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ABSTRACT

This paper evaluates a strategy for the assimilation of satellite radiance ob-

servations with the Local Ensemble Transform Kalman Filter (LETKF) data as-

similation scheme. The assimilation strategy includes a mechanism to select the

radiance observations that are assimilated at a given grid point and an ensemble-

based observation bias correction technique. Numerical experiments are carried

out with a reduced (T62L28) resolution version of the model component of the

National Centers for Environmental Prediction (NCEP) Global Forecast System

(GFS). The observations used for the evaluation of the assimilation strategy are

AMSU-A Level 1B brightness temperature data from the Earth Observing Sys-

tem (EOS) Aqua spacecraft. The assimilation of these observations, in addition

to all operationally assimilated non-radiance observations, leads to a statisti-

cally significant improvement of both the temperature and wind analysis in the

Southern Hemisphere. This result suggests that the LETKF, combined with

the proposed data assimilation strategy for the assimilation of satellite radiance

observations, can efficiently extract information from radiance observations.
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Rodovia Dutra, km 40, CEP 12630-000, Cachoeira Paulista, São Paulo, Brazil.

E-mail: araveq@cptec.inpe.br

1

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



1. Introduction

Although ensemble-based Kalman Filter data assimilation schemes were first proposed

more than a decade ago (Evensen 1994; Burgers et al. 1998; Houtekamer and Mitchell 1998),

evidence has emerged only recently that ensemble-based Kalman filters may be viable al-

ternatives to the variational techniques in operational numerical weather prediction. In

particular, several research groups have designed computationally efficient ensemble-based

Kalman filters that have been successfully tested with observations of the real atmosphere in

both global (e.g. Houtekamer et al. 2005; Whitaker et al. 2004, 2008; Szunyogh et al. 2008;

Miyoshi and Sato 2007; Miyoshi and Yamane 2007) and limited-area (e.g. Torn and Hakim

2008; Bonavita et al. 2008) settings.

In this paper, we focus on the performance of one particular ensemble-based Kalman filter

scheme, the Local Ensemble Transform Kalman Filter (LETKF), for assimilating satellite

radiance observations. The LETKF algorithm was developed by Ott et al. (2004) and Hunt

et al. (2004, 2007) and was tested on both simulated observations in the perfect model

scenario (Szunyogh et al. 2005) and on observations of the real atmosphere (Miyoshi and

Sato 2007; Szunyogh et al. 2008; Whitaker et al. 2008). In particular, Szunyogh et al. (2008)

and Whitaker et al. (2008) assimilated non-radiance observations in a reduced-resolution

version of the model component of the NCEP GFS and found that the performance of the

LETKF was superior to that of the Statistical Spectral Interpolation (SSI) of NCEP in

data-sparse regions.1

Our goal here is to extend the study of Szunyogh et al. (2008) by augmenting the observa-

1The SSI was the operational 3D-Var data assimilation system of NCEP until April 2007.
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tional data set with satellite radiance observations. To assimilate these satellite observations,

we employ techniques for the localization and bias correction of the satellite radiance ob-

servations, which we developed and tested in an idealized setting in Fertig et al. (2007,

2009). The observations we assimilate are AMSU-A Level 1B brightness temperature data

from an instrument flown on the Earth Observing System (EOS) Aqua spacecraft (Olsen

2007). Hereafter, we refer to brightness temperature and radiance observations collectively

as radiance observations, as the assimilation of both of these types of data requires the use

of a radiative transfer model. The performance of the LETKF in assimilating radiance ob-

servations is assessed by comparing the results to those obtained by assimilating only the

non-radiance observations.

The structure of the paper is as follows. Section 2 provides a summary of our implemen-

tation of the LETKF on the model component of the NCEP GFS, while Section 3 is a brief

description of the AMSU-A observational data sets. Section 4 explains the design of our

numerical experiments, whose results are reported in section 5. Section 6 offers a summary

of our conclusions.

2. The LETKF for the NCEP GFS model

In what follows, we explain our implementation of the LETKF algorithm on the model

component of the NCEP GFS. We introduce the major components of the data assimilation

algorithm and summarize the data assimilation procedure for the conventional non-radiance

observations. Finally, we explain the modifications required to assimilate satellite radiance

observations.
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a. Definitions

We assume that, similar to the practice of operational numerical weather prediction,

observations are assimilated from the observation time window

τn = [tn −∆t/2, tn + ∆t/2]

at the analysis time tn. The observations from τn form the vector of observations yo
n. We

introduce the notation γn for the state space trajectory of the model in τn, that is,

γn = x(t), t ∈ τn, (1)

where the vector x(t) is the finite-dimensional representation of the atmospheric state on the

model grid. The two inputs of the LETKF algorithm are the observation vector yo
n and an

ensemble of K analyses x
a(k)
n−1, k = 1, 2, . . . , K, from the previous analysis time tn−1 = tn−∆t.

The LETKF consists of a forecast step and a state-update step. In the forecast step,

each ensemble member is integrated forward by the time interval 3
2
∆t using the K members

of the analysis ensemble x
a(k)
n−1, k = 1, . . . , K, as initial conditions to obtain an ensemble of

background forecast trajectories, γ
b(k)
n , k = 1, . . . , K. In our current implementation of the

LETKF, the members of the background ensemble are 6-hour forecast trajectories starting

at the 3-hour forecast lead time and ending at the 9-hour forecast lead time relative to tn−1.

The formulation of the state update step of the LETKF, similar to that of all other

modern data assimilation schemes, is based on the assumption that we know the observation

operator h(γn) that satisfies

yo
n = h(γt

n) + εn, t ∈ τn. (2)

4

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



Here, γt
n is the model representation of the (unknown) true system trajectory and εn is a

vector of Gaussian random observation noise with zero mean and error covariance matrix Rn.

