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ABSTRACT

This paper describes a comprehensive assessment of a new high-resolution, gauge–satellite-based analysis of

daily precipitation over continental South America during 2004. This methodology is based on a combination

of additive and multiplicative bias correction schemes to get the lowest bias when compared with the observed

values (rain gauges). Intercomparisons and cross-validation tests have been carried out between independent

rain gauges and different merging techniques. This validation process was done for the control algorithm

[Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis real-time algorithm] and

five different merging schemes: additive bias correction; ratio bias correction; TRMM Multisatellite Precipi-

tation Analysis, research version; and the combined scheme proposed in this paper. These methodologies were

tested for different months belonging to different seasons and for different network densities. All compared,

merging schemes produce better results than the control algorithm; however, when finer temporal (daily) and

spatial scale (regional networks) gauge datasets are included in the analysis, the improvement is remarkable.

The combined scheme consistently presents the best performance among the five techniques tested in this

paper. This is also true when a degraded daily gauge network is used instead of a full dataset. This technique

appears to be a suitable tool to produce real-time, high-resolution, gauge- and satellite-based analyses of daily

precipitation over land in regional domains.

1. Introduction

The spatial and temporal distribution of precipitation

around the globe is needed for a variety of scientific uses,

such as climate diagnostic studies and societal applications

such as water management for agriculture and power,

drought relief, flood control, and flood forecasting (Arkin

and Xie 1994). The task of quantifying the distribution is

complicated by the fact that no single, currently available

estimate of precipitation has the necessary coverage and

accuracy over the whole globe. Although a suite of sen-

sors flying on a variety of satellites has been used to es-

timate precipitation on a global basis, generally speaking,

the performance of satellite precipitation estimates over

land areas is highly dependent on the rainfall regime and

the temporal and spatial scale of the retrievals (Ebert

et al. 2007). On the other hand, gauge observations

continue to play a critical role in observations systems

over global land areas. In addition, gauge observations
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are the only source that is obtained through direct mea-

surements. Both the radar and satellite estimates are

indirect in nature and need to be calibrated or verified

using the gauge observations (Xie and Arkin 1995; Ebert

et al. 2007). Although it is possible to create rainfall

estimates using a combination of different satellite data

[i.e., Climate Prediction Center morphing technique

(CMORPH); Joyce et al. 2004], researchers have in-

creasingly moved to using ‘‘the best of both worlds’’ to

improve accuracy, coverage, and resolution. The first

such combinations were performed at a relatively coarse

scale to ensure reasonable error characteristics. For

example, the Global Precipitation Climatology Project

(GPCP) satellite–gauge (SG) combination is comput-

ed on a monthly 2.58 3 2.58 latitude–longitude grid

(Huffman et al. 1997; Adler et al. 2003), whereas finer-

scale products initiated by the GPCP include the pentad

(Xie et al. 2003) and one-degree daily (Huffman et al.

2001) combined estimates of precipitation.

The GPCP combination method is designed to use the

strengths of each input dataset to produce merged global,

monthly precipitation fields that are superior to any of

the individual datasets. The technique is also designed to

reduce bias in each step by using the input original or

intermediate product with the presumed smallest or zero

bias to adjust the bias of other products. A large-scale

(58 3 58 grid box) average of the multisatellite (MS)

analysis is adjusted to agree with the large-scale average

of the gauges (over land and where available). This keeps

the bias of the satellite and gauge combination close to

the (presumably small) bias of the gauge analysis on a

regional scale. Finally, the gauge-adjusted multisatellite

estimate and the gauge analysis are combined with

inverse-error–variance weighting to produce the final,

merged analysis. This gauge–satellite combination ap-

proach allows the multisatellite estimate to provide im-

portant local variations in gauge-sparse areas while still

retaining the overall gauge bias (Adler et al. 2003). In this

case, the monthly gauge analysis is performed by the

Global Precipitation Climatology Centre (GPCC). This

gauge data is analyzed using the empirical Spheremap

interpolation method (Willmott et al. 1985), which has

been routinely used at the GPCC since 1991 for the

calculation of grid-point results at 0.58 resolution.

