2, L05), (P3, L12), (P4, L16), (P5, L18), (P6, L22)}

Point P1 List = {(L01, 1), (L02, 0)} (L02 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L12), (P4, L16), (P5, L18), (P6, L22)}

Point P2 List = {(L05, 0)} (L05 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L12), (P4, L16), (P5, L18), (P6, L22)}

Point P3 List = {(L09, 1), (L10, 2), (L11, 2), (L12,1)} (L09 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L09), (P4, L16), (P5, L18), (P6, L22)}

Point P4 List = {(L13, 1), (L14, 1), (L15, 0)} (L15 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L09), (P4, L15), (P5, L18), (P6, L22)}

Point P5 List = {(L17, 2), (L18, 0)} (L18 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L09), (P4, L15), (P5, L18), (P6, L22)}

Point P6 List = {(L21, 1), (L22, 1), (L23, 0)} (L23 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L09), (P4, L15), (P5, L18), (P6, L23)}

132

Iteration 2 S* = {(P1, L02), (P2, L05), (P3, L09), (P4, L15), (P5, L18), (P6, L23)}

Point P1 List = {(L01, 1), (L02, 0)} (L02 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L12), (P4, L16), (P5, L18), (P6, L22)}

Point P2 List = {(L05, 1), (L06, 1), (L07, 1), (L08, 1)} (L05 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L12), (P4, L16), (P5, L18), (P6, L22)}

Point P3 List = {(L09, 1), (L10, 2), (L11, 2), (L12,0)} (L12 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L12), (P4, L16), (P5, L18), (P6, L22)}

Point P4 List = {(L13, 1), (L14, 1), (L15, 0)} (L15 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L12), (P4, L15), (P5, L18), (P6, L22)}

Point P5 List = {(L17, 2), (L18, 0)} (L18 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L12), (P4, L15), (P5, L18), (P6, L22)}

Point P6 List = {(L21, 2), (L22, 1), (L23, 0)} (L23 is the best candidate)

 S* = {(P1, L02), (P2, L05), (P3, L12), (P4, L15), (P5, L18), (P6, L23)}

 In the above example the solution is S = {(P1, L02), (P2, L05), (P3, L12), (P4,

L15), (P5, L18), (P6, L23)}, and all six points have labels without conflicts.

5. Results

Christensen (1995), Verner (1997), Yamamoto et al (2002) and Yamamoto et al. (2005)

compared several algorithms using standard sets of randomly generated points: grid size

of 792 by 612 units, fixed size label of 30 by 7 units and page size of 11 by 8.5 inch. To

compare the FALP algorithm with previous works, the standard sets of randomly

generated points and the same conditions as described by Christensen et al. (1995) are

used, following the same assumptions as Verner et al. (1997). The set of instances has

the following characteristics (all the instances used in this paper are available at

www.lac.inpe.br/~lorena/instancias.html):

• Number of the points: N = 100, 250, 500, 750, 1000;

• Configurations: For each problem size, 25 different configurations with random

placement of point features using different seeds;

• Penalties: No penalty was attributed for labels that extended beyond the

boundary of the region;

• 4 label positions were considered for each point;

• Cartographic preferences were not taken into account;

• No point selection was allowed (i.e., no points are removed even if avoiding

superposition is inevitable);

133

 Compared with other point label placement algorithms, the FALP showed good

results in quality of label placement and excellent results in processing time. The

computational results are presented in Table 1.

Table 1. Percentage of labels without conflict for different number of points

Algorithm 100 250 500 750 1000

CGA 100.00 100.00 99.6 97.1 90.7

FALP 100.00 100.00 99.5 96.7 90.12

Tabu search 100.00 100.00 99.2 96.8 90.00

GA with masking 100.00 99.98 98.79 95.99 88.96

GA 100.00 98.40 92.59 82.38 65.70

Simulated Annealing 100.00 99.90 98.30 92.30 82.09

Zoraster 100.00 99.79 96.21 79.78 53.06

Hirsch 100.00 99.58 95.70 82.04 60.24

3-Opt Gradient Descent 100.00 99.76 97.34 89.44 77.83

2-Opt Gradient Descent 100.00 99.36 95.62 85.60 73.37

Gradient Descent 98.64 95.47 86.46 72.40 58.29

Greedy 95.12 88.82 75.15 58.57 43.41

 Table 1 shows the percentage of labels placed without conflict for 100, 250, 500,