In practice, the observation operator typically consists of an interpolation of γn to the time

and location of the observations and a conversion of the model variables to the observed

quantities. In our implementation of the LETKF on the NCEP GFS, the time interpolation

component of h(γn) for all types of the observations is performed by storing the background

trajectories γ
b(k)
n , k = 1, . . . , K, with a 1-hour resolution and applying a linear interpolation

to the stored model fields to obtain the ensemble of model states at the observation time

with a one minute accuracy.

In what follows, we discuss how to obtain an analysis xa
n at time tn and drop the sub-

script n. The LETKF obtains the vector components of the analysis xa independently for

each grid point. We define a local state vector x` that is composed of the model variables

at model grid point `. The LETKF generates a K-member ensemble of local analyses, x
a(k)
` ,

k = 1, . . . , K by computing an ensemble of “weight vectors” wa(i), k = 1, . . . , K such that

x
a(k)
` = xb

` + Xb
`w

a(k)
` . (3)

Here xb
` is the ensemble mean of the local background state vectors x

b(k)
` , k = 1, . . . , K,

and Xb
` is the matrix of background ensemble perturbations whose kth column is the kth

background ensemble perturbation xb(k) − xb. (The overbar indicates the ensemble mean.)

The best estimate of the state at location ` is the mean of the analysis ensemble,

xa
` = xb

` + Xb
`w

a
` . (4)

The members of the global analysis ensemble, xa(k), and the global analysis, xa, are obtained

by collecting the local analyses, x
a(k)
` and xa

` , for all locations `.

5

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



b. Conventional observations

For the conventional (non-radiance) observations, we compute the weight vectors w
a(k)
` ,

k = 1, . . . , K, and their ensemble mean, wa
` , by the following procedure:

0. The observation operator h(γn) is defined. In the two horizontal spatial dimensions,

h(γn) is a simple bilinear interpolation. Since the vertical coordinate in the NCEP

GFS model is σ (defined by the ratio of the pressure and the surface pressure) and the

vertical position of the observations is given in pressure, the vertical interpolation for

a given observation is carried out in three steps:

(a) We calculate the pressure at each σ-level at the horizontal location of the obser-

vation by multiplying σ by the background surface pressure interpolated to the

observational location.

(b) We define 28 σ layers, each bounded by a pair of σ levels (the lowest layer is

defined by the model surface and the lowest σ level).

(c) We find the σ layer that contains the observation and linearly interpolate the

logarithm of the pressure to the observation location using the pressure values at

the two σ-levels that bound the layer.

1. The observation operator h(γn) is applied to each member γ
b(k)
n , k = 1, 2, . . . , K, of the

ensemble of background trajectories to obtain an ensemble yb(k), k = 1, . . . , K, of the

model-predicted values of the observables at the observation locations. The ensemble

average yb of the ensemble yb(k), k = 1, . . . , K, is computed and the matrix Yb is

constructed by taking its columns to be the vectors obtained by subtracting yb from
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each ensemble member yb(k), k = 1, . . . , K.

2. The localization is performed. For each location (grid point) `, the observations that

are thought to have useful information about the atmospheric state at grid point `

are selected for assimilation. The selected observations form the local observation

vector yo
` . The vector yb

` and the matrices Yb
` and R` are formed by selecting those

vector components and matrix elements that are associated with the selected set of

observations at `. In the present study, we choose the localization parameters as

follows:

(a) In the horizontal direction, observations are considered from an 800-km radius

neighborhood of the location (grid point) `. The influence of observations is

tapered as a function of the radius r from the grid point. In particular, R−1
`

is mulitplied by a factor µ(r) such that µ(r) = 1 for r ≤ 500 km and µ(r) =

(800− r)/300 for 500 km ≤ r ≤ 800 km.

(b) In the vertical direction, observations are considered from a layer around `. The

depth of the layer is 0.35 scale height between model levels 1 and 15 (below

σ = 0.372), and, starting with level 15, the depth gradually increases with height

to reach 2 scale heights at the top of the model atmosphere (defined by σ = 0.003).

(The scale height is defined by the vertical distance in which the surface pressure

drops by a factor of e ≈ 2.718.) Surface pressure observations are also considered

from the local horizontal region when the state is analyzed at a model grid point,

which is at or below model level 15.

(c) The surface pressure components of the state vector are treated differently from
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the other components. To obtain the surface pressure analysis at a location `, we

use all surface pressure observations from an 800 km radius of ` and all temper-

ature and wind observations from a 800 km radius of ` between model levels 2

(σ = 0.982) and 5 (σ = 0.916). As for all other observation types, the influence

of the surface observation is tapered beyond 500 km radius.

3. The weight vector wa
` is computed by

wa
` = P̃a

` (Yb
`)

TR−1
` (yo

` − yb
`). (5)

Here,

P̃a
` = [(k − 1)I/ρ+ (Yb

`)
TR−1

` Yb
` ]
−1, (6)

where ρ ≥ 1 is a multiplicative covariance inflation factor and I is the identity matrix.

In our implementation, ρ is a smoothly varying three-dimensional scalar field: ρ tapers

from 1.25 at the surface to 1.2 at the top of the model atmosphere in the SH extratropics

and from 1.35 to 1.25 in the NH extratropics, while ρ changes smoothly throughout

the tropics (between 25◦ S and 25◦ N) from the values of the SH extratropics to the

values of the NH extratropics.

4. The matrix Wa
` = [(k − 1)P̃a

` ]1/2 is computed.