The one-degree daily methodology uses GPCP re-

trievals by scaling the short-period estimates to sum to

a monthly estimate that includes monthly gauge data

(Huffman et al. 2001). A similar approach is used in

Huffman et al. 2007 (hereafter H07) to scale 3-hourly

estimates using the real-time TRMM Multisatellite Pre-

cipitation Analysis (TMPA), in which all available 3-

hourly merged estimates are summed over a calendar

month to create a monthly MS product. The MS and

gauge are combined as in Huffman et al. (1997) to create

a post real-time monthly SG combination. Then the field

of SG/MS ratios is computed on the 0.258 3 0.258 grid

(with controls) and applied to scale each 3-hourly field

in the month, producing the research version, and also

called version-6 3B42 product (hereafter 3B42v6).

Among multiple applications, precipitation at fine re-

solution along with increasing computational capacity

allows for operational and research studies in hydrology

across different temporal and spatial scales. However,

the interaction between different scales to resolve land

surface hydrology and atmospheric dynamics still needs

progress and well-balanced high-resolution precipitation

datasets play an essential role in such land–atmosphere

interactions. One of the motivations for this paper is the

potential use of high-resolution atmospheric datasets for

land surface hydrology studies and numerical modeling

over South America by combining surface observations

with remotely sensed information. Such data fusion was

made possible by the onset of Land Data Assimilation

System (LDAS) initiatives (Mitchell et al. 2004; Rodell

et al. 2004). A South American LDAS (SALDAS; de

Goncalves et al. 2006a,b) is particularly challenging when

proposing to combine high-resolution remote sensing and

surface observations using land surface models (LSMs)

over a continent with sparse observation networks. Pre-

cipitation (along with radiation) represents one of the

most important drivers for LSMs and motivates this pa-

per as part of the efforts of combining satellite precipi-

tation with rain gauges for SALDAS-forcing composition

and evaluation (de Goncalves et al. 2009).

This paper describes a new methodology for merging

rainfall satellite estimates and daily gauge data. In this

case, real-time TMPA (in which no rain gauges are in-

corporated) is used as a high-quality rainfall algorithm

(H07), whereas the CPTEC daily rain gauge database is

used to correct the bias on a daily basis over South

America. Several validation tests (including cross vali-

dation and intercomparisons between rain gauge ob-

servations and satellite retrievals) have been carried out

during 2004. Section 2 describes the dataset used in this

paper, and section 3 presents the merging methodology.

The experimental design and the validation scheme are

discussed in section 4. The results and the conclusions

are presented in section 5.

2. Datasets

a. Real-time TRMM Multisatellite Precipitation
Analysis

This algorithm is fully described in H07. The main fea-

tures of this algorithm, including the real-time adjustment,
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will be outlined in this section. The first stage of the

algorithm consists of the calibration and combination of

microwave precipitation estimates. Passive microwave

observations from the TRMM Microwave Imager (TMI),

Advanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E), and Special Sensor Mi-

crowave Imager (SSM/I) are converted to precipitation

estimates at the TRMM Science Data and Information

System (TSDIS) with sensor-specific versions of the

Goddard profiling algorithm (GPROF; Kummerow et al.

1996; Olson et al. 1999), whereas Advanced Microwave

Sounding Unit-B (AMSU-B) measurements are con-

verted to precipitation estimates at the National En-

vironmental Satellite, Data, and Information Service

(NESDIS) with the operational version of the Weng

et al. (2003) algorithm and corrections introduced by

Vila et al. (2007). In the case of the real-time version,

the calibration is made using TMI estimates from

TRMM because TRMM combined instrument esti-

mates [TCI; combines TMI and precipitation radar

(PR) estimates] are not available. Also in this version,

the calibration coefficients are performed using the

last six available pentads (5-day period).

In a second step, the infrared precipitation estimates

are created using the calibrated microwave precipitation.

Histograms of time–space matched combined micro-

wave (high-quality precipitation rates) and IR bright-

ness temperatures (TBs), each represented on the same

3-hourly 0.258 3 0.258 grid, are accumulated for one

month into histograms on a 18 3 18 grid, aggregated to

overlapping 38 3 38 windows, and then used to create

spatially varying calibration coefficients that convert IR

TBs to precipitation rates. In the final stage, the mi-

crowave and IR estimates are combined. The physically

based combined microwave estimates are taken ‘‘as is’’

where available, and the remaining grid boxes are filled

with microwave-calibrated IR estimates. A detailed de-

scription of this algorithm can be found in H07. The

daily accumulation is obtained summing the individual

3-h files from 1500 UTC of the previous day (1200–1500

UTC period) to 1200 UTC (0900–1200 UTC period) of

the current day.