750 and 1000 points, considering different algorithms of the literature. The results, for

each problem size, present the average percentage of labels placed without conflict for

the 25 trials. The results show the results of the optimization algorithms tested by

Christensen et al. (1995) (greedy-depth first, gradient descent, 2-opt gradient descent, 3-

opt gradient descent, Hirsch, Zoraster and simulated annealing), Verner et al. (1997)

(GA without masking and GA with masking), Yamamoto et al. (2002) (Tabu search),

Yamamoto and Lorena (2005) (Constructive genetic algorithm - CGA) and the FALP.

 Table 2 compares computational times in seconds (Pentium II computer). It

compares the FALP to the Tabu search of Yamamoto et al. (2002) and the CGA of

Yamamoto and Lorena (2005). FALP is much faster than CGA and Tabu search.

Table 2. Computational times to reach the best solutions for different number
of points

Algorithm 100 250 500 750 1000

FALP 0 0 1 2.8 5.9

CGA 0 0.6 21.5 228.9 1227.2

Tabu search 0 0 1.3 76.0 352.9

134

6. Conclusion

This work has proposed and evaluated a fast algorithm for point label placement (FALP)

in maps. Compared with other algorithms, the FALP showed good results in label

placement quality and excellent performance. The FALP can be recommended to solve

the automatic cartographic label placement problem for point features in real time

screen maps, due to the quality of its label placement and to its runtime performance.

 One of the interesting results of the FALP is the comparison with other

optimization methods, such as simulated annealing, genetic algorithms and tabu search.

Algorithms based on these methods are adaptation of known optimization methods to

the label placement problem. By contrast, the FALP uses simple heuristics that arise

from the nature of the label placement problem. This follows from the general rule that

problem-based techniques perform better than general-purpose techniques in

optimization problem. The FALP is a further example that it pays to consider the

specific character of a GIScience problem before trying to solve it with general-purpose

methods.

References

Christensen, J., J. Marks and S. Shieber (1995). "An empirical study of algorithms for

point-feature label placement." ACM Transactions on Graphics 14(3): 203-232.

Hirsch, S. A. (1982). "An algorithm for automatic name placement around point data."

American Cartographer 9(1): 5-17.

Marks, J. and S. Shieber (1991). The Computational Complexity of Cartographic Label

Placement, Center for Research in Computing Technology, Harvard University.

Strijk, T., B. Verweij and K. Aardal (2000). Algorithms for Maximum Independent Set

Applied to Map Labeling, Department of Computer Science, Utrecht University.

Verner, O. V., R. L. Wainwright and D. A. Schoenefeld (1997). "Placing text labels on

maps and diagrams using genetic algorithms with masking." INFORMS J. on

Computing 9: 266-275.

Wolff, A. and T. Strijk. (1996). "The Map Labeling Bibliography." from

http://i11www.ilkd.uni-karlsruhe.de/map-labeling/bibliography/

Yamamoto, M., G. Camara and L. A. N. Lorena (2002). "Tabu search heuristic for

point-feature cartographic label placement." GeoInformatica. Kluwer Academic

Publisher 6(1): 77-90.

Yamamoto, M. and L. A. N. Lorena (2005). A Constructive Genetic Approach to Point-

Feature Cartographic Label Placement. Metaheuristics: Progress as Real

Problem Solvers. T. N. Ibaraki, Koji; Yagiura, Mutsunori (Eds.) Springer. 32.

Zoraster, S. (1990). "The solution of large 0-1 integer programming problems

encountered in automated cartography." Operations Research 38(5): 752-759.

135

	cb: VII Simpósio Brasileiro de Geoinformática, Campos do Jordão, Brasil, 20-23 novembro 2005, INPE, p. 122-135.