5. The weight vector wa
` is added to each row of Wa

` . The columns of the resulting matrix

are the members of the ensemble of weight vectors w
a(k)
` , k = 1, . . . , K.
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1) Satellite Radiance Observations

The assimilation procedure is more complicated for the radiance observations than for the

conventional observations. The primary source of the added complexity is the observation

operator h, which, instead of the simple interpolation procedure described in step 0 of the

LETKF algorithm, is the Community Radiative Transfer Model (CRTM Han et al. 2005) of

the Joint Center for Satellite Data Assimilation (JCSDA).

One important issue is the bias in the observations: because the radiative transfer model

is subject to large bias, in contrast to the case of the conventional observations, we cannot

assume that the CRTM satisfies Eq. (2). We assume that the equality can be restored by

adding a bias correction term b to the the output of the CRTM. That is, we assume that

the bias corrected observation operator

ĥ(γ,β) = h(γ) + b (7)

satisfies the relation

ŷo = ĥ(γt) + ε, (8)

which is the analogue of Eq. (2). The dimension of the vectors ĥ, ŷo, and b, which we denote

by J , equals the total number of satellite channels for which observations are assimilated. The

vector ŷo is composed of the radiance components of yo, while the vector of bias correction

parameters β is defined the following way: each component bj of the bias correction vector

b is estimated by the linear combination

bj = β0
j +

I∑
i=1

βi
jpi, j = 1, . . . , J, (9)

of a set of “predictors” pi(t), i = 1, . . . , n. The predictors can be chosen to be any scalar
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parameters that can be determined from the model or from information provided with the

observations (e.g. Eyre 1992; Derber and Wu 1998; Harris and Kelly 2001). Typical ex-

amples for model-based predictors are the skin temperature and the thickness of different

atmospheric layers, while an example for an observation-related predictor is the scan angle

at which the radiance observation is taken by the satellite-based observing instrument. In

our formulation, the set of predictors is the same for all observations that form ŷo, but the

coefficients βi
j(t), i = 0, . . . , I, are different for the different channels and different instru-

ments. Thus, the total number of bias correction coefficients is M = (I + 1) × J . Since

bj = β0
j when all predictors are zero, we call β0

j the intercept for the channel associated with

the jth component of the bias correction vector b.

We obtain estimates of the bias parameters by the method of state augmentation (e.g.

Friedland 1969; Derber and Wu 1998; Dee 2005): we augment the state vector x by the

vector β of (I + 1)× J bias parameters to define the augmented state vector

z =

 x

β

 (10)

and obtain an estimate of the augmented state vector by applying the LETKF algorithm to

the augmented state vector z instead of the state vector x.

The bias components βb(k), k = 1, . . . , K of the background ensemble members at tn are

assumed to be equal to the analyzed values βa(k), k = 1, . . . , K, of the bias parameters at the

previous analysis time tn−1. This is formally equivalent to assuming that the time evolution

of the bias parameters is persistence, that is,

βb(k)
n = β

a(k)
n−1, k = 1, . . . , K. (11)
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The second important issue is the nonlocal nature of the observation operator for radi-

ance: in contrast to the case of the conventional observations, where the observation operator

for a given observation depends on the model state only at the nearby grid points, the out-

put of the CRTM depends on the entire atmospheric column of the model atmosphere at

the horizontal location of the observation. This suggests that the vertical component of the

localization strategy, implemented in step 2 of the LETKF, must be modified for the radi-

ance observations. Our modified data selection strategy is based on the vertical weighting

function, wl, which is computed by the CRTM for each radiance observation at all model

levels l = 1, . . . , L. To be precise, for a given observation, the CRTM computes the radiance

by

h(x) = Rs +
L∑

l=1

B(Tl)wl, (12)

where Rs is the contribution of the Earth’s surface to the radiance, T (l) is the temperature

at model level l, L is the number of model levels, B(Tl) is the Planck function, and the

weights wl, l = 1, . . . , L, satisfy the condition

L∑
l=1

B(Tl)wl = 1. (13)

We apply the cutoff-based observation strategy suggested by Fertig et al. (2007) to select

the model levels where a given observation is assimilated, as follows:

• choose a cutoff parameter η (0 < η ≤ 1);

• find the model level lkmax, for each ensemble member k = 1, . . . , K, at which wk
l takes

its maximum value wk
max;

• search for the bottom and the top of the deepest layer around level lkmax, in which the
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weighting function satisfies the condition wk
l ≤ ηwk

max;

• compute the ensemble mean, ltop, of the index of the top of the layer identified in the

previous step and the ensemble mean, lbottom, of the index of the bottom of the same

layer;

• assimilate observations from the layers bounded by lbottom and ltop.

A suitable value of η, which provides an analysis of acceptable accuracy at minimum com-

putational cost, is found by numerical experimentation.

To incorporate the bias estimation procedure and data selection strategy we describe

here, we make the following specific changes in the main steps of the LETKF algorithm:

0. The observation operator for the radiance observations is defined by ĥ.

1. The ensemble of radiance values at the observation locations, ŷb(k), k = 1, . . . , K, is

obtained by applying ĥ to the background trajectories γb(k), k = 1, . . . , K.

2. The radiance observations that form the ŷo
` component of yo

` at the different grid points

` are selected for assimilation by the cutoff-based strategy.