b. Rain gauge database

The data sources for the daily surface precipitation

observations used, in addition to those of the World

Meteorological Organization (WMO), are obtained

through an Instituto Nacional de Pesquisas Espaciais

(INPE) compilation of the following agencies: (i) Agência

Nacional de Energia Eléctrica (ANEEL; National

Agency For Electrical Energy); (ii) Agência Nacional

de Águas (ANA; National Water Agency); (iii) Fun-

dacxão Cearense de Meteorologia e Recursos Hı́dricos

(FUNCEME; Meteorology and Hydrologic Resources

Foundation of Ceará); (iv) Superintendência do Desen-

volvimento do Nordeste (SUDENE; Superintendency

for the Development of the Northeast); and (v) Depar-

tamento de Águas e Energia Elétrica do Estado de São

Paulo (DAEE; Department of Water and Electrical

Energy for the State of São Paulo) in collaboration with

the Centro de Previsão de Tempo e Estudos Climáticos

(CPTEC; Brazilian Weather Forecast and Climate

Studies Center) and (vi) the Technological Institute

of Paraná (SIMEPAR). Figure 1 shows the available

daily rain gauge observations for 26 March 2004. Most

of the available stations are located along the Brazilian

coast, where the most influential cities of Brazil are

located, whereas other countries such as Colombia and

Venezuela have less than 10 rain gauge reports each

for this particular day. The rain gauges spatial distri-

bution is similar all around the year with 900–1300

reports per day. In all cases, the accumulation time is

from 1200 UTC of the previous day to 1200 UTC of the

current day. It is important to point out that with the

additional observations from local South American

agencies and Brazilian automated weather stations, the

number of observations in the CPTEC/INPE database

is somewhat 4 times larger than in GPCC datasets. This

addition will help to retain the overall gauge bias at

finer scales.

3. Merging methodology

The determination of the methodology for construct-

ing a merging technique for daily rainfall estimates over

land using a satellite-based algorithm and rain gauge

network involves three major issues: 1) define the algo-

rithm to be used in the merging process; 2) design the

merging technique; and 3) define an validation strategy

to assess the results.

With regard to the first issue, the experimental real-

time daily TMPA (TMPA-RT; H07) is used as the base

algorithm for retrieving precipitation because TMPA

is successful at approximately reproducing the surface

observation–based histogram of precipitation (3B42RT),

as well as reasonably detecting large daily events, al-

though it does not include information from rain gauges

(control algorithm).

The second issue has been largely discussed in several

papers over the years. In most cases, the SG estimate is

computed on a monthly basis (Xie and Arkin 1997;

Adler et al. 2003). The Climate Precipitation Center

Merged Analysis of Precipitation (CMAP; Xie and

Arkin 1997) approach uses a blended technique devel-

oped by Reynolds (1988), in which the combined sat-

ellite estimates and the gauge data are combined to
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define the relative distribution and the absolute value of

the precipitation field, respectively. On the other hand,

the GPCP approach (Huffman et al. 1997; Adler et al.

2003) has been adopted for a different approach as

described in section 1. The CMAP approach also was

applied for pentad precipitation analysis (Xie et al.

2003), whereas a variant of the GPCP strategy was ap-

plied by H07 to create a 3-hourly, 0.258 3 0.258 grid

analysis (see introduction).

In all cases, generally speaking, there exists the as-

sumption that the rain gauge observations have lower

bias, so this information will prevail over any satellite

retrievals in those regions with more dense networks,

whereas over the ocean (not analyzed in this paper) and

non well-gauged areas, the multisatellite estimates have

a larger weight in the final analysis.

In the proposed approach, daily gauge observations

will be used instead of monthly accumulations. The ir-

regular spatial distribution of rain gauges over the target

region (Fig. 1) makes daily gauge analysis a very chal-

lenging issue. A recent study (Chen et al. 2008) shows

the assessment of different objective techniques for gauge-

based analysis in several regions around the world. Over

South America, such techniques show a good perfor-

mance, whereas in other regions such as Africa where

the gauges are sparser, these techniques cannot satis-

factorily represent the daily rainfall field.

On the other hand, short-time rainfall (i.e., daily ac-

cumulation) is much more variable than monthly pre-

cipitation, so regional effects like topography and local

circulation play an important role in rainfall generation

that need that can be smoothed into monthly scales. To

address this issue, the proposed correction technique is

based on (i) additive and (ii) multiplicative bias cor-

rection schemes applied for each station on a daily basis.