Steps 3–5 of the algorithm, which provide the weights w
a(k)
l for the computation of the

analysis of the local augmented state vector

z
a(k)
` = zb

` + Zb
`w

a(k)
` , (14)

are the same as for the conventional observations. The state analysis components xa(k) of

za(k), k = 1, . . . , K, are obtained as before, collecting the state vector components x
a(k)
`

of the local analyses of the augmented state vectors z
a(k)
` for all locations `. A different
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procedure is needed, however, to obtain the global analysis ensemble of bias parameters,

βa(k), k = 1, . . . , K, from the bias components β
a(k)
` of z

a(k)
` , k = 1, . . . , K. Because the

bias component of the augmented state vector is composed of bias correction parameters

for all satellite channels assimilated at location `, the same bias parameter is estimated at

many different locations `. To obtain a single estimate of each of the M bias parameters,

we average the local estimates of the bias parameters over all locations ` by the formula

βa(k)
m =

∑
` cos(φ`)β

a(k)
m,` σ

−2
m,`∑

` cos(φ`)σ
−2
m,`

, m = 1, . . . ,M. (15)

Here, β
a(k)
m and β

a(k)
m,` are the mth components of βa(k) and β

a(k)
` , respectively, φ` is the

latitude at location `, and the factor cos(φ`) accounts for the dependence on the latitude of

the area represented by a grid point. The factor σ−2
m,` is the inverse of the variance

σ2
m,` = (K − 1)−1

K∑
k=1

(
β

a(k)
m,` − βa(k)

m

)
(16)

of the analysis ensemble for the mth component of the bias parameter vector β at location `.

Weighting with the inverse of the variance ensures that locations where the uncertainty in

the estimate of a given bias parameter is larger contribute with a smaller weight to the global

estimate of that bias parameter.

3. The Observations

Following the convention of operational numerical weather prediction for global models,

we use a 6-hour window and prepare analyses four times a day, at 0000 UTC, 0600 UTC,

1200 UTC, and 1800 UTC. A typical example for the number of observations we assimilate

is shown in Table 2. On any given day, we assimilate about 1 million observations, of which
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about 15–20% are radiance observations. These radiance observations fill important data

voids in the coverage by the conventional data (see Figures 1 and 2). We process many

more observations than indicated by Table 2, but the number of observations is reduced

by selecting only a subset of the radiance observations for assimilation and by rejecting

observations that do not pass quality control. The data selection strategy and the quality

control procedure are explained in Section 4.

a. Conventional Observations

We assimilate all conventional observations that were assimilated operationally at NCEP

between January 1, 2004, 0000 UTC and February 29, 2004, 1800 UTC. This data set

includes observations of the surface pressure by synoptic land stations; virtual temperature

and surface pressure by surface marine observing platforms; splash-level virtual temperature

by dropsondes; virtual temperature and wind by rawinsondes; sensible temperature and wind

by commercial airliners; flight-level virtual temperature and wind by reconnaissance planes;

cloud-drift wind by the GMS-5, METEOSAT-5, METEOSAT-7, GOES-8, and GOES-10;

and QUICKSCAT surface wind by scatterometers. Figure 1 shows the spatial distribution

of the assimilated temperature observations for a typical 6-hour observations time window.

b. AMSU-A Level 1B Brightness Temperature Data

The acronym AMSU stands for Advanced Microwave Sounding Unit. AMSU-A is pri-

marily a temperature sounder that provides atmospheric information in the presence of non-

precipitating clouds. We assimilate a subset of the AMSU-A Level 1B brightness temperature
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data set, which contains calibrated and geolocated brightness temperatures in degrees Kelvin

for 15 microwave channels. We assimilate only 8 of the 15 channels, since the observations

from channels 1, 2, 3, and 15 have a strong surface signal component, while channels 12, 13,

and 14 are strongly influenced by the atmospheric conditions at altitudes that are higher than

the top of our model atmosphere. Figure 2 shows the spatial distribution of the assimilated

AMSU-A observations for a typical 6-hour observations time window.

4. Numerical Experiments

The primary goal of our numerical experiments is to determine how much improvement

is achieved in the analyses when, in addition to the conventional observations, we assimilate

the AMSU-A observations with the proposed strategy. We assess the performance of the

data assimilation system when the AMSU-A observations are included by comparing the

analysis and short-term (48-h) forecast errors with those from two reference experiments.

In one of these reference experiments, we assimilate the AMSU-A observations but do not

apply bias correction to the radiance observations, while in the other reference experiment,

we assimilate only the conventional observations.

a. Experiment design

In the two experiments that assimilate radiance observations, we do not assimilate more

than one radiance observation per channel at a given grid point. Instead, we assimilate the

first observation from the data set that satisfies all quality control criteria. In particular,
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we do not assimilate observations from mixed-surface footprints (e.g., from areas where sea

water is mixed with ice) and observations for which the scan angle is larger than 35 degree.

We also reject observations for which the difference between the observed value and ĥ(x)

is more than five times larger than both the ensemble spread (standard deviation of the

ensemble) and the presumed standard error of the observations.

The model used in this study is the 2004 model component of the operational NCEP GSF

truncated to T62L28 resolution. This model is identical to the one that was used in Szunyogh

et al. (2008) and Whitaker et al. (2008). The only important improvement in our LETKF

data assimilation system, compared to the one we evaluated in Szunyogh et al. (2008), is

the correction of a coding error that led to the rejection of most scatterometer observations

in the former implementation of the system. This correction leads to an improvement of

the analyses and short-term forecasts in the Southern Hemisphere extratropics near the

surface. We use this improved set of analyses as the baseline for the evaluation of the results

obtained with the augmented obsrvational data set. Despite the aforementioned coding error,

the former version of the LETKF provided analyses and short-term forecasts that in the SH

were, on average, more accurate at the 99% significance level than those obtained with the

then-operational Spectral Statistical Interpolation (SSI) of NCEP. Consequently, our baseline

data set consists of reasonably high quality analyses. We emphasize, however, that based on

the information available to us, it is impossible to infer how the performance of the LETKF

would compare to the SSI or the currently operational Grid-point Statistical Interpolation

(GSI) of NCEP (Wu et al. 2002) in assimilating the satellite radiance observations we consider

here.
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b. Verification methods

We use the verification and significance test methods described in detail in Szunyogh

et al. (2008). In particular, verification of the analyses and the 48-hour forecasts is made

against the high-resolution (T254L64) operational real-time analyses of NCEP from 2004.

While the statistical significance of the difference between the state estimation (analysis or

forecast) errors with the proposed assimilation strategy and in the reference experiments is

tested using a two-sample t-test (Wilks 2006). Our implementation of the test returns the

probability with which the null hypothesis, i.e., that the difference between the time mean

of the error statistics is the result of random statistical fluctuations, can be rejected. In

our verification statistics, the time averaging is applied either to the root-mean-square error

computed over a large domain in model grid space or to errors at model grid points.

c. LETKF parameters

Most of our choices of the LETKF parameters, which define the localization for the

conventional observations and the variance inflation for the state vector components, are

discussed in section 2. The radiance observations are corrected using two predictors: the

skin temperature (p1) and the scan angle (p2), that is, the bias correction term is estimated

by

bj = β0
j + β1

j p1 + β2
j p2, j = 1, . . . , J = 8. (17)

Since the number of bias parameters is I + 1 = 3, the number of bias parameters that we

estimate is M = (I + 1) × J = 24 . The global values of the bias correction parameters
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are obtained from the local values by averaging them over all observation locations in three

zonal latitude bands (90◦S–30◦S, 30◦S–30◦N, 30◦N–90◦N) using Equations (15) and (16).

We chose these particular predictors and averaging regions after testing the sensitivity of

the results to the selection of these parameters by numerical experimentation. To be specific,

we first added one or two predictors representing the depth of selected pressure layers of the

atmosphere. (Such predictors are often used by the NWP centers and we hoped that we

could define a single global value of each bias parameter in a similar way.) The accuracy

of the analyses and ensuing forecasts, however, was clearly degraded by adding the extra

predictors. We observed similar degradations when we averaged the local estimates of the

bias parameters over five latitude bands, instead of three, breaking up the both extratropical

averaging regions into midlatitude and polar regions. In another series of experiments, we

reduced either the number of predictors or the number of averaging regions and found that

those configurations performed similarly well to our standard choice of two predictors (three

bias parameters) and three averaging regions. The only disadvantage of these configurations

was that anomalously large, though non-catastrophic, errors occurred either in the Tropics

or in one of the polar regions at a few analysis times.

We find that a 60-member ensemble provides a sufficiently large number of degrees of

freedom to obtain accurate estimates of the bias parameters and the atmospheric state. For

the data selection, we use a cutoff value of η = 0.8. This value was determined by numerical

experimentation by gradually decreasing η and choosing the smallest value at which no

noticeable degradation of the verification statistics was observed.
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5. Results

a. Analysis and forecast verification results

We find a reduction in the horizontally averaged analyses and forecast error statistics

that is statistically significant at the 99% level, as a result of adding the satellite radiance

observations to the assimilated data set, only in the SH extratropics (Fig. 3). The assim-

ilation of the radiance observations with the proposed strategy improves the analysis and

forecast not only of the temperature, which is the model variable most closely related to

the radiance through the observation operator, but also of the two horizontal components

of the wind. This result suggests that the ensemble-based estimate of the cross-correlation

between the errors in the background temperature and wind is sufficiently accurate to lead

to an improvement of the wind analysis. Figure 3 also shows that the bias correction has a

positive effect on the quality of the analyses and forecasts. This positive effect is especially

large in and above the upper troposphere, where the assimilation of the AMSU-A observa-

tions without bias correction degrades the analysis and forecast of the temperature and the

geopotential height.

Further details of the analysis and forecast improvement patterns are revealed by the

vertical cross-sections of the reduction in the zonal mean of the analysis and forecast errors

(Figs. 4). The primary region of analysis improvement is in the SH midlatitudes, while a

smaller secondary region is the NH polar region. In these two regions, both the temperature

and the wind analyses are improved. On the other hand, the temperature analysis in the SH

polar region and the wind analysis between 45◦S and 75◦N are degraded. The magnitude of

the improvement, especially for the wind, is much larger than that of the degradation. The
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improvement in the SH midlatitudes is also present in the 48-h forecasts, but the improve-

ments in the NH polar region and the degradation in the wind in the Tropics are not present

in the 48-h forecasts.

The difference between the analysis and short-term forecast verification results suggests

that the analysis verification results may be contaminated by errors in the verifying analyses.

For instance, a stronger correlation between the errors in the analyses with satellite radiance

observations and the errors in the verifying analyses may lead to the spurious detection of

analysis improvement. Likewise, a stronger correlation between the errors in the analyses

without the satellite radiance observations and the errors in the verifying analyses could lead

to the false detection of analysis degradation. It is also possible, of course, that changes in

the quality of the state estimates disappear from the forecasts due to the short predictability

limit of the atmospheric flow features that are analyzed with different accuracy in the two

analyses that serve as initial conditions of the two verified forecasts.

We cannot tell which one of these potential explanations applies to our results. Never-

theless, we can conclude with high confidence that the assimilation of radiance observations

with our proposed strategy is a source of analysis improvement that leads to significant

forecast improvement in the SH midlatitudes.