With the first scheme, the observed value (gauge sta-

tion) is subtracted from the satellite rainfall retrieval,

whereas with the second scheme, the ratio between

the observed and estimated value is performed. Those

station-based bias values are gridded using an inverse-

distance weight algorithm (with controls) to fit the

multisatellite estimate resolution (0.258, in this case).

Although the multiplicative scheme suggests that the

ratio between the observed and estimated value is sui-

table to remove the bias of satellite retrievals on daily

basis, this methodology is not useful for determining the

magnitude of the precipitation when the retrieved sat-

ellite value is zero and the observed value is different

from zero (i.e., warm clouds and/or clouds with no ice

structure). On the other hand, additive correction schemes

produce large differences when large discrepancies exist

between the observed and estimated values and the

probability density function (PDF) does not fit with

observed values.

The proposed scheme [hereafter combined scheme

(CoSch)] uses three steps to combine those two ap-

proaches into a single method and remove the bias of

satellite estimates that overcomes some limitations of

both schemes used separately.

The additive bias correction (ADD) is defined as

follows:

rr1 5 rrsat1(rri
obs
� rri

sat), (1)

where rrsat are the multisatellite-based retrieval and

(rri
obs
� rri

sat) represent the result of gridding (repre-

sented by the bar) the additive bias between the ob-

served rainfall and the satellite retrieval (3B42RT, in

this case) for each station (denoted by the superscript i).

Similar to the previous equation, the ratio bias cor-

rection (RAT) is defined as follows:

rr�5 rrsat 3
rri

obs

rri
sat

 !
, (2)

where the same conventions as in ADD [Eq. (1)] were

used.

FIG. 1. Daily rainfall reports received on 26 Mar 2004 over South

America. This figure includes data from different Brazilian agencies

compiled at INPE.
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After this procedure, the first step is to interpolate the

rain gauge observations using the nearest neighbor

method (original values are retained), masking out all

regions with a distance greater than five grid points from

the closest station. In this case, the grid size is 0.258 to

match the satellite estimates.

In a second step, the difference between additive/

multiplicative bias correction and observed values (de-

fined in the previous step) is performed. One particular

scheme (additive or multiplicative) is selected for each

grid point based on the minimum difference between that

particular bias correction and the observation. For each

nonmasked grid point, one particular method is assigned.

In the third step, the bias-corrected rainfall is defined

as follows: the multisatellite (3B42RT) estimate re-

mains with no correction in those areas masked out in

the first step of the procedure. The bias-corrected

rainfall in the rest of the land areas is defined as a weight

average of the additive and multiplicative bias correc-

tion schemes as follows:

rrcorri 5 a 3 rr1
i 1 b 3 rr�i , (3)

where rrcorr is the final result for the CoSch scheme.

Here, rr1 and rr* are defined in (1) and (2) (in this case,

the subscript i denotes a particular grid point), and a

and b are the weight factors. These weight factors rep-

resent the number of times a particular scheme is selected

in a 38 3 38 box centered in the grid box with i divided by

the total grid points in that particular box (excluded all

masked points). By construction, a 1 b 5 1 for every

nonmasked grid point. This approach takes into account

large-scale variations (in terms of which scheme works

better in a larger area than a single grid point) and also

produce spatially continuous rainfall fields.

Figure 2 shows the rainfall field for 26 March 2004

for 3B42RT (left panel) and after applying the CoSch

scheme (right panel). Although the general spatial pat-

tern is preserved in both retrievals, some differences in

absolute value are observed in the western Amazonia

and French Guyana (among others smaller regions)

based on ground observations. Figure 3a shows the

relative PDF distribution (in percent) for this particular

day. It is observed that the relative PDF distribution for

both retrievals (before and after the bias correction)

shows a similar structure. In a broader perspective, the

relative PDF distribution (in percent) for 2004 is also

presented (Fig. 3b). In this case, the gauge-based PDF is

also included in the same graph. This histogram exhibits

a similar shape for all considered variables (multi-

satellite, merge analysis, and individual observations).

To assess the temporal continuity of this bias cor-

rection scheme, January 2004 (Southern Hemisphere

summer) was selected to determine if any correction

scheme shows some preference over the other over

FIG. 2. Rainfall retrieval on 26 Mar 2004 for (left) 3B42RT and (right) after applying CoSch.
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time. Figure 4 shows the percentage of pixels, for a

given day, that a certain correction scheme was selected.