The horizontal distribution of the improvement in the 48-h forecasts is shown in Figs. 5

and 6. The only difference between these two figures is that, in Fig. 6, the difference be-

tween the forecast errors is not shown at locations where it is not statistically significant at

the 90% level. (We include the figure showing unfiltered results to illustrate the effect of

filtering based on statistical significance). This pair of figures indicates that the analyses are

improved over the oceans, with the largest improvement between and east of Cape Horn and
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the Antarctic Peninsula, while the analyses are degraded over Antarctica. The statistically

significant improvement in the surface pressure forecasts indicates that the ensemble-based

estimate of the background error covariance matrix provides useful information about the

cross correlation between the surface pressure and the atmospheric state variables that di-

rectly affect the radiative transfer.

b. The behavior of the bias parameters

These last results demonstrate that the tested strategy provides stable estimates of the

state and the bias parameters. Figures 7 and 8 show the time evolution of the error in

the temperature and the meridional wind component analyses: in particular, after a short

period (about 10 days) of transient behavior, the errors oscillate around relatively stable

levels. Furthermore, in agreement with Fig. 3, the results indicate that the bias correction

has a larger positive effect in the upper troposphere than in the lower troposphere and that

employing a bias correction scheme is especially important for the temperature analysis to

benefit from the AMSU-A observations.

To illustrate the behavior of the bias correction terms, we choose two channels: one

that has the average peak sensitivity in the lower troposphere (channel 4) and one that is

most sensitive, on average, to the atmospheric conditions in the upper troposphere (chan-

nel 11). (See Table 1 for the levels of average peak sensitivity for the different channels.)

We investigate the time evolution of the bias correction terms for these two channels in the

extratropical SH region. The estimate of the total bias, bj, for the two selected channels,

settles after an about 3–4 week transient period (Fig. 9). Once the transient damps out, the
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root-mean-square of bj is about 0.9 K for channel 4 and about 0.3 K for channel 11. That the

root-mean-square of the bias correction is larger than its absolute value for both channels

indicates that there is a noticeable variability in the magnitude of the bias correction over

the different locations.

Figure 10 decomposes the total bias correction into three components: intercept (β0
j ),

scan angle (β1
j p1), and surface temperature (β2

j p2). Since the root-mean-square and the ab-

solute value of the mean is about the same for the intercept and the surface temperature

components, the spatial variability of bj is primarily due to the variation in the scan-angle

term. The magnitude of all three bias correction components is larger for channel 4 than the

magnitude of the respective components for channel 11. The two largest magnitude compo-

nents, which are the intercept and the surface temperature components for both channels,

have opposite signs, with the intercept having somewhat larger magnitude.

Finally, Fig. 11 shows the areal mean of the ensemble mean and the ensemble spread of

the estimates of the bias parameters β0
j , β1

j , and β2
j . The ensemble spread converges rapidly

for channel 4 but slowly for channel 11. For the latter channel, there are three clearly

distinguishable phases in the evolution of the estimates of the bias parameters β0
j and β2

j : an

initial rapid drift, an oscillatory phase around a well-determined mean level, and a phase in

which the oscillations disappear. The beginning of this final phase coincides with the time at

which the ensemble spread reaches its asymptotic value. That the estimates oscillate around

the final levels in the oscillatory phase suggests that the low asymptotic level of the spread

may not necessarily be the sign of a pathological collapse of the ensemble but instead may

indicate low uncertainty in the bias parameters for channel 11. Support for this conclusion

comes from the fact that channel 11 has average peak sensitivity at a pressure level (280 hPa)
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where the bias correction has a large positive effect on the accuracy of the analysis.

6. Conclusions

In this paper, we test the techniques developed by Fertig et al. (2007, 2009) for the

assimilation of satellite radiance observations in a realistic setting for the first time. The

results suggest that the tested strategy can extract useful information about the atmospheric

state, especially in regions where the satellite radiance observations are the dominant source

of observational information.

Our approach for bias correction, which is based on a simultaneous estimation of the state

and bias parameters based on an ensemble, is not the only way to estimate and to correct

for the bias in the radiance observations in an ensemble-based data assimilation system.

Fertig et al. (2009) also introduced, in addition to the algorithm tested here, a two-step

approach in which the bias correction parameters first are estimated with the ensemble-based

scheme and then the state is estimated in a subsequent step. We have recently learned of

another alternative strategy proposed by Miyoshi and Whitaker (2009): a single estimate

of each bias parameter is obtained, instead of the ensemble of bias parameters in the two

schemes by (Fertig et al. 2009), by solving an algebraic equation. Preliminary results with an

implementation of the scheme of (Miyoshi and Whitaker 2009) on the model component of the

NCEP GFS suggest that the scheme can efficiently account for the observation bias (Jeffrey

Whitaker, personal communication). While a comparison of the different approaches for

observation bias correction in ensemble-based data assimilation systems would be desirable,

the results so far suggest that efficient online estimation and correction of the observation

23

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



bias in an ensemble-based scheme for a realistic setting is attainable.

Acknowledgments.

The work of J. A. on this project was partially funded by the Conselho Nacional de Desen-

volvimento Cientfico e Tecnolgico (CNPq, National Council for Scientific and Technological

Development of Brazil) under the grants PDE 201185/2005-9 and PU 484245/2006-6. Fur-

ther funding for the research we report here was provided by NASA (Grants NNX08AD40G,

NNX07AV45G, and NNX08AD37G) and NSF (Grant ATM0722721).

24

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



REFERENCES

Bonavita, M., L. Torrisi, and F. Marcucci, 2008: The ensemble kalman filter in an operational

regional nwp system: Preliminary results with real observations. Quart. J. Roy. Meteor.

Soc., 134, 1733–1744.

Burgers, G., J. P. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble

kalman filter. Mon. Wea. Rev., 126, 1719–1724.

Dee, D. P., 2005: Bias and data assimilation. QJRMS, 131, 3323–3343.

Derber, J. C. and W.-S. Wu, 1998: The use of tovs cloud-cleared radiances in the ncep ssi

analysis system. Mon. Wea. Rev., 126, 2287–2299.

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model

using monte carlo methods to forecast error statistics. J. Geophys. Res.

Eyre, J. R., 1992: A bias correction scheme for simulated tovs brightness temperatures. Tech.

Rep. 186, 28pp., ECMWF Tech. Memo, European Centre for Medium-Range Weather

Forecasts, Shinfield Park, Reading, Berkshire R62 9AX, United Kingdom.

Fertig, E. J., B. R. Hunt, E. Ott, and I. Szunyogh, 2007: Assimilating non-local observations

with a local ensemble kalman filter. Tellus, 59A, 719–730.

Fertig, E. J., et al., 2009: Observation bias correction with an ensemble kalman filter. Tellus,

61A, 210–226.

25

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



Friedland, B., 1969: Treatment of bias in recursive filtering. IEEE Trans. Auto. Control, 14,

359–367.

Han, Y., P. van Delst, Q. Liu, F. Weng, and J. C. Derber, 2005: User’s guide to the jcsda

community radiative transfer model (beta version). Tech. rep., Joint Center for Satellite

Data Assimilation, Camp Springs, MD, USA.

Harris, B. A. and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assim-

ilation. QJMS, 127, 1453–1468.

Houtekamer, P. L. and H. L. Mitchell, 1998: Data assimilation using an ensemble kalman

filter technique. Mon. Wea. Rev., 126, 796–811.

Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and

M. Hansen, 2005: Atmospheric data assimilation with an ensemble kalman filter: Results

with real observations. Mon. Wea. Rev., 133, 604–620.

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spa-

tiotemporal chaos: A local ensemble transform kalman filter. Physica D, 230, 112–126.

Hunt, B. R., et al., 2004: Four-dimensional ensemble kalman filtering. Tellus, 56A, 273–277.

Miyoshi, T. and Y. Sato, 2007: Assimilating satellite radiances with a local ensemble trans-

form kalman filter (letkf) applied to the jma global model (gsm). SOLA, 135, 37–40.

Miyoshi, T. and J. S. Whitaker, 2009: An adaptive bias correction method for satellite data

in ensemble kalman filter. to be submitted.

26

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



Miyoshi, T. and S. Yamane, 2007: Local ensemble transform kalman filtering with an agcm

at a t159/l48 resolution. Mon. Wea. Rev., 135, 3841–3860.

Olsen, E. T., 2007: Airs/amsu/hsb version 5 data disclaimer. Goddard Space Flight

Center, NASA, Jet Propulsion Laboratory, California Institute of Technology, Pasadena,

CA, [Available online at http://disc.gsfc.nasa.gov/AIRS/documentation/v5_

docs/AIRS_V5_Release_User_Docs/V5_Data_Disclaimer.pdf], [Available online at

http://disc.gsfc.nasa.gov/AIRS/documentation/v5_docs/AIRS_V5_Release_User_

Docs/V5_Data_Disclaimer.pdf].

Ott, E., et al., 2004: A local ensemble kalman filter for atmospheric data assimilation. Tellus,

56A, 415–428.

Szunyogh, I., E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield,

and J. A. Yorke, 2008: A local ensemble transform kalman filter data assimilation system

for the ncep global model. Tellus, 60A, 113–130.

Szunyogh, I., E. J. Kostelich, G. Gyarmati, D. J. Patil, B. R. Hunt, E. Kalnay, E. Ott, and

J. A. Yorke, 2005: Assessing a local ensemble kalman filter: perfect model experiments

with the national centers for environmental prediction global model. Tellus, 57A, 528–545.

Torn, R. D. and G. J. Hakim, 2008: Performance characteristics of a pseudo-operational

ensemble kalman filter. Mon. Wea. Rev., 136, 3497–3963.

Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without ra-

diosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 1190–1200.

27

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimi-

lation with the ncep global forecast system. Mon. Wea. Rev., 136, 463–482.

Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2d ed., Academic Press,

627 pp.

Wu, W.-S., J. R. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis

with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 2905–2916.

28

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



List of Figures

1 Spatial distribution of the conventional temperature observations in a typical

6-hour observation time window. The locations of the observations that were

assimilated at grid points between sigma levels 0.45 and 0.55, at February

15, 2004, 1200 UTC are marked by crosses. The total number of observation

locations in this figure is 1415. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Spatial distribution of the AMSU-A observations in a typical six-hour obser-

vation time window. The locations of the observations that were assimilated

at February 15, 2004, 1200 UTC are marked by crosses. The total number of

observation locations in this figure is 6394. . . . . . . . . . . . . . . . . . . . 33

3 The left panels show the time mean of the root-mean-square error of the

analyses with the satellite radiance observations using bias correction (blue),

with the satellite radiance observations not using bias correction (green) and

without satellite radiance observations (red) for different forecast variables in

the SH extratropics. Right panels show the time mean of the root-mean-square

error of the 48-hour forecasts. In the computation of the root-mean-square

error, the operational NCEP analysis is used as proxy for the true state of

the atmosphere. The averages are taken over all model grid points south of

20◦N and over all verification times between 10 January 2004 0000UTC and

29 February 2004 1800UTC for the analysis and between 12 January 2004

0000UTC and 29 February 2004 1800UTC for the forecasts. . . . . . . . . . 34

29

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



4 Vertical cross-section of the difference between the zonal mean absolute error

in the state estimate with satellite radiance observations and the zonal mean

absolute error in the state estimate without satellite radiance observations.