The result shows a pretty steady situation during the

month in which around 54% of the pixels are selected

according to the ADD scheme, whereas only 46% of the

time the RAT technique is chosen. Considering the

mentioned values for both schemes, the difference be-

tween the number of days (in percent) that a given

scheme was chosen and the mean value for January

2004 was calculated for techniques (ADD and RAT).

The spatial distribution of RAT relative bias (percent-

age of days above or below the average defined in the

previous sentence) is presented in Fig. 5a. Because

of construction constrains, the sum of RAT and ADD

(not shown) is equal to 0. It can be observed that over

southern South America (approximately southward

208S), the RAT scheme is selected approximately 20%

above the average (bluish colors), whereas this behavior

is opposite over most of part of the Brazilian territory

and Bolivia, where reddish colors prevail. This means

that RAT is less frequently selected than the average, so

ADD scheme is more frequently selected during this

particular month. The largest deviations from the av-

erage are observed along the coasts of Chile, Peru,

Colombia, Venezuela, and the Guyanas. Those regions

exhibit the scarcest gauge networks in the region. One

hypothesis about this behavior is that the selection

of a given scheme is related to the precipitation re-

gime. Figure 5b shows a close agreement between the

RAT bias and the accumulated monthly rainfall: larger

values of rainfall are associated with negative (posi-

tive) values of RAT (ADD), whereas RAT (ADD) is

more (less) frequently chosen in those regions with less

(more) rainfall. Other factors such as circulation and

gauge density (see Fig. 1) also should influence these re-

sults, but this discussion is out of the scope of this research.

The third issue, about the validation strategy, will be

described in the next section.

4. Validation strategy and experimental design

For testing this bias removal technique, a daily rain

gauge dataset for South America during 2004 (refer to

section 2b for more details) was used in two ways in a

cross-correlation process: (i) gauge reports show 10% of

the randomly selected stations were withdrawn; and (ii)

those at the remaining 90% of the stations were used in

the bias removal process. This cross correlation process

was conducted systematically 10 times but every time

the validation dataset (10%) is selected from the re-

maining data used in the previous step. This process

guarantees that each gauge was withdrawn once. The

corrected rainfall estimate was then compared with the

corresponding observation to examine the performance

of the proposed technique. This process is similar to the

methodology described in Chen et al. (2002, 2008). For

FIG. 3. (a) Relative PDF distribution (%) for CoSch and 3B42RT on 26 Mar 2004. (b) Same as (a) but for 2004 and

the observed rainfall PDF is also included.

FIG. 4. Percentage of pixels selected for both bias removal

procedures for January 2004. Uncorrected and no-rainfall pixels

are excluded in this analysis.
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comparison purposes, four other estimates were in-

cluded in this study: additive bias removal and ratio bias

removal (as defined in the previous section) and the

research and real-time version of TMPA (3B42V6 and

3B42RT). For the first two correction schemes (ADD

and RAT), the same cross correlation process is per-

formed; however, for the last two estimates, the values

of 3B42V6 and 3B42RT (control run) were selected and

compared for the same validation dataset (10% of rain

gauges randomly selected and conducted 10 times) to

make all the statistical results comparable among them.

Table 1 shows the monthly mean (calculated on daily

basis from individual measurements) of bias (in milli-

meters), root-mean-square error (in millimeters), and

correlation coefficient (CORR) for the five proposed

models for January, April, July, and October 2004. Bold

values are the best result obtained for a particular

month and for each statistical parameter. In this case, it

can be shown that the CoSch has a better performance

than ADD and RAT separately, but it also has a better

performance than 3B42V6. This situation is highly

remarkable when RMSE and CORR are compared

among different estimates. Among these five different

estimates, the worse performance is for 3B42RT (con-

trol algorithm), in which no rain gauge information is

added. This result shows that the CoSch adds some

extra value to the ADD and RAT when used separately,

retaining some local spatial variability on daily rainfall.

In 2003 the International Precipitation Working Group

(IPWG) began a project to validate and intercompare

FIG. 5. (left) Spatial distribution of RAT relative bias for January 2004. Positive values (blues) mean that RAT was chosen above 46%

(average value) of the time, whereas negative values (reds) show the opposite behavior. (right) Monthly rainfall accumulation for January

2004 (data available online at http://www.cptec.inpe.br/clima/).