(Negative values indicate improvements due to the assimilation of the satellite

radiance observations.) Results are shown for the temperature (top panels)

and the meridional component of the wind. The averages are taken over

all model grid points south of 20◦N and over all analyses times between 11

January 2004 0000UTC and 29 February 2004 1800UTC. . . . . . . . . . . 35

5 Color shades show the difference between the mean-square error of the 48-hour

forecasts with and without satellite radiance observations. (Negative values

indicate regions where the error is reduced by the assimilation of the satellite

radiance observations.) The average is taken over all forecasts started between

11 January 2004 0000UTC and 27 February 2004 1800UTC. Contours show

the time means of the verifying analysis. . . . . . . . . . . . . . . . . . . . . 36

6 Same as Fig. 5, except that the difference between the errors in the two

forecasts is shown only at locations where it is significant at the 90% level. . 37

7 Time evolution of the root-mean-square error in the temperature analysis at

three different model levels in the SH. Shown are the results with the satellite

radiance observations using bias correction (blue), with the satellite radiance

observations not using bias correction (green) and without satellite radiance

observations (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Same as Fig. 7 except for the meridional component of the wind instead of

the temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

30

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



9 Time evolution of the areal mean (thick solid line) and the root-mean-square

(thin dashed line) of the ensemble mean bias correction for channel 4 (top

panel) and channel 11 (bottom panel) in the SH region. . . . . . . . . . . . . 40

10 Time evolution of the areal mean (thick solid line) and the root-mean-square

(thin dashed line) of the ensemble mean bias correction components for chan-

nel 4 (left panels) and channel 11 (right pannels) in the SH region. . . . . . . 41

11 Time evolution of the bias correction parameters for channel 4 (left panels)

and channel 11 (right panels) in the SH region (thick solid line). Also shown is

the time evolution of the ensemble spread, defined by the standard deviation,

of the estimates of the bias parameters (thin dashed line). . . . . . . . . . . 42

31

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



Fig. 1. Spatial distribution of the conventional temperature observations in a typical 6-hour

observation time window. The locations of the observations that were assimilated at grid

points between sigma levels 0.45 and 0.55, at February 15, 2004, 1200 UTC are marked by

crosses. The total number of observation locations in this figure is 1415.
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Fig. 2. Spatial distribution of the AMSU-A observations in a typical six-hour observation

time window. The locations of the observations that were assimilated at February 15, 2004,

1200 UTC are marked by crosses. The total number of observation locations in this figure

is 6394.
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Fig. 3. The left panels show the time mean of the root-mean-square error of the analyses with

the satellite radiance observations using bias correction (blue), with the satellite radiance

observations not using bias correction (green) and without satellite radiance observations

(red) for different forecast variables in the SH extratropics. Right panels show the time

mean of the root-mean-square error of the 48-hour forecasts. In the computation of the

root-mean-square error, the operational NCEP analysis is used as proxy for the true state of

the atmosphere. The averages are taken over all model grid points south of 20◦N and over

all verification times between 10 January 2004 0000UTC and 29 February 2004 1800UTC

for the analysis and between 12 January 2004 0000UTC and 29 February 2004 1800UTC for

the forecasts.
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Fig. 4. Vertical cross-section of the difference between the zonal mean absolute error in

the state estimate with satellite radiance observations and the zonal mean absolute error

in the state estimate without satellite radiance observations. (Negative values indicate im-

provements due to the assimilation of the satellite radiance observations.) Results are shown

for the temperature (top panels) and the meridional component of the wind. The averages

are taken over all model grid points south of 20◦N and over all analyses times between 11

January 2004 0000UTC and 29 February 2004 1800UTC.
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Fig. 5. Color shades show the difference between the mean-square error of the 48-hour

forecasts with and without satellite radiance observations. (Negative values indicate regions

where the error is reduced by the assimilation of the satellite radiance observations.) The

average is taken over all forecasts started between 11 January 2004 0000UTC and 27 February

2004 1800UTC. Contours show the time means of the verifying analysis.
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Fig. 6. Same as Fig. 5, except that the difference between the errors in the two forecasts is

shown only at locations where it is significant at the 90% level.
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Fig. 7. Time evolution of the root-mean-square error in the temperature analysis at three

different model levels in the SH. Shown are the results with the satellite radiance observations

using bias correction (blue), with the satellite radiance observations not using bias correction

(green) and without satellite radiance observations (red).
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Fig. 8. Same as Fig. 7 except for the meridional component of the wind instead of the

temperature.
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Fig. 9. Time evolution of the areal mean (thick solid line) and the root-mean-square (thin

dashed line) of the ensemble mean bias correction for channel 4 (top panel) and channel 11

(bottom panel) in the SH region.
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Fig. 10. Time evolution of the areal mean (thick solid line) and the root-mean-square (thin

dashed line) of the ensemble mean bias correction components for channel 4 (left panels)

and channel 11 (right pannels) in the SH region.
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Fig. 11. Time evolution of the bias correction parameters for channel 4 (left panels) and

channel 11 (right panels) in the SH region (thick solid line). Also shown is the time evolution

of the ensemble spread, defined by the standard deviation, of the estimates of the bias

parameters (thin dashed line).
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Table 1. AMSU-A channels selected for assimilation.

AMSU Channel Average peak

Number of WF (hPa)

4 850

5 700

6 600

7 500

8 400

9 350

10 300

11 280

44

INPE ePrint: sid.inpe.br/mtc-m18@80/2009/07.23.17.23 v1 2009-07-24



Table 2. Number of assimilated observations on a typical day (January 31, 2004).

Assimilation Cycle 0000 UTC 0600 UTC 1200 UTC 1800 UTC Daily total

AMSU-A 34,694 35,131 35,794 36,133 141,752

Pressure 12,214 11,413 12,272 11,235 47,134

Temperature 44,424 17,325 39,385 26,060 127,194

Zonal Wind 97,531 64,622 93,899 77,322 333,374

Meridional Wind 97,948 64,911 94,256 77,373 334,488

Total 286,811 193,402 275,606 228,123 983,942
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