TABLE 1. Cross-validation test results over South America for January, April, July, and October using 90% of gauge network for the bias

removal process in CoSch, ADD, and RAT. Best results for each month are in bold.

3B42RT CoSch ADDITIVE RATIO 2B42V6

BIAS

(mm)

RMSE

(mm) CORR

BIAS

(mm)

RMSE

(mm) CORR

BIAS

(mm)

RMSE

(mm) CORR

BIAS

(mm)

RMSE

(mm) CORR

BIAS

(mm)

RMSE

(mm) CORR

January 20.65 9.15 0.38 20.22 6.70 0.57 0.37 8.71 0.44 0.37 8.71 0.44 0.24 8.61 0.43

April 0.18 5.29 0.34 20.14 3.78 0.51 0.60 4.87 0.38 0.25 4.87 0.38 0.03 4.88 0.38

July 20.36 2.95 0.27 20.22 1.84 0.51 1.05 2.83 0.31 20.17 2.83 0.31 20.31 2.86 0.33

October 1.05 4.32 0.35 0.05 3.04 0.47 0.25 4.23 0.41 1.27 4.23 0.41 1.21 4.22 0.38
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satellite rainfall estimates (Ebert et al. 2007). Some

categorical statistics such as bias score (BIAS), proba-

bility of detection (POD), false alarm ratio (FAR), and

equitable threat score (ETS) can be computed for dif-

ferent rain rate thresholds as follows: 1, 2, 5, 10, 20, and

50 mm. All these parameters can be computed from a

rain/no-rain contingency table and measure the per-

formance of a given algorithm (refer to Wilks 1995 for

more details). Figure 6 shows the annual mean of the

aforementioned categorical statistics (based on daily es-

timates) for 3B42RT, 32B42V6, and CoSch for all rainfall

thresholds, except for 50 mm because the lack of events

above that threshold can affect the robustness of the

statistics. It can be shown that the performance of CoSch

is better for all rainfall thresholds. POD (Fig. 6a) is higher

for all thresholds, suggesting that CoSch can get more

correct estimates in each category, whereas FAR (Fig.

6b) is smaller for all categories, suggesting that the

amount of false alarms estimated by CoSch is smaller

than other estimates. BIAS (Fig. 6c) shows similar values

for all estimates (close to one, which is the ideal value).

Nevertheless, CoSch tends to overestimate lower values

and underestimate the largest values. ETS (Fig. 6d) mea-

sures the fraction of observed and/or estimated events that

were correctly estimated, adjusted for hits associated with

random chance. This parameter is sensitive to hits because

it penalizes both misses and false alarms in the same

way. In this case, the improvement is clear for all rainfall

thresholds when compared with 3B42RT and 3BR2V6.

To further quantify the influence of the gauge net-

work density on the accuracy of all different estimates,

cross-validation tests were conducted using only 10%

(randomly selected) of available data to perform the

additive, ratio, and the combined schemes. Another

10% (excluding those chosen to perform the correction)

was used to validate the results of the aforementioned

schemes and also 3B42RT and 3B42V6. This experi-

ment was carried out 10 times using the same strategy as

the previous analysis. This approach guarantees that

each gauge was withdrawn once. Both results, using 90%

of the gauges in the first analysis and using only 10% to

perform the correction in a second experiment, are sta-

tistically comparables. This comparison gives us the op-

portunity to examine the influence of varying gauge

density to the quantitative accuracy of the methodology.

Table 2 shows the same statistical parameters as Table

1 but, in this case, with only 10% of the gauges being used

to perform the bias removal process. As expected, the

performance of these methodologies (CoSch, ADD, and

RAT) improves with increasing density of the gauge

network, whereas the other estimates (3B42RT and

3B42V6) show approximately the same values because

the number of gauges used to validate remains the same

(10% randomly selected for each of the 10 experiments).

Nevertheless, it is important to point out that despite

using 10% of available gauges to compute the bias re-

moval process, the technique shows similar results as

3B42V6 (which uses high-quality monthly data to perform

FIG. 6. Annual mean of POD, FAR, ETS, and BIAS for different rainfall thresholds. Here, 90% of gauge network

was used to perform CoSch.
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a bias removal process, as explained in section 2) and

3B42RT. On the other hand, CoSch performed better

than ADD and RAT separately. In this case, the dif-

ference between CoSch and RAT and between CoSch

and ADD is closer than in the previous analysis, sug-

gesting that, for very sparse rain gauge networks, the

added value of the combination is less effective than in

the previous case. A similar situation can be observed

with the rest of the categorical statistics (Fig. 7). The

performance of CoSch is better for all the rainfall

thresholds, but the difference, as expected, is smaller

than the previous analysis. The POD (Fig. 7a) is higher

for all thresholds, suggesting that despite the network

density being very scarce, CoSch can get more correct

estimates in each category, whereas FAR (Fig. 7b) is

smaller, suggesting that fewer false alarms are estimated

by CoSch in all categories than other estimates. The

BIAS (Fig. 7c) shows similar values for all estimates

(close to one, which is the ideal value), whereas ETS

(Fig. 7d) shows an improvement for all the rainfall

thresholds when compared with 3B42RT and 3BR2V6.

5. Summary and conclusions

A comprehensive assessment has been performed

to examine the performance of a new methodology

(CoSch) to merge satellite estimates and daily gauge data

over South America during 2004. For comparison pur-

poses, 3B42RT (control algorithm) and 3B42V6 (which

also include calibrated monthly gauge data from GPCC)

were also included in this analysis. Two intermediate re-

sults (ADD and RAT) used in the combined scheme were

also examined to determine how the proposed meth-

odology works.

Intercomparisons and cross-validations tests have

been carried out for the control algorithm and for the

different merging schemes over a South American re-

gion during 2004, for different months belonging to

TABLE 2. Same as Table 1 but using only 10% of gauges.

3B42RT CoSch ADDITIVE RATIO 2B42V6

BIAS

(mm)

RMSE

(mm) CORR

BIAS

(mm)

RMSE

(mm) CORR

BIAS

(mm)

RMSE

(mm) CORR

BIAS

(mm)

RMSE

(mm) CORR

BIAS

(mm)

RMSE

(mm) CORR

January 20.75 9.09 0.38 0.99 8.38 0.47 1.07 8.46 0.47 2.12 9.99 0.41 0.15 8.63 0.44

April 0.14 5.21 0.32 0.37 4.70 0.39 0.31 4.95 0.38 0.41 5.21 0.34 0.16 4.89 0.37

July 20.44 3.02 0.26 20.03 2.38 0.42 0.43 2.59 0.41 20.44 2.74 0.28 20.34 2.84 0.33

October 0.97 4.36 0.36 0.97 4.07 0.39 0.76 4.14 0.39 1.53 4.71 0.34 1.19 4.21 0.40

FIG. 7. Same as Fig. 3 but with 10% of gauge network used to perform CoSch.
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different seasons and for different network densities.

The results are summarized as follows:

d The election of the bias removal technique seems to

be related to the rainfall regime: the additive bias

correction scheme is selected above the mean value

when the rainfall rate is lower and the inverse case

occurs with the ratio-based scheme.
d The RMSE and the correlation coefficient of the

CoSch performs better than ADD and RAT sepa-

rately, suggesting that an extra value is added when

the proposed scheme is used. CoSch also shows the

best results of all analyzed merged schemes.
d The control algorithm (3B42RT) presents the poorest

performance. This result is expected because this al-

gorithm does not use any gauge data, whereas 3B42V6,

which includes only the GPCC monthly data, tends to

improve all statistic parameters when compared with

3B42RT, using an independent gauge dataset to vali-

date.
d In term of the performance for different rainfall

thresholds, CoSch again shows the best performance

when compared with other merging techniques and

the control run.
d The quality of the rainfall estimate degrades as the

gauge network being used became sparser. Neverthe-

less, the retrieval has almost the same quality (from a

statistical point of view) as those based on monthly

gauge data.

Based on these results, future work will be focused on

the evaluation of this technique under different rainfall

regimes and on a different region of the world. This

experience could be replicated using different control

algorithms (i.e., CMORPH) to provide the scientific

community with a suite of high-resolution, high-quality

satellite–gauge-based analyses of daily precipitation

over land in global and regional domains. Nonetheless,

because the high-resolution precipitation datasets con-

strained by daily observations are suitable for land sur-

face and weather application, this technique has been

identified as one of the best candidates for precipitation

data forcing production for the South American LDAS

across the entire continent.

It is also important to mention that other factors like

instrumental errors (e.g., wind blowing, wall wetting,

evaporation, and splashing, among others) can also af-

fect the precipitation measurement but the analysis of

those factors are out of the scope of this paper.
